ChipFind - документация

Электронный компонент: APT200GN60J

Скачать:  PDF   ZIP
050-7610 Rev A 1-2005
APT200GN60J
TYPICAL PERFORMANCE CURVES
MAXIMUM RATINGS
All Ratings: T
C
= 25C unless otherwise specified.


































































STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 4mA)
Gate Threshold Voltage (V
CE
= V
GE
, I
C
= 3.2mA, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 200A, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 200A, T
j
= 125C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 100A, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 100A, T
j
= 125C)
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 25C)
2
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 125C)
2
Gate-Emitter Leakage Current (V
GE
= 20V)
Intergrated Gate Resistor
Symbol
V
(BR)CES
V
GE(TH)
V
CE(ON)
I
CES
I
GES
R
GINT
UNIT
Volts
mA
nA
Symbol
V
CES
V
GE
I
C1
I
C2
I
CM
SSOA
P
D
T
J
,T
STG
APT200GN60J
600
20
250
110
600
600A @600V
568
-55 to 150
UNIT
Volts
Amps
Watts
C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current @ T
C
= 25C
Continuous Collector Current @ T
C
= 110C
Pulsed Collector Current
1
@ T
C
= 150C
Switching Safe Operating Area @ T
J
= 150C
Total Power Dissipation
Operating and Storage Junction Temperature Range
APT200GN60J
600V
APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Utilizing the latest Field Stop and Trench Gate technologies, these IGBTs
have ultra low V
CE(ON)
and are ideal for low frequency applications that require
absolute minimum conduction loss. Easy paralleling is a result of very tight
parameter distribution and a slightly positive V
CE(ON)
temperature coefficient.
A built-in gate resistor ensures extremely reliable operation, even in the event
of a short circuit fault. Low gate charge simplifies gate drive design and
minimizes losses.
600V Field Stop
Trench Gate: Low V
CE(on)
Easy Paralleling
10s Short Circuit Capability
Intergrated Gate Resistor: Low EMI, High Reliability
Applications:
welding, inductive heating, solar inverters, motor drives, UPS, pass transistor
SO
T-2
27
G
E
E
C
ISOTOP
"UL Recognized"
G
C
E
MIN
TYP
MAX
600
5
5.8
6.5
1.05
1.45
1.85
1.65
1.15
1.19
4
TBD
600
2
050-7610 Rev A 1-2005
APT200GN60J
THERMAL AND MECHANICAL CHARACTERISTICS
UNIT
C/W
Volts
oz
gm
Ibin
Nm
MIN
TYP
MAX
.22
N/A
2500
1.03
29.2
10
1.1
Characteristic
Junction to Case
(IGBT)
Junction to Case
(DIODE)
RMS Voltage (
50-60Hz Sinusoidal Wavefom from Terminals to Mounting Base for 1 Min.)
Package Weight
Maximum Terminal & Mounting Torque
Symbol
R
JC
R
JC
V
Isolation
W
T
Torque
DYNAMIC CHARACTERISTICS
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
SCSOA
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
Test Conditions
Capacitance
V
GE
= 0V, V
CE
= 25V
f = 1 MHz
Gate Charge
V
GE
= 15V
V
CE
= 300V
I
C
= 100A
T
J
= 150C, R
G
= 5
7
, V
GE
=
15V, L = 100H,V
CE
= 600V
V
CC
= 480V, V
GE
= 15V,
T
J
= 125C, R
G
= 5
7
Inductive Switching (25C)
V
CC
= 400V
V
GE
= 15V
I
C
= 100A
R
G
= 5
7
T
J
= +25C
Inductive Switching (125C)
V
CC
=400V
V
GE
= 15V
I
C
= 100A
R
G
= 5
7
T
J
= +125C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller") Charge
Switching Safe Operating Area
Short Circuit Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
Turn-on Switching Energy (Diode)
5
Turn-off Switching Energy
6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
4
Turn-on Switching Energy (Diode)
5
5
Turn-off Switching Energy
6
6
MIN
TYP
MAX
14100
4610
4000
8.2
1180
85
660
600
10
55
20
1050
50
TBD
1720
2810
55
20
1150
60
TBD
1955
2865
UNIT
pF
V
nC
A
s
ns
J
ns
J
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, I
CES
includes both IGBT and FRED leackage.
3 See MIL-STD-750 Method 3471.
4 E
on1
is the clamped inductive tun-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24)
5 E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22)
6 E
off
is the clamped induvtive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23)
7 R
G
is external gate resistance, not including R
Gint
nor gate driver impedance. (MIC4452)
APT Reserves the right to change, without notice, the specifications and information contained herein.
050-7610 Rev A 1-2005
APT200GN60J
TYPICAL PERFORMANCE CURVES
BV
CES
, COLLECTOR-TO-EMITTER BREAKDOWN
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
I
C
, COLLECTOR CURRENT (A)
I
C
, COLLECTOR CURRENT (A)
VOLTAGE (NORMALIZED)
I
C,
DC COLLECTOR CURRENT(A)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
I
C
, COLLECTOR CURRENT (A)
V
CE
= 480V
V
CE
= 300V
V
CE
= 120V
I
C
= 100A
T
J
= 25C
250s PULSE
TEST<0.5 % DUTY
CYCLE
450
400
350
300
250
200
150
100
50
0
400
350
300
250
200
150
100
50
0
2.5
2.0
1.5
1.0
0.5
0
1.10
1.05
1.00
0.95
0.90
0
5
10
15
20
25
30
0
5
10
15
20
25
30
0
2
4
6
8
10
12
0
200 400 600 800 1000 1200 1400
6
8
10
12
14
16
25
50
75
100
125
-50 -25
0
25
50
75
100 125
-50 -25
0
25 50 75 100 125 150
450
400
350
300
250
200
150
100
50
0
16
14
12
10
8
6
4
2
0
2.0
1.5
1.0
0.5
0
300
250
200
150
100
50
0
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(T
J
= 25C)
FIGURE 2, Output Characteristics (T
J
= 125C)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics
FIGURE 4, Gate Charge
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
T
J
, Junction Temperature (C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
FIGURE 6, On State Voltage vs Junction Temperature
T
J
, JUNCTION TEMPERATURE (C)
T
C
, CASE TEMPERATURE (C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
FIGURE 8, DC Collector Current vs Case Temperature
15 & 10V
7V
6V
5.5V
5V
T
J
= 125C
T
J
= 25C
T
J
= -55C
T
J
= 25C.
250s PULSE TEST
<0.5 % DUTY CYCLE
I
C
= 200A
I
C
= 100A
I
C
= 50A
V
GE
= 15V.
250s PULSE TEST
<0.5 % DUTY CYCLE
I
C
= 200A
I
C
= 100A
I
C
= 50A
6.5V
7.5V
15 & 10V
7V
6V
5.5V
5V
6.5V
7.5V
Limited by Package
050-7610 Rev A 1-2005
APT200GN60J
V
GE
=15V,T
J
=125C
V
GE
=15V,T
J
=25C
V
CE
=
400V
R
G
=
5
L = 100 H
V
CE
= 400V
V
GE
= +15V
R
G
= 5
R
G
=
5, L
=
100
H, V
CE
=
400V
V
CE
= 400V
T
J
= 25C
,
T
J
=125C
R
G
= 5
L = 100 H
1200
1000
800
600
400
200
0
100
80
60
40
20
0
12000
10000
8000
6000
4000
2000
0
7000
6000
5000
4000
3000
2000
1000
0
V
GE
= 15V
T
J
=
125C, V
GE
=
15V
T
J
=
25 or 125C,V
GE
=
15V
T
J
=
25C, V
GE
=
15V
T
J
=
125C,V
GE
=
15V
T
J
=
25C,V
GE
=
15V
V
CE
= 400V
V
GE
= +15V
R
G
= 5
T
J
=
125C, V
GE
=
15V
T
J
=
25C, V
GE
=
15V
V
CE
= 400V
V
GE
= +15V
R
G
= 5
R
G
=
5, L
=
100
H, V
CE
=
400V
SWITCHING ENERGY LOSSES (J)
E
ON2
, TURN ON ENERGY LOSS (J)
t
r,
RISE TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (J)
E
OFF
, TURN OFF ENERGY LOSS (J)
t
f,
FALL TIME (ns)
t
d
(OFF)
, TURN-OFF DELAY TIME (ns)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
FIGURE 10, Turn-Off Delay Time vs Collector Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
FIGURE 12, Current Fall Time vs Collector Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
FIGURE 14, Turn Off Energy Loss vs Collector Current
R
G
, GATE RESISTANCE (OHMS)
T
J
, JUNCTION TEMPERATURE (C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
FIGURE 16, Switching Energy Losses vs Junction Temperature
70
60
50
40
30
20
10
0
60
50
40
30
20
10
0
12000
10000
8000
6000
4000
2000
0
60000
50000
40000
30000
20000
10000
0
5
25 45 65 85 105 125 145 165
5
25 45 65 85 105 125 145 165
5
25 45 65 85 105 125 145 165
5
25 45
65 85 105 125 145 165
5
25
45 65 85 105 125 145 165
5
25 45
65 85 105 125 145 165
0
10
20
30
40
50
0
25
50
75
100
125
E
on2,
150A
E
off,
150A
E
on2,
100A
E
off,
100A
E
on2,
50A
E
off,
50A
V
CE
= 400V
V
GE
= +15V
T
J
= 125C
E
on2,
150A
E
off,
150A
E
off,
100A
E
on2,
100A
E
on2,
50A
E
off,
50A
050-7610 Rev A 1-2005
APT200GN60J
TYPICAL PERFORMANCE CURVES
0.25
0.20
0.15
0.10
0.05
0
Z
JC
, THERMAL IMPEDANCE (C/W)
0.3
0.9
0.7
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
-5
10
-4
10
-3
10
-2
10
-1
1.0
20,000
10,000
5000
1000
500
100
700
600
500
400
300
200
100
0
C, CAPACITANCE (
P
F)
I
C
, COLLECTOR CURRENT (A)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage
Figure 18,Minimim Switching Safe Operating Area
0
10
20
30
40
50
0
100 200 300 400 500 600 700
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
25 50
75
100 125 150 175 200
F
MAX
, OPERATING FREQUENCY (kHz)
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
T
J
= 125
C
T
C
= 75
C
D = 50 %
V
CE
= 400V
R
G
= 5
50
10
1
0.5
0.1
0.05
F
max
=
min (f
max
, f
max2
)
0.05
f
max1
=
t
d(on)
+ t
r
+ t
d(off)
+ t
f
P
diss
- P
cond
E
on2
+ E
off
f
max2
=
P
diss
=
T
J
- T
C
R
JC
C
0es
C
res
C
ies
Peak TJ = PDM x ZJC + TC
Duty Factor D =
t1
/
t2
t2
t1
P
DM
Note:
0.0536
0.169
0.00826F
0.353F
Power
(watts)
RC MODEL
Junction
temp. (C)
Case temperature. (C)
050-7610 Rev A 1-2005
APT200GN60J
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
T
J
= 125C
Collector Current
Collector Voltage
Gate Voltage
Switching Energy
5%
10%
t
d(on)
90%
10%
t
r
5%
T
J
= 125C
Collector Voltage
Collector Current
Gate Voltage
Switching Energy
0
90%
t
d(off)
10%
t
f
90%
*DRIVER SAME TYPE AS D.U.T.
I
C
V
CLAMP
100uH
V
TEST
A
A
B
D.U.T.
DRIVER*
V
CE
Figure 24, EON1 Test Circuit
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
APT100DQ60
APT's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
SOT-227 (ISOTOP
) Package Outline
31.5 (1.240)
31.7 (1.248)
Dimensions in Millimeters and (Inches)
7.8 (.307)
8.2 (.322)
30.1 (1.185)
30.3 (1.193)
38.0 (1.496)
38.2 (1.504)
14.9 (.587)
15.1 (.594)
11.8 (.463)
12.2 (.480)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
0.75 (.030)
0.85 (.033)
12.6 (.496)
12.8 (.504)
25.2 (0.992)
25.4 (1.000)
1.95 (.077)
2.14 (.084)
* Emitter
Collector
Gate
*
r = 4.0 (.157)
(2 places)
4.0 (.157)
4.2 (.165)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
3.3 (.129)
3.6 (.143)
* Emitter
Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.