ChipFind - документация

Электронный компонент: AS7C33512NTF18A-10TQIN

Скачать:  PDF   ZIP

Document Outline

November 2004
Copyright Alliance Semiconductor. All rights reserved.
AS7C33512NTF18A
11/8/04, v. 1.1
Alliance Semiconductor
P. 1 of 18
3.3V 512K18 Flowthrough Synchronous SRAM with NTD
TM
Features
Organization: 524,288 words 18 bits
NTD
TM
architecture for efficient bus operation
Fast clock to data access: 7.5/8.5/10 ns
Fast OE access time: 3.5/4.0 ns
Fully synchronous operation
Flow-through mode
Asynchronous output enable control
Available in 100-pin TQFP
Byte write enables
Clock enable for operation hold
Multiple chip enables for easy expansion
3.3 core power supply
2.5V or 3.3V I/O operation with separate V
DDQ
30 mW typical standby power
Self-timed write cycles
Interleaved or linear burst modes
Snooze mode for standby operation
Logic Block Diagram
Selection Guide
-75
-85
-10
Units
Minimum cycle time
8.5
10
12
ns
Maximum clock access time
7.5
8.5
10
ns
Maximum operating current
280
260
220
mA
Maximum standby current
120
110
100
mA
Maximum CMOS standby current (DC)
30
30
30
mA
W
r
it
e Buf
f
er
Address
D
Q
CLK
register
Output
buffer
DQ [a,b]
19
19
CLK
CE0
CE1
CE2
A[18:0]
OE
CEN
Control
CLK
logic
Data
D
Q
CLK
input
register
18
18
OE
512K x 18
SRAM
array
R/W
DQ [a,b]
BWa
BWb
CLK
Q
D
FT
ADV / LD
LBO
burst logic
addr. registers
Write delay
19
ZZ
CLK
18
18
18
18
AS7C33512NTF18A
11/8/04, v. 1.1
Alliance Semiconductor
P. 2 of 18
8 Mb Synchronous SRAM products
list
1,2
1 Core Power Supply: VDD = 3.3V + 0.165V
2 I/O Supply Voltage: VDDQ = 3.3V + 0.165V for 3.3V I/O
VDDQ = 2.5V + 0.125V for 2.5V I/O
PL-SCD
:
Pipelined Burst Synchronous SRAM - Single Cycle Deselect
PL-DCD
:
Pipelined Burst Synchronous SRAM - Double Cycle Deselect
FT
:
Flow-through Burst Synchronous SRAM
NTD
1
-PL
:
Pipelined Burst Synchronous SRAM with NTD
TM
NTD-FT
:
Flow-through Burst Synchronous SRAM with NTD
TM
Org
Part Number
Mode
Speed
512KX18
AS7C33512PFS18A
PL-SCD
166/133 MHz
256KX32
AS7C33256PFS32A
PL-SCD
166/133 MHz
256KX36
AS7C33256PFS36A
PL-SCD
166/133 MHz
512KX18
AS7C33512PFD18A
PL-DCD
166/133 MHz
256KX32
AS7C33256PFD32A
PL-DCD
166/133 MHz
256KX36
AS7C33256PFD36A
PL-DCD
166/133 MHz
512KX18
AS7C33512FT18A
FT
7.5/8.5/10 ns
256KX32
AS7C33256FT32A
FT
7.5/8.5/10 ns
256KX36
AS7C33256FT36A
FT
7.5/8.5/10 ns
512KX18
AS7C33512NTD18A
NTD-PL
166/133 MHz
256KX32
AS7C33256NTD32A
NTD-PL
166/133 MHz
256KX36
AS7C33256NTD36A
NTD-PL
166/133 MHz
512KX18
AS7C33512NTF18A
NTD-FT
7.5/8.5/10 ns
256KX32
AS7C33256NTF32A
NTD-FT
7.5/8.5/10 ns
256KX36
AS7C33256NTF36A
NTD-FT
7.5/8.5/10 ns
1. NTD: No Turnaround Delay. NTD
TM
is a trademark of Alliance Semiconductor Corporation. All trademarks mentioned in this document are the property
of their respective owners.
AS7C33512NTF18A
11/8/04, v. 1.1
Alliance Semiconductor
P. 3 of 18
Pin arrangement for TQFP (top view)
LB
O A A A A A1 A0 NC NC
V
SS
V
DD
NC NC
A A A A A A
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
A A CE
0
CE
1
NC NC BWb BW
a
CE
2
V
DD
V
SS
CL
K
CE
N
AD
V/
LD
NC
A A A
A
NC
NC
NC
V
DDQ
V
SSQ
NC
NC
DQb0
DQb1
V
SSQ
V
DDQ
DQb2
DQb3
NC
V
DD
NC
V
SS
DQb4
DQb5
V
DDQ
V
SSQ
DQb6
DQb7
DQpb
NC
V
SSQ
V
DDQ
NC
NC
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
A
NC
NC
V
DDQ
V
SSQ
NC
DQpa
DQa7
DQa6
V
SSQ
V
DDQ
DQa5
DQa4
V
SS
ZZ
DQa3
DQa2
V
DDQ
V
SSQ
DQa1
DQa0
NC
NC
V
SSQ
V
DDQ
NC
NC
NC
NC
V
DD
TQFP 14 20mm
R/
W
OE
AS7C33512NTF18A
11/8/04, v. 1.1
Alliance Semiconductor
P. 4 of 18
Functional description
The AS7C33512NTF18A family is a high performance CMOS 8 Mbit Synchronous Static Random Access Memory (Flowthrough SRAM)
organized as 524,288 words 18 bits and incorporates a LATE Write.
This variation of the 8Mb sychronous SRAM uses the No Turnaround Delay (NTD
TM
) architecture, featuring an enhanced write operation
that improves bandwidth over pipelined burst devices. In a normal flowthrough burst device, the write data, command, and address are all
applied to the device on the same clock edge. If a read command follows this write command, the system must wait for one 'dead' cycle for
valid data to become available. This dead cycle can significantly reduce overall bandwidth for applications requiring random access or read-
modify-write operations.
NTD
TM
devices use the memory bus more efficiently by introducing a write latency that matches one-cycle flow-through read latency. Write
data is applied one cycle after the write command and address, allowing the read pipeline to clear. With NTD
TM
, write and read operations
can be used in any order without producing dead bus cycles.
Assert R/W low to perform write cycles. Byte write enable controls write access to specific bytes, or can be tied low for full 18 bit writes.
Write enable signals, along with the write address, are registered on a rising edge of the clock. Write data is applied to the device one clock
cycle later. Unlike some asynchronous SRAMs, output enable OE does not need to be toggled for write operations; it can be tied low for
normal operations. Outputs go to a high impedance state when the device is de-selected by any of the three chip enable inputs.
Use the ADV (burst advance) input to perform burst read, write and deselect operations. When ADV is high, external addresses, chip select,
R/W pins are ignored, and internal address counters increment in the count sequence specified by the LBO control. Any device operations,
including burst, can be stalled using the CEN=1, the clock enable input.
The AS7C33512NTF18A operates with a 3.3V 5% power supply for the device core (V
DD
). DQ circuits use a separate power supply
(V
DDQ
) that operates across 3.3V or 2.5V ranges. These devices are available in a 100-pin 1420 mm TQFP package
*Guaranteed not tested
TQFP thermal resistance
Capacitance
Parameter
Symbol
Test conditions
Min
Max
Unit
Input capacitance
C
IN
*
V
in
= 0V
-
5
pF
I/O capacitance
C
I/O
*
V
in
= V
out
= 0V
-
7
pF
Description
Conditions
Symbol
Typical
Units
Thermal resistance
(junction to ambient)
1
1 This parameter is sampled
Test conditions follow standard test methods
and procedures for measuring thermal
impedance, per EIA/JESD51
1layer
JA
40
C/W
4layer
JA
22
C/W
Thermal resistance
(junction to top of case)
1
JC
8
C/W
AS7C33512NTF18A
11/8/04, v. 1.1
Alliance Semiconductor
P. 5 of 18
Snooze Mode
SNOOZE MODE is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of
SNOOZE MODE is dictated by the length of time the ZZ is in a High state.
The ZZ pin is an asynchronous, active high input that causes the device to enter SNOOZE MODE.
When the ZZ pin becomes a logic High, ISB2 is guaranteed after the time t
ZZI
is met. After entering SNOOZE MODE, all inputs except ZZ
become disabled and all outputs go to High-Z. Any operation pending when entering SNOOZE MODE is not guaranteed to successful
complete. Therefore, SNOOZE MODE (READ or WRITE) must not be initiated until valid pending operations are completed. similarly,
when exiting SNOOZE MODE during tPUS, only a DESELECT or READ cycle should be given while the SRAM is transitioning out of
SNOOZE MODE.
Signal descriptions
Signal
I/O Properties Description
CLK
I
CLOCK
Clock. All inputs except OE, LBO, and ZZ are synchronous to this clock.
CEN
I
SYNC
Clock enable. When de-asserted high, the clock input signal is masked.
A, A0, A1
I
SYNC
Address. Sampled when all chip enables are active and ADV/LD is asserted.
DQ[a,b]
I/O
SYNC
Data. Driven as output when the chip is enabled and OE is active.
CE0, CE1,
CE2
I
SYNC
Synchronous chip enables. Sampled at the rising edge of CLK, when ADV/LD is asserted.
Are ignored when ADV/LD is high.
ADV/LD
I
SYNC
Advance or Load. When sampled high, the internal burst address counter will increment in
the order defined by the LBO input value. (refer to table on page 2) When low, a new
address is loaded.
R/W
I
SYNC
A high during LOAD initiates a READ operation. A low during LOAD initiates a WRITE
operation. Is ignored when ADV/LD is high.
BW[a,b]
I
SYNC
Byte write enables. Used to control write on individual bytes. Sampled along with WRITE
command and BURST WRITE.
OE
I
ASYNC
Asynchronous output enable. I/O pins are not driven when OE is inactive.
LBO
I
STATIC
Selects Burst mode. When tied to V
DD
or left floating, device follows Interleaved Burst
order. When driven Low, device follows linear Burst order. This signal is internally pulled
High.
ZZ
I
ASYNC
Snooze. Places device in low power mode; data is retained. Connect to GND if unused.
NC
-
-
No connects. Note that pin 84 will be used for future address expansion to 16Mb density.
Burst Order
Interleaved Burst Order LBO=1
Linear Burst Order LBO=0
A1 A0 A1 A0 A1 A0 A1 A0
A1 A0 A1 A0 A1 A0 A1 A0
Starting Address
0 0
0 1
1 0
1 1
Starting Address
0 0
0 1
1 0
1 1
First increment
0 1
0 0
1 1
1 0
First increment
0 1
1 0
1 1
0 0
Second increment
1 0
1 1
0 0
0 1
Second increment
1 0
1 1
0 0
0 1
Third increment
1 1
1 0
0 1
0 0
Third increment
1 1
0 0
0 1
1 0