ChipFind - документация

Электронный компонент: OP497G

Скачать:  PDF   ZIP
REV. D
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
a
OP497
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
Analog Devices, Inc., 2002
Precision Picoampere Input Current
Quad Operational Amplifier
FEATURES
Low Offset Voltage: 50 V max
Low Offset Voltage Drift: 0.5 V/ C max
Very Low Bias Current
25 C: 100 pA max
55 C to +125 C: 450 pA max
Very High Open-Loop Gain: 2000 V/mV min
Low Supply Current (per Amplifier): 625 A max
Operates from 2 V to 20 V Supplies
High Common-Mode Rejection: 120 dB min
APPLICATIONS
Strain Gage and Bridge Amplifiers
High Stability Thermocouple Amplifiers
Instrumentation Amplifiers
Photo-Current Monitors
High Gain Linearity Amplifiers
Long-Term Integrators/Filters
Sample-and-Hold Amplifiers
Peak Detectors
Logarithmic Amplifiers
Battery-Powered Systems
GENERAL DESCRIPTION
The OP497 is a quad op amp with precision performance in the
space-saving, industry standard 16-lead SOlC package. Its com-
bination of exceptional precision with low power and extremely
low input bias current makes the quad OP497 useful in a wide
variety of applications.
Precision performance of the OP497 includes very low offset,
under 50
V, and low drift, below 0.5 V/C. Open-loop gain
exceeds 2000 V/mV ensuring high linearity in every application.
Errors due to common-mode signals are eliminated by the OP497's
common-mode rejection of over 120 dB. The OP497's power
supply rejection of over 120 dB minimizes offset voltage changes
experienced in battery-powered systems. Supply current of the
OP497 is under 625
A per amplifier, and it can operate with
supply voltages as low as
2 V.
The OP497 utilizes a superbeta input stage with bias current can-
cellation to maintain picoamp bias currents at all temperatures.
This is in contrast to FET input op amps whose bias currents start
in the picoamp range at 25
C, but double for every 10C rise in
temperature, to reach the nanoamp range above 85
C. Input bias
current of the OP497 is under 100 pA at 25
C and is under 450
pA over the military temperature range.
Combining precision, low power, and low bias current, the
OP497 is ideal for a number of applications, including instru-
mentation amplifiers, log amplifiers, photo-diode preamplifiers,
and long-term integrators. For a single device, see the OP97; for a
dual device, see the OP297.
PIN CONNECTIONS
16-Lead Wide Body SOIC
(S-Suffix)
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
+
NC = NO CONNECT
OUT A
IN A
+IN A
V+
+IN B
IN B
OUT B
OUT D
IN D
+IN D
V
+IN C
IN C
OUT C
NC
NC
+
+
+
OP497
14-Lead Plastic Dip
(P-Suffix)
14-Lead Ceramic Dip
(Y-Suffix)
1
2
3
4
5
6
7
14
13
12
11
10
9
8
OUT A
IN A
+IN A
V+
+IN B
IN B
OUT B
OUT D
IN D
+IN D
V
+IN C
IN C
OUT C
+
+
+
+
OP497
V
S
= 15V
V
CM
= 0V
1000
100
10
75
50
25
0
25
50
75
100
125
INPUT CURRENT
PA
TEMPERATURE C
I
B
+I
B
I
OS
Input Bias, Offset Current vs. Temperature
REV. D
2
OP497SPECIFICATIONS
(@ V
S
= 15 V, T
A
= 25 C, unless otherwise noted.)
A
F
C/G
Parameter
Symbol
Condition
Min Typ Max Min Typ Max
Min Typ Max
Unit
INPUT CHARACTERISTICS
Offset Voltage
Vos
20
50
40
75
80
150
V
40
C +85C
70
150
120
250
55
C +125C
40
100
80
150
140
300
Average Input Offset
Voltage Drift
TCV
OS
T
MIN
T
MAX
0.2
0.5
0.4
1.0
0.6
1.5
V/C
Long-Term Input Offset
Voltage Stability
0.1
0.1
0.1
V/Mo
Input Bias Current
I
B
V
CM
= 0 V
30
100
40
150
60
200
pA
40
T
A
+85C
60
200
80
300
55
T
A
+125C
80
450
110
600
130
600
Average Input Bias
Current Drift
TC
IB
40
T
A
+85C
0.3
0.3
55
T
A
+125C
0.5
0.7
0.7
pA/
C
Input Offset Current
Ios
V
CM
= OV
15
100
30
150
50
200
pA
40
T
A
+85C
50
200
80
300
55
T
A
+125C
35
400
60
600
90
600
Average Input Offset
Current Drift
T
C
I
OS
0.2
0.3
0.4
pA/
C
Input Voltage Range
1
IVR
+ 13 +14
+13 tl4
+13 +14
V
T
MIN
T
MAX
+13 +13.5
+13 +13.5
+13 +13.5
Common-Mode Rejection CMR
V
CM
=
13 V
120
140
114
135
114
135
dB
T
MIN
T
MAX
114
130
108
120
108
120
Large Signal Voltage Gain A
VO
V
O
=
10 V,
R
L
= 2 k
2000 6000
1500 4000
1200 4000
V/mV
40
T
A
+85C
800
2000
800
2000
55
T
A
+125C 1200 4000
1000 3000
800
3000
Input Resistance
Differential Mode
R
IN
30
30
30
M
Input Resistance
Common Mode
R
INCM
500
500
500
G
Input Capacitance
C
IN
3
3
3
pF
OUTPUT CHARACTERISTICS
Output Voltage Swing
V
O
R
L
= 2 k
13 13.7
13 13.7
13 13.7V
R
L
= 10 k
13 14
13 14
13 14
T
MIN
T
MAX
R
L
= 10 k
13 13.5
13 13.5
13 13.5
Short Circuit
I
SC
25
25
25
mA
POWER SUPPLY
Power Supply
PSRR
Vs =
2 V to 20 V 120 140
114
135
114
135
dB
Rejection Ratio
Vs =
2.5 V to 20 V
T
MIN
T
MAX
114
130
108
120
108
120
Supply Current
I
SY
No Load
525
625
525
625
525
625
A
(per Amplifier)
T
MIN
T
MAX
580
750
580
750
580
750
Supply Voltage Range
V
S
Operating Range
2
20 2
20
2
20
V
T
MIN
T
MAX
2.5
20 2.5
20
2.5
20
DYNAMIC PERFORMANCE
Slew Rate
SR
0.05 0.15
0.05 0.15
0.05 0.15
V/
S
Gain Bandwidth Product
GBW
500
500
500
kHz
Channel Separation
CS
V
O
= 20 V
p-p,
fo = 10 Hz
150
150
150
dB
NOISE PERFORMANCE
Voltage Noise
e
n
p-p
0.1 Hz to 10 Hz
0.3
0.3
0.3
V/p-p
Voltage Noise Density
e
n
= 10 Hz
17
17
17
nV/
Hz
e
n
= 1 kHz
15
15
15
nV/
Hz
Current Noise Density
i
n
= 10 Hz
20
20
20
fA/
Hz
NOTE
1
Guaranteed by CMR Test.
Specifications subject to change without notice.
REV. D
OP497
3
ORDERING GUIDE
Temperature
Package
Package
Model
Range
Description
Option
OP497AY
* 55
C to +125C 14-Lead Cerdip
Q-14
OP497CY
* 55
C to +125C 14-Lead Cerdip
Q-14
OP497FP
40
C to +85C
14-Lead Plastic DIP N-14
OP497FS
40
C to +85C
16-Lead SOIC
R-16
OP497GP
40
C to +85C
14-Lead Plastic DIP N-14
OP497GS
40
C to +85C
16-Lead SOIC
R-16
*Not for new design; obsolete April 2002.
For a military processed devices, please refer to the Standard
Microcircuit Drawing (SMD) available at www.dscc.dla.mil/
programs.milspec./default.asp.
SMD Part Number
ADI Part Number
59629452101M2A
*
OP497BRC
59629452101MCA
OP497BY
*Not for new designs; obsolete April 2002.
DICE CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS
1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 V
Input Voltage
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 V
Differential Input Voltage
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 V
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite
Storage Temperature Range
Y Package . . . . . . . . . . . . . . . . . . . . . . . . 65
C to +175C
P, S Package . . . . . . . . . . . . . . . . . . . . . . . 65
C to +150C
Operating Temperature Range
OP497A, C (Y) . . . . . . . . . . . . . . . . . . . . 55
C to +125C
OP497F, G (Y) . . . . . . . . . . . . . . . . . . . . . 40
C to +85C
OP497F, G (P, S) . . . . . . . . . . . . . . . . . . . 40
C to +85C
Junction Temperature
Y Package . . . . . . . . . . . . . . . . . . . . . . . . 65
C to +175C
P, S Package . . . . . . . . . . . . . . . . . . . . . . . 65
C to +150C
Lead Temperature Range (Soldering 60 sec) . . . . . . . . 300
C
Package Type
JA
3
JC
Unit
14-Pin Cerdip (Y)
94
10
C/W
14-Pin Plastic DIP (P)
76
33
C/W
16-Pin SOIC (S)
92
23
C/W
NOTES
1
Absolute Maximum Ratings apply to both DICE and packaged parts, unless
otherwise noted.
2
For supply voltages less than
20 V, the absolute maximum input voltage is
equal to the supply voltage.
3
HIA is specified for worst-case mounting conditions, i.e.,
JA
is specified for
device in socket for cerdip, P-DIP packages;
JA
is specified for device soldered
to printed circuit board for SOIC package.
1/4
OP497
V
2
2k
V
1
20V pp @ 10Hz
CHANNEL SEPARATION = 20 log
V /10000
2
V
1
(
)
+
50
50k
+
1/4
OP497
Channel Separation Test Circuit
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the OP497 features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
REV. D
OP497
4
Typical Performance Characteristics
(25 C, Vs = 15 V, unless otherwise noted.)
50
0
100
30
10
80
20
100
40
80
60
40
20
0
20
40
60
INPUT OFFSET VOLTAGE V
PERCENTAGE OF UNITS
T
A
= 25 C
V
S
= 15V
V
CM
= 0V
TPC 1. Typical Distribution of
Input Offset Voltage
TCV
OS
V/ C
PERCENTAGE OF UNITS
50
0
0.8
30
10
0.1
20
0
40
0.7
0.6
0.5
0.4
0.3
0.2
V
S
= 15V
V
CM
= 0V
TPC 4. Typical Distribution of
TCV
OS
3
0
5
1
1
0
2
4
3
2
TIME AFTER POWER APPLIED Minutes
DEVIATION FROM FINAL VALUE
V
T
A
= 25 C
V
S
= 15V
V
CM
= 0V
TPC 7. Input Offset Voltage
Warm-Up Drift
50
0
100
30
10
80
20
100
40
80
60
40
20
0
20
40
60
INPUT BIAS CURRENT pA
PERCENTAGE OF UNITS
T
A
= 25 C
V
S
= 15V
V
CM
= 0V
TPC 2. Typical Distribution of
Input Bias Current
V
S
= 15V
V
CM
= 0V
1000
100
10
75 50 25
0
25
50
75
100 125
INPUT CURRENT
pA
TEMPERATURE C
I
B
+I
B
I
OS
TPC 5. Input Bias, Offset
Current vs. Temperature
10
100
1k
10k
100k
1M
10M
10000
1000
100
10
SOURCE RESISTANCE
EFFECTIVE OFFSET VOLTAGE
V
55 C T 125 C
A
T = +25 C
A
BALANCED OR UNBALANCED
V
S
= 15V
V
CM
= 0V
TPC 8. Effective Offset Voltage
vs. Source Resistance
INPUT OFFSET CURRENT pA
PERCENTAGE OF UNITS
60
0
60
30
10
10
20
0
50
40
50
40
30
20
T
A
= 25 C
V
S
= 15V
V
CM
= 0V
TPC 3. Typical Distribution of
Input Offset Current
70
0
15
30
10
10
20
15
60
40
50
10
5
0
5
COMMON-MODE VOLTAGE Volts
INPUT BIAS CURRENT
pA
T
A
= 25 C
V
S
= 15V
I
B
+I
B
TPC 6. Input Bias Current vs.
Common-Mode Voltage
100
1k
10k
100k
1M
10M
100
10
1
0.1
SOURCE RESISTANCE
EFFECTIVE OFFSET VOLTAGE
V/
C
100M
BALANCED OR UNBALANCED
V
S
= 15V
V
CM
= 0V
TPC 9. Effective TCV
OS
vs.
Source Resistance
REV. D
5
OP497
1
10
100
1000
100
10
1
FREQUENCY Hz
1000
VOLTAGE NOISE DENSITY
nV/
Hz
CURRENT NOISE DENSITY
fA /
Hz
CURRENT NOISE
VOLTAGE NOISE
T
A
= 25 C
V
S
= 2V TO 20V
TPC 10. Voltage Noise Density
vs. Frequency
100
40
10M
20
20
1k
0
100
80
40
60
1M
100k
10k
225
180
135
90
FREQUENCY Hz
OPEN-LOOP GAIN
dB
PHASE SHIFT
DEG
GAIN
PHASE
V
S
= 15V
C
L
= 30pF
R
L
= 1M
T
A
= 25 C
TPC 13. Open-Loop Gain,
Phase vs. Frequency
160
0
1M
40
20
10
1
80
60
100
120
140
100k
10k
1k
100
FREQUENCY Hz
COMMON - MODE REJECTION
dB
V
S
=
15V
T
A
= 25 C
TPC 16. Common-Mode
Rejection vs. Frequency
10
1
0.1
0.01
SOURCE RESISTANCE
TOTAL NOISE DENSITY
V/
Hz
T
A
= 25 C
V
S
= 2V TO 20V
10
2
10
3
10
4
10
5
10
6
10
7
1kHz
10Hz
TPC 11. Total Noise Density vs.
Source Resistance
LOAD RESISTANCE k
OPEN - LOOP GAIN
V/ MV
V
S
= 15V
V
O
= 10V
10000
1000
100
1
10
20
T
A
= 55 C
T
A
= +25C
T
A
= +125 C
TPC 14. Open-Loop Gain vs.
Load Resistance
160
0
1M
40
20
10
1
80
60
100
120
140
100k
10k
1k
100
FREQUENCY Hz
POWER SUPPLY REJECTION
dB
PSR
+PSR
V
S
=
15V
T
A
= 25 C
TPC 17. Power Supply
Rejection vs. Frequency
100
90
10
0%
1s
5mV
V
S
= 15V
T
A
= 25 C
NOISE VOLTAGE
100mV/DIV
0
2
4
6
8
10
TIME Secs
TPC 12. 0.1 Hz to 10 Hz Noise Voltage
15
10
15
10
5
0
5
OUTPUT VOLTAGE V
DIFFERENTIAL INPUT VOLTAGE
10
V/ DIV
R
L
= 2k
V
S
= 15V
V
CN
= 10V
T
A
= +125 C
T
A
= +25 C
T
A
= 55 C
TPC 15. Open-Loop Gain Linearity
FREQUENCY Hz
35
0
100k
15
5
1k
10
100
30
20
25
10k
OUTPUT SWING
V
p-p
V
S
= 15V
T
A
= 25 C
A
VCL
= +1
1%THD
R
L
= 10k
TPC 18. Maximum Output
Swing vs. Frequency
REV. D
OP497
6
20
1.0
0.5
5
0
1.5
1.5
1.0
0.5
15
10
SUPPLY VOLTAGE V
INPUT COMMON-MODE VOLTAGE
Volts
(REFERRED TO SUPPLY VOLTAGES)
+V
S
V
S
T
A
= 25 C
TPC 19. Input Common-Mode
Voltage Range vs. Supply Voltage
700
200
20
500
300
5
400
0
600
15
10
NO LOAD
SUPPLY VOLTAGE V
SUPPLY CURRENT (PER AMPLIFIER)
A
+125 C
+25 C
55 C
TPC 22. Supply Current
(per Amplifier) vs. Supply Voltage
LOAD CAPACITANCE pF
70
0
10k
30
10
100
20
10
60
40
50
1k
OVERSHOOT
%
V
S
= 15V
T
A
= 25 C
A
VCL
= +1
V
OUT
= 100mV pp
TPC 25. Small-Signal Overshoot
vs. Capacitance Load
LOAD RESISTANCE
35
0
10k
15
5
100
10
10
30
20
25
1k
OUTPUT SWING
V
p-p
V
S
= 15V
T
A
= 25 C
A
VCL
= +1
1%THD
f
O
= 1kHz
TPC 20. Maximum Output Swing
vs. Load Resistance
1000
0.001
100k
1
0.01
10
0.1
1
100
10
10k
1k
100
A
V
= +1
V
S
= 15V
T
A
= 25 C
TPC 23. Closed-Loop Output
Impedance vs. Frequency
20
1.0
0.5
5
0
1.5
1.5
1.0
0.5
15
10
SUPPLY VOLTAGE V
OUTPUT VOLTAGE SWING
V
(REFERRED TO SUPPLY VOLTAGES)
+V
S
V
S
T
A
= 25 C
R
L
= 10k
TPC 21. Output Voltage Swing vs.
Supply Voltage
35
35
4
20
30
1
25
0
15
15
20
25
30
3
2
TIME FROM OUTPUT SHORT Mins
SHORT CIRCUIT CURRENT
mA
T
A
= +125 C
T
A
= +25 C
T
A
= 55 C
V
S
=
15V
OUTPUT SHORTED
TO GROUND
T
A
= +125 C
T
A
= 55 C
T
A
= +25 C
TPC 24. Short-Circuit Current vs.
Time Temperature
IN
+IN
2.5k
V+
V
OUT
V
2.5k
TPC 26. Simplified Schematic Showing One Amplifier
REV. D
OP497
7
APPLICATIONS INFORMATION
Extremely low bias current over the full military temperature range
makes the OP497 attractive for use in sample-and-hold amplifiers,
peak detectors, and log amplifiers that must operate over a wide
temperature range. Balancing input resistances is not necessary
with the OP497. Offset voltage and TCV
OS
are degraded only
minimally by high source resistance, even when unbalanced.
The input pins of the OP497 are protected against large differen-
tial voltage by back-to-back diodes and current-limiting resistors.
Common-mode voltages at the inputs are not restricted, and may
vary over the full range of the supply voltages used.
The OP497 requires very little operating headroom about the
supply rails, and is specified for operation with supplies as low
as
2 V. Typically, the common-mode range extends to within
1 V of either rail. The output typically swings to within 1 V of
the rails when using a 10 k
load.
AC PERFORMANCE
The OP497's ac characteristics are highly stable over its full
operating temperature range. Unity-gain small-signal response is
shown in Figure 1. Extremely tolerant of capacitive loading on
the output, the OP497 displays excellent response even with
1000 pF loads (Figure 2).
10
90
100
0%
20mV
5 s
Figure 1. Small-Signal Transient Response
(C
LOAD
= 100 pF, A
VCL
= 1)
10
90
100
0%
20MV
5 s
Figure 2. Small-Signal Transient Response
(C
LOAD
= 1000 pF, A
VCL
= 1)
10
90
100
0%
2V
50 s
Figure 3. Large-Signal Transient Response (A
VCL
= 1)
GUARDING AND SHIELDING
To maintain the extremely high input impedances of the OP497,
care must be taken in circuit board layout and manufacturing.
Board surfaces must be kept scrupulously clean and free of mois-
ture. Conformal coating is recommended to provide a humidity
barrier. Even a clean PC board can have 100 pA of leakage currents
between adjacent traces, so guard rings should be used around
the inputs. Guard traces are operated at a voltage close to that
on the inputs, as shown in Figure 4, so that leakage currents
become minimal. In noninverting applications, the guard ring
should be connected to the common-mode voltage at the invert-
ing input. In inverting applications, both inputs remain at ground,
so the guard trace should be grounded. Guard traces should be
on both sides of the circuit board.
1/4
OP497
UNITY GAIN FOLLOWER
NONINVERTING AMPLIFIER
INVERTING AMPLIFIER
B
8
A
1
MINI-DIP
BOTTOM VIEW
+
+
+
1/4
OP497
1/4
OP497
Figure 4. Guard Ring Layout and Connections
REV. D
OP497
8
OPEN-LOOP GAIN LINEARITY
The OP497 has both an extremely high gain of 2000 V/mv mini-
mum and constant gain linearity. This enhances the precision of
the OP497 and provides for very high accuracy in high closed-loop
gain applications. Figure 5 illustrates the typical open-loop gain
linearity of the OP 497 over the military temperature range.
15
10
15
10
5
0
5
OUTPUT VOLTAGE Volts
DIFFERENTIAL INPUT VOLTAGE
10
V/ DIV
R
L
= 10k
V
S
= 15V
V
CM
= 0V
T
A
= +25C
T
A
= 55 C
T
A
= +125 C
Figure 5. Open-Loop Linearity of the OP497
APPLICATIONS
Precision Absolute Value Amplifier
The circuit of Figure 6 is a precision absolute value amplifier
with an input impedance of 30 M
. The high gain and low
TCV
OS
of the OP497 ensure accurate operation with microvolt
input signals. In this circuit, the input always appears as a com-
mon-mode signal to the op amps. The CMR of the OP497
exceeds 120 dB, yielding an error of less than 2 ppm.
+15V
2
3
V
IN
15V
4
C3
0.1 F
8
1
6
5
7
0V < V < 10V
OUT
D1
1N4148
R3
1k
R1
1k
C2
0.1 F
C1
30pF
D2
1N4148
R2
2k
1/4
OP497
1/4
OP497
Figure 6. Precision Absolute Value Amplifier
PRECISION CURRENT PUMP
Maximum output current of the precision current pump shown
in Figure 7 is
10 mA. Voltage compliance is 10 V with 15 V
supplies. Output impedance of the current transmitter exceeds
3 M
with linearity better than 16 bits.
2
3
1
7
8
5
6
4
15V
+15V
I
OUT
10mA
+
VIN
I
OUT
= = = 10mA/ V
V
IN
R5
V
IN
100
R1
10k
R2
10k
R4
10k
R3
10k
R5
10k
1/4
OP497
1/4
OP497
Figure 7. Precision Current Pump
PRECISION POSITIVE PEAK DETECTOR
In Figure 8, the CH must be of polystyrene, Teflon
*, or polyeth-
ylene to minimize dielectric absorption and leakage. The droop
rate is determined by the size of CH and the bias current of the
OP497.
2
3
1
7
8
5
6
4
15V
+15V
1N4148
2N930
C
H
RESET
V
IN
V
OUT
1k
1k
1k
1k
0.1 F
0.1 F
1/4
OP497
1/4
OP497
Figure 8. Precision Positive Peak Detector
SIMPLE BRIDGE CONDITIONING AMPLIFIER
Figure 9 shows a simple bridge conditioning amplifier using
the OP497. The transfer function is:
V
V
R
R
R
R
R
OUT
REF
F
=
+




The REF43 provides an accurate and stable reference voltage
for the bridge. To maintain the highest circuit accuracy, R
F
should be 0.1% or better with a low temperature coefficient.
*Teflon is a registered trademark of the Dupont Company.
REV. D
OP497
9
2
3
1
7
8
5
6
4
5V
+5V
REF43
6
2
4
+5V
R
R
R
2.5 V
R + R
R
F
V
OUT
V
REF
V
OUT
= V
REF
( )
R
R + R
R
F
R
1/4
OP497
1/4
OP497
Figure 9. A Simple Bridge Conditioning Amplifier Using
the OP497
NONLINEAR CIRCUITS
Due to its low input bias currents, the OP497 is an ideal log
amplifier in nonlinear circuits such as the square and square
root circuits shown in Figures 10 and 11. Using the squaring
circuit of Figure 10 as an example, the analysis begins by writing a
voltage-loop equation across transistors Q
1
, Q
2
, Q
3
, and Q
4
.
V
In
I
I
V
In
I
I
V
In I
I
I
V
In
I
I
T
IN
S
T
IN
S
T
O
S
T
REF
S
1
1
2
2
3
3
4
4




+




=




+




All the transistors of the MAT04 are precisely matched and at
the same temperature, so the I
S
and V
T
terms cancel, giving:
2InI
InI
InI
In I
I
IN
O
REF
O
REF
=
+
=
(
)
Exponentiating both sides of thick equation leads to:
I
I
I
O
IN
2
REF
=
( )
Op amp A
2
forms a current-to-voltage converter which gives
V
OUT
= R2
I
O
. Substituting (V
IN
/R1) for I
IN
and the above
equation for I
O
, yields:
V
R2
I
V
R1
OUT
REF
IN
2
=








1
2
3
6
7
5
C1
100pF
V+
2
3
8
1
4
V
V
IN
I
IN
C2
100pF
6
5
7
V
OUT
I
O
9
8
10
Q1
Q3
Q2
14
12
Q4
13
15V
I
REF
MAT-04E
R1
133k
R2
33k
R3
50k
R4
50k
1/4
OP497
1/4
OP497
Figure 10. Squaring Amplifier
A similar analysis made for the square-root circuit of Figure 11
leads to its transfer function:
V
R2
V
I
R1
OUT
IN
REF
=
( )( )
In these circuits, I
REF
is a function of the negative power sup-
ply. To maintain accuracy, the negative supply should be well
regulated. For applications where very high accuracy is required,
a voltage reference may be used to set I
REF
. An important con-
sideration for the squaring circuit is that a sufficiently large
input voltage can force the output beyond the operating range
of the output op amp. Resistor R4 can be changed to scale I
REF
,
or Rl and R2 can be varied to keep the output voltage within
the usable range.
1
2
3
6
7
5
C1
100pF
V+
2
3
8
1
4
V
6
5
7
V
OUT
I
O
9
8
10
Q1
Q3
Q2
14
12
Q4
13
15V
I
REF
MAT-04E
I
IN
V
IN
R1
33k
R2
33k
R5
2k
R3
50k
R4
50k
C2
100pF
1/4
OP497
1/4
OP497
Figure 11. Square-Root Amplifier
Unadjusted accuracy of the square-root circuit is better than
0.1% over an input voltage range of 100 mV to 10 V. For a
similar input voltage range, the accuracy of the squaring circuit
is better than 0.5%.
REV. D
OP497
10
OP497 SPICE MACRO-MODEL
Figure 12 and Table I show the node and net list for a SPICE
macro-model of the OP497. The model is a simplified version of
the actual device and simulates important dc parameters such as
V
OS
, I
OS
, I
B
, A
VO
, CMR, V
O
, and I
SY
. AC parameters such as slew
rate, gain and phase response, and CMR change with frequency
are also simulated by the model.
The model uses typical parameters for the OP497. The poles and
zeros in the model were determined from the actual open and
closed-loop gain and phase response of the OP497. In this way,
the model presents an accurate ac representation of the actual
device. The model assumes an ambient temperature of 25
C.
+
+
99
20
21
23
24
25
26
22
R16
D9
G4
G5
D10
G7
L1
V4
V3
G6
D8
D7
D5
D6
27
50
I
SY
V
O
R18
R19
R17
G2
R10
CCM
98
ECM
RCM1
RCM2
15
16
C5
19
CNZ
ENZ
RNZ1
RNZ2
17
18
G2
R15
20
C5
IN
+IN
8
9
7
2
1
C
IN
R1
R2
D1
D2
50
10
11
5
6
12
98
14
13
G1
C3
V2
C2
Q1
Q2
R6
R5
99
V1
E
REF
+
R
IN2
E
OS
I
1
R
IN1
I
OS
R3
R4
D3
D4
R7
Figure 12. OP497 Macro Model
REV. D
OP497
11
* Node assignments
*
noninverting input
*
inverting input
*
positive supply
*
negative supply
*
output
*
*SUBCKT OP497 1
2
99
50 27
*
* INPUT STAGE AND POLE AT 6 MHz
*
RIN1 1
7
2500
RIN2 2
8
2500
R1
8
3
6.782E8
R2
7
3
6.782E8
R3
5
99
542.57
R4
6
99
542.57
CIN 7
8
3E-12
C2
5
6
24.445E-12
I1
4
50
0.1E-3
IOS
7
8
15E-12
EOS 9
7
POLY(1) 16
21 40E-6
1
Q1
5
8
10
QX
Q2
6
9
11
QX
R5
10
4
25.374
R6
11
4
25.374
D1
8
9
DX
D2
9
8
DX
*
EREF 98
0
21
0
1
*
*GAIN STAGE AND DOMINANT POLE AT 0.11 Hz
*
R7
1
98
2.1703E9
C3
2
98
666.67E-12
G1
98
12
5
V1
99
13
1.275
V2
11
9
1.275
D3
12
13
DX
D4
14
12
DX
*
*COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz
*
RCM1 15
16
1E6
CCM
15
16
3.18E-9
RCM2 16
98
1
ECM
15
98
3
21
177.83E-3
* NEGATIVE ZERO AT 1.8 MHz
*
E1
17
98
12
21
1E6
R8
17
18
1E6
C4
17
18
88.419E-15
R9
18
98
1
*
* POLE AT 6 MHz
*
G2
98
19
18
21
1E-6
R15
20
98
1E6
C8
20
98
26.526E-15
*
* POLE AT 1.8 MHz
*
G6
98
20
19
21
1E-6
R20
20
98
1E6
C10
20
98
88.419E-15
*
* OUTPUT STAGE
*
R16
99
21
160 k
R17
21
50
160 k
ISY
99
50
331E-6
V3
23
22
1.9
D5
20
23
DX
V4
22
24
1.9
D6
24
20
DX
D7
99
25
DX
G4
25
50
20
22
5E-3
D9
50
25
DY
D8
99
26
DX
G5
26
50
22
20
5E-3
D10
50
26
DY
G6
22
99
99
20
5E-3
R18
99
22
200
G7
50
22
20
50
5E-3
R19
22
50
200
L1
22
27
0.1E-6
*
* MODELS USED
*
.MODEL QX NPN (BF = 1.25E6)
.MODEL DX (IS = 1E-15)
.MODEL DZ D(IS = 1E-15 BV = 50)
.ENDS OP497
Table I. OP497 SPICE Net-List
12
C0030902/02(D)
PRINTED IN U.S.A.
Revision History
Location
Page
11/01--Data Sheet changed from REV. C to REV. D.
Edits to PIN CONNECTIONS headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Deleted WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Edits to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
14-Lead Ceramic DIP
(Y-Suffix)
PIN 1
1
14
8
7
0.005 (0.13)
MIN
0.098 (2.49)
MAX
0.310 (7.87)
0.220 (5.59)
0.200 (5.08)
MAX
0.060 (1.52)
0.015 (0.38)
0.200 (5.08)
0.125 (3.18) 0.023 (0.58)
0.014 (0.36)
0.100
(2.54)
BSC
0.070 (1.78)
0.030 (0.76)
0.150
(3.81)
MIN
0
15
0.015 (0.38)
0.008 (0.20)
0.320 (8.13)
0.290 (7.37)
0.785 (19.94) MAX
SEATING PLANE
14-Lead Epoxy DIP
(P-Suffix)
PIN 1
1
14
8
7
0.325 (8.25)
0.300 (7.62)
0.210 (5.33)
MAX
0.160 (4.06)
0.115 (2.92) 0.022 (0.558)
0.014 (0.36)
0.100
(2.54)
BSC
0.070 (1.77)
0.045 (1.15)
0.130
(3.30)
MIN
0
15
0.015 (0.38)
0.008 (0.20)
0.280 (7.11)
0.240 (6.10)
0.015 (0.381)
MIN
0.795 (20.19)
0.725 (18.41)
16-Lead Wide-Body SOIC
(S-Suffix)
SEATING
PLANE
0.0118 (0.30)
0.0040 (0.10)
0.0192 (0.49)
0.0138 (0.35)
0.1043 (2.65)
0.0926 (2.35)
0.050 (1.27)
BSC
16
9
8
1
0.4193 (10.65)
0.3937 (10.00)
0.2992 (7.60)
0.2914 (7.40)
PIN 1
0.4133 (10.50)
0.3977 (10.00)
0.0125 (0.32)
0.0091 (0.23)
8
0
0.0291 (0.74)
0.0098 (0.25)
45
0.0500 (1.27)
0.0157 (0.40)