ChipFind - документация

Электронный компонент: CS4384-DQZ

Скачать:  PDF   ZIP

Document Outline

Copyright
Cirrus Logic, Inc. 2005
(All Rights Reserved)
http://www.cirrus.com
Advance Product Information
This document contains information for a new product.
Cirrus Logic reserves the right to modify this product without notice.
103 dB, 192 kHz 8-Channel D/A Converter
Features
!
Advanced Multi-bit Delta Sigma Architecture
!
24-bit Conversion
!
Automatic Detection of Sample Rates up to
192 kHz
!
103 dB Dynamic Range
!
-88 dB THD+N
!
Single-Ended Output Architecture
!
Direct Stream Digital Mode
Non-Decimating Volume Control
On-Chip 50 kHz Filter
Matched PCM and DSD Analog Output
Levels
!
Compatible with Industry-Standard Time
Division Multiplexed (TDM) Serial Interface
!
Selectable Digital Filters
!
Volume Control with 1/2-dB Step Size and Soft
Ramp
!
Low Clock Jitter Sensitivity
!
+5 V Analog Supply, +2.5 V Digital Supply
!
Separate 1.8 to 5 V Logic Supplies for the
Control & Serial Ports
Description
The CS4384 is a complete 8-channel digital-to-analog
system. This D/A system includes digital de-emphasis,
half-dB step size volume control, ATAPI channel mix-
ing, selectable fast and slow digital interpolation filters
followed by an oversampled, multi-bit delta sigma mod-
ulator which includes mismatch shaping technology that
eliminates distortion due to capacitor mismatch. Follow-
ing this stage is a multi-element switched capacitor
stage and low-pass filter with single-ended analog
outputs.
The CS4384 also has a proprietary DSD processor
which allows for volume control and 50 kHz on-chip fil-
tering without an intermediate decimation stage. It also
offers an optional path for direct DSD conversion by di-
rectly using the multi-element switched capacitor array.
The CS4384 accepts PCM data at sample rates from
4 kHz to 216 kHz, DSD audio data, and delivers excel-
lent sound quality. These features are ideal for multi-
channel audio systems including SACD players, A/V re-
ceivers, digital TV's, mixing consoles, effects
processors, sound cards and automotive audio
systems.
This product is available in 48-pin LQFP package and is
available in both Automotive (-40 C - +85 C) and
Commercial (-10 C - +70 C) temperature grades. For
full Ordering Information see
page 50
.
Control Port Supply = 1.8 V to 5 V
Register/Hardware
Configuration
Internal Voltage
Reference
Reset
Se
ri
al
In
te
rfa
c
e
Le
v
e
l T
r
anslat
o
r
Level T
r
an
s
l
at
or
TDM Serial
Audio Input
Digital Supply = 2.5 V
Hardware Mode or
I
2
C/SPI Software Mode
Control Data
Analog Supply = 5 V
Eight Channels
of Single-Ended
Outputs
8
PCM Serial
Audio Input
Volume
Controls
Digital
Filters
Switch-Cap
DAC and
Analog Filters
Multi-bit
Modulators
DSD Audio
Input
DSD Processor
-Volume control
-50 kHz filter
External Mute
Control
Mute Signals
2
8
Serial Audio Port
Supply = 1.8 V to 5 V
AUGUST '05
DS620A1
CS4384
2
DS620A1
CS4384
TABLE OF CONTENTS
1. PIN DESCRIPTION................................................................................................................................. 6
2. CHARACTERISTICS AND SPECIFICATIONS...................................................................................... 8
SPECIFIED OPERATING CONDITIONS .................................................................................................... 8
ABSOLUTE MAXIMUM RATINGS............................................................................................................... 8
DAC ANALOG CHARACTERISTICS........................................................................................................... 9
DAC ANALOG CHARACTERISTICS - ALL MODES (CONTINUED) ........................................................ 10
POWER AND THERMAL CHARACTERISTICS........................................................................................ 10
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE............................................ 11
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE............................................ 12
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE .................................................. 12
DIGITAL CHARACTERISTICS .................................................................................................................. 13
SWITCHING CHARACTERISTICS - PCM ................................................................................................ 14
SWITCHING CHARACTERISTICS - DSD................................................................................................. 15
SWITCHING CHARACTERISTICS - CONTROL PORT - IC FORMAT.................................................... 16
SWITCHING CHARACTERISTICS - CONTROL PORT - SPITM FORMAT ............................................... 17
3. APPLICATIONS ................................................................................................................................... 20
3.1 Master Clock.................................................................................................................................. 20
3.2 Mode Select.................................................................................................................................. 21
3.3 Digital Interface Formats ............................................................................................................... 22
3.3.1 OLM #1 ................................................................................................................................ 23
3.3.2 OLM #2 ................................................................................................................................ 23
3.3.3 OLM #3 ................................................................................................................................ 24
3.3.4 OLM #4 ................................................................................................................................ 24
3.3.5 TDM ..................................................................................................................................... 25
3.4 Oversampling Modes..................................................................................................................... 25
3.5 Interpolation Filter.......................................................................................................................... 25
3.6 De-Emphasis ................................................................................................................................. 26
3.7 ATAPI Specification....................................................................................................................... 26
3.8 Direct Stream Digital (DSD) Mode................................................................................................. 27
3.9 Grounding and Power Supply Arrangements ................................................................................ 28
3.9.1 Capacitor Placement............................................................................................................ 28
3.10 Analog Output and Filtering......................................................................................................... 28
3.11 The MUTEC Outputs ................................................................................................................... 29
3.12 Recommended Power-Up Sequence .......................................................................................... 29
3.12.1 Hardware Mode.................................................................................................................. 29
3.12.2 Software Mode ................................................................................................................... 30
3.13 Recommended Procedure for Switching Operational Modes...................................................... 30
3.14 Control Port Interface .................................................................................................................. 30
3.14.1 MAP Auto Increment .......................................................................................................... 30
3.14.2 IC Mode ............................................................................................................................ 30
3.14.3 SPITM Mode........................................................................................................................ 32
3.15 Memory Address Pointer (MAP)................................................................................................. 32
3.15.1 INCR (Auto Map Increment Enable) .................................................................................. 32
3.15.2 MAP4-0 (Memory Address Pointer) ................................................................................... 32
4. REGISTER QUICK REFERENCE ....................................................................................................... 33
5. REGISTER DESCRIPTION .................................................................................................................. 34
5.1 Chip Revision (address 01h) ......................................................................................................... 34
5.1.1 Part Number ID (part) [Read Only]....................................................................................... 34
5.2 Mode Control 1 (address 02h) ....................................................................................................... 34
5.2.1 Control Port Enable (CPEN) ................................................................................................ 34
5.2.2 Freeze Controls (FREEZE) .................................................................................................. 35
5.2.3 PCM/DSD Selection (DSD/PCM)......................................................................................... 35
DS620A1
3
CS4384
5.2.4 DAC Pair Disable (DACx_DIS) ............................................................................................ 35
5.2.5 Power Down (PDN).............................................................................................................. 35
5.3 PCM Control (address 03h) ........................................................................................................... 35
5.3.1 Digital Interface Format (DIF)............................................................................................... 35
5.3.2 Functional Mode (FM) .......................................................................................................... 36
5.4 DSD Control (address 04h) ........................................................................................................... 36
5.4.1 DSD Mode Digital Interface Format (DSD_DIF) .................................................................. 36
5.4.2 Direct DSD Conversion (DIR_DSD)..................................................................................... 37
5.4.3 Static DSD Detect (STATIC_DSD) ...................................................................................... 37
5.4.4 Invalid DSD Detect (INVALID_DSD).................................................................................... 37
5.4.5 DSD Phase Modulation Mode Select (DSD_PM_MODE).................................................... 37
5.4.6 DSD Phase Modulation Mode Enable (DSD_PM_EN) ........................................................ 38
5.5 Filter Control (address 05h) ........................................................................................................... 38
5.5.1 Interpolation Filter Select (FILT_SEL).................................................................................. 38
5.6 Invert Control (address 06h) .......................................................................................................... 38
5.6.1 Invert Signal Polarity (INV_xx) ............................................................................................. 38
5.7 Group Control (address 07h) ......................................................................................................... 38
5.7.1 Mutec Pin Control (MUTEC) ................................................................................................ 38
5.7.2 Channel A Volume = Channel B Volume (Px_A=B)............................................................. 39
5.7.3 Single Volume Control (SNGLVOL) ..................................................................................... 39
5.8 Ramp and Mute (address 08h) ...................................................................................................... 39
5.8.1 Soft Ramp and Zero Cross Control (SZC) ........................................................................... 39
5.8.2 Soft Volume Ramp-Up After Error (RMP_UP) ..................................................................... 40
5.8.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN) ................................................... 40
5.8.4 PCM Auto-Mute (PAMUTE) ................................................................................................. 40
5.8.5 DSD Auto-Mute (DAMUTE) ................................................................................................. 40
5.8.6 MUTE Polarity and DETECT (MUTEP1:0)........................................................................... 41
5.9 Mute Control (address 09h)........................................................................................................... 41
5.9.1 Mute (MUTE_xx) .................................................................................................................. 41
5.10 Mixing Control (address 0Ah, 0Dh, 10h, 13h).............................................................................. 41
5.10.1 De-Emphasis Control (PX_DEM1:0).................................................................................. 41
5.11 ATAPI Channel Mixing and Muting (ATAPI) ................................................................................ 42
5.12 Volume Control (address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h, 14h, 15h) ........................................... 43
5.12.1 Digital Volume Control (xx_VOL7:0) .................................................................................. 43
5.13 PCM Clock Mode (address 16h).................................................................................................. 43
5.13.1 Master Clock Divide by 2 Enable (MCLKDIV).................................................................... 43
6. FILTER RESPONSE PLOTS ............................................................................................................... 44
7. REFERENCES...................................................................................................................................... 48
8. PARAMETER DEFINITIONS................................................................................................................ 48
9. PACKAGE DIMENSIONS .................................................................................................................... 49
10. ORDERING INFORMATION .............................................................................................................. 50
11. REVISION HISTORY ......................................................................................................................... 50
4
DS620A1
CS4384
LIST OF FIGURES
Figure 1. Serial Audio Interface Timing...................................................................................................... 14
Figure 2. TDM Serial Audio Interface Timing ............................................................................................. 14
Figure 3. Direct Stream Digital - Serial Audio Input Timing........................................................................ 15
Figure 4. Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode........................... 15
Figure 5. Control Port Timing - IC Format................................................................................................. 16
Figure 6. Control Port Timing - SPI Format................................................................................................ 17
Figure 7. Typical Connection Diagram, Software Mode............................................................................. 18
Figure 8. Typical Connection Diagram, Hardware Mode ........................................................................... 19
Figure 9. Format 0 - Left-Justified up to 24-bit Data .................................................................................. 22
Figure 10. Format 1 - IS up to 24-bit Data ................................................................................................ 22
Figure 11. Format 2 - Right-Justified 16-bit Data ....................................................................................... 22
Figure 12. Format 3 - Right-Justified 24-bit Data ....................................................................................... 22
Figure 13. Format 4 - Right-Justified 20-bit Data ....................................................................................... 22
Figure 14. Format 5 - Right-Justified 18-bit Data ....................................................................................... 23
Figure 15. Format 8 - One Line Mode 1..................................................................................................... 23
Figure 16. Format 9 - One Line Mode 2..................................................................................................... 23
Figure 17. Format 10 - One Line Mode 3................................................................................................... 24
Figure 18. Format 11 - One Line Mode 4................................................................................................... 24
Figure 19. Format 12 - TDM Mode............................................................................................................. 25
Figure 20. De-Emphasis Curve.................................................................................................................. 26
Figure 21. ATAPI Block Diagram (x = channel pair 1, 2, 3, or 4) ............................................................... 26
Figure 22. DSD Phase Modulation Mode Diagram .................................................................................... 27
Figure 23. Full-Scale Output ...................................................................................................................... 28
Figure 24. Recommended Output Filter..................................................................................................... 28
Figure 25. Recommended Mute Circuitry .................................................................................................. 29
Figure 26. Control Port Timing, IC Mode .................................................................................................. 31
Figure 27. Control Port Timing, SPI Mode ................................................................................................. 32
Figure 28. Single-Speed (fast) Stopband Rejection................................................................................... 44
Figure 29. Single-Speed (fast) Transition Band ......................................................................................... 44
Figure 30. Single-Speed (fast) Transition Band (detail) ............................................................................. 44
Figure 31. Single-Speed (fast) Passband Ripple ....................................................................................... 44
Figure 32. Single-Speed (slow) Stopband Rejection ................................................................................. 44
Figure 33. Single-Speed (slow) Transition Band........................................................................................ 44
Figure 34. Single-Speed (slow) Transition Band (detail)............................................................................ 45
Figure 35. Single-Speed (slow) Passband Ripple...................................................................................... 45
Figure 36. Double-Speed (fast) Stopband Rejection ................................................................................. 45
Figure 37. Double-Speed (fast) Transition Band........................................................................................ 45
Figure 38. Double-Speed (fast) Transition Band (detail)............................................................................ 45
Figure 39. Double-Speed (fast) Passband Ripple...................................................................................... 45
Figure 40. Double-Speed (slow) Stopband Rejection ................................................................................ 46
Figure 41. Double-Speed (slow) Transition Band ...................................................................................... 46
Figure 42. Double-Speed (slow) Transition Band (detail) .......................................................................... 46
Figure 43. Double-Speed (slow) Passband Ripple .................................................................................... 46
Figure 44. Quad-Speed (fast) Stopband Rejection .................................................................................... 46
Figure 45. Quad-Speed (fast) Transition Band .......................................................................................... 46
Figure 46. Quad-Speed (fast) Transition Band (detail) .............................................................................. 47
Figure 47. Quad-Speed (fast) Passband Ripple ........................................................................................ 47
Figure 48. Quad-Speed (slow) Stopband Rejection................................................................................... 47
Figure 49. Quad-Speed (slow) Transition Band......................................................................................... 47
Figure 50. Quad-Speed (slow) Transition Band (detail)............................................................................. 47
Figure 51. Quad-Speed (slow) Passband Ripple....................................................................................... 47
DS620A1
5
CS4384
LIST OF TABLES
Table 1. Single-Speed Mode Standard Frequencies ................................................................................ 20
Table 2. Double-Speed Mode Standard Frequencies............................................................................... 20
Table 3. Quad-Speed Mode Standard Frequencies ................................................................................. 20
Table 4. PCM Digital Interface Format, Hardware Mode Options............................................................. 21
Table 5. Mode Selection, Hardware Mode Options .................................................................................. 21
Table 6. Direct Stream Digital (DSD), Hardware Mode Options ............................................................... 21
Table 7. Digital Interface Formats - PCM Mode........................................................................................ 36
Table 8. Digital Interface Formats - DSD Mode ........................................................................................ 37
Table 9. ATAPI Decode ............................................................................................................................ 42
Table 10. Example Digital Volume Settings .............................................................................................. 43
6
DS620A1
CS4384
1. PIN DESCRIPTION
Pin Name
#
Pin Description
VD
4
Digital Power (Input) - Positive power supply for the digital section.
GND
5
31
Ground (Input) - Ground reference. Should be connected to analog ground.
MCLK
6
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Table
1
illustrates
several standard audio sample rates and the required master clock frequency.
LRCK
7
Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial
audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.
SDIN1
SDIN2
SDIN3
SDIN4
8
11
13
14
Serial Audio Data Input (Input) - Input for two's complement serial audio data.
SCLK
9
Serial Clock (Input) - Serial clock for the serial audio interface.
VLC
18
Control Port Power (Input) - Determines the required signal level for the control port.
RST
19
Reset (Input) - The device enters a low power mode and all internal registers are reset to their default
settings when low.
FILT+
20
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
Requires the capacitive decoupling to analog ground, as shown in the Typical Connection Diagram.
VQ
21
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage.
MUTEC1
MUTEC234
41
22
Mute Control (Output) - These pins are intended to be used as a control for external mute circuits to
prevent the clicks and pops that can occur in any single supply system.
AOUT1
AOUT2
AOUT3
AOUT4
AOUT5
AOUT6
AOUT7
AOUT8
39
38
35
34
29
28
25
24
Analog Output (Output) - The full scale analog output level is specified in the Analog Characteristics
specification table.
SD
I
N
3
GND
TST_OUT
AOUT5
TST_OUT
AOUT4
VA
TST_OUT
AOUT6
TST_OUT
AOUT7
6
2
4
8
10
1
3
5
7
9
11
12
13 14 15 16 17 18 19 20 21 22 23 24
31
35
33
29
27
36
34
32
30
28
26
25
48 47 46 45 44 43 42 41 40 39 38 37
MCLK
DSD2
VD
SDIN1
M4(TST)
DSD3
DSD1
GND
SCLK
SDIN2
M3(TST)
LRCK
DS
D_S
C
LK
DS
D
6
DS
D
5
DS
D7
CS4384
DS
D8
VL
S
SD
IN4
M2(SC
L
/CCLK
)
M1(S
DA/C
DIN)
VL
C
RS
T
FIL
T
+
VQ
MUTEC
2
TS
T
_
OUT
AO
U
T
8
M0(
A
D
0
/C
S
)
AOUT3
TST_OUT
AO
U
T
2
TS
T_
OUT
TS
T_
OU
T
AO
U
T
1
DS
D4
MUTEC
1
DS620A1
7
CS4384
VA
32
Analog Power (Input) - Positive power supply for the analog section. Refer to the Recommended
Operating Conditions for appropriate voltages.
VLS
43
Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio inter-
face. Refer to the Recommended Operating Conditions for appropriate voltages.
TST_OUT
23, 26
27, 30
33, 36
37, 40
Test Output - These pins need to floating and not connected to any trace or plane.
Software Mode Definitions
SCL/CCLK
15
Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external pull-up
resistor to the logic interface voltage in IC mode as shown in the Typical Connection Diagram.
SDA/CDIN
16
Serial Control Data (Input/Output) - SDA is a data I/O line in IC mode and requires an external pull-up
resistor to the logic interface voltage, as shown in the Typical Connection Diagram. CDIN is the input
data line for the control port interface in SPI mode.
AD0/CS
17
Address Bit 0 (IC) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in IC mode;
CS is the chip select signal for SPI format.
TST
10
12
Test - These pins need to be tied to analog ground.
Stand-Alone Definitions
M0
M1
M2
M3
M4
17
16
15
12
10
Mode Selection (Input) - Determines the operational mode of the device as detailed in
Tables 4
and
5
.
DSD Definitions
DSD_SCLK
42
DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital audio interface.
DSD1
DSD2
DSD3
DSD4
DSD5
DSD6
DSD7
DSD8
3
2
1
48
47
46
45
44
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data.
Pin Name
#
Pin Description
8
DS620A1
CS4384
2. CHARACTERISTICS AND SPECIFICATIONS
All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical
performance characteristics and specifications are derived from measurements taken at nominal supply voltage
and T
A
= 25
C.
SPECIFIED OPERATING CONDITIONS
(GND = 0 V; all voltages with respect to ground.)
ABSOLUTE MAXIMUM RATINGS
(GND = 0 V; all voltages with respect to ground.)
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
Parameters
Symbol Min Typ
Max
Units
DC Power Supply
Analog power
Digital internal power
Serial data port interface power
Control port interface power
VA
VD
VLS
VLC
4.75
2.37
1.71
1.71
5.0
2.5
5.0
5.0
5.25
2.63
5.25
5.25
V
V
V
V
Specified Temperature Range
-CQZ
-DQZ
T
A
-10
-40
-
-
+70
+85
C
C
Parameters
Symbol
Min
Max
Units
DC Power Supply
Analog power
Digital internal power
Serial data port interface power
Control port interface power
VA
VD
VLS
VLC
-0.3
-0.3
-0.3
-0.3
6.0
3.2
6.0
6.0
V
V
V
V
Input Current
Any Pin Except Supplies
I
in
-
10
mA
Digital Input Voltage
Serial data port interface
Control port interface
V
IND-S
V
IND-C
-0.3
-0.3
VLS+ 0.4
VLC+ 0.4
V
V
Ambient Operating Temperature (power applied)
T
op
-55
125
C
Storage Temperature
T
stg
-65
150
C
DS620A1
9
CS4384
DAC ANALOG CHARACTERISTICS
Full-Scale Output Sine Wave, 997 Hz
(Note 1)
; Fs = 48/96/192 kHz; Test load R
L
= 3 k
, C
L
= 100 pF
;
Measure-
ment Bandwidth 10 Hz to 20 kHz, unless otherwise specified.
Notes:
1. One-half LSB of triangular PDF dither is added to data.
2. Performance limited by 16-bit quantization noise.
Parameters
Symbol
Min
Typ
Max
Unit
CS4384-CQZ Dynamic Performance - All PCM modes and DSD
Specified Temperature Range
T
A
-10
-
70
C
Dynamic Range
24-bit A-weighted
unweighted
16-bit A-weighted
(Note 2)
unweighted
97
94
-
-
103
100
97
94
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise 24-bit -0 dB
-20 dB
-60 dB
(Note 2)
16-bit 0 dB
-20 dB
-60 dB
THD+N
-
-
-
-
-
-
-88
-80
-40
-88
-74
-34
-82
-74
-34
-
-
-
dB
dB
dB
dB
dB
dB
Idle Channel Noise / Signal-to-noise ratio
-
100
-
dB
CS4384-DQZ Dynamic Performance - All PCM modes and DSD
Specified Temperature Range
T
A
-40
-
105
C
Dynamic Range
(Note 1)
24-bit A-weighted
unweighted
16-bit A-weighted
(Note 2)
unweighted
94
91
-
-
103
100
97
94
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise
(Note 1)
24-bit 0 dB
-20 dB
-60 dB
(Note 2)
16-bit 0 dB
-20 dB
-60 dB
THD+N
-
-
-
-
-
-
-88
-80
-40
-88
-74
-34
-79
-71
-31
-
-
-
dB
dB
dB
dB
dB
dB
Idle Channel Noise / Signal-to-noise ratio
-
100
-
dB
10
DS620A1
CS4384
DAC ANALOG CHARACTERISTICS - ALL MODES (CONTINUED)
POWER AND THERMAL CHARACTERISTICS
Notes:
3. V
FS
is tested under load R
L
and includes attenuation due to Z
OUT
4. Current consumption increases with increasing FS within a given speed mode and is signal dependant. Max
values are based on highest FS and highest MCLK.
5. I
LC
measured with no external loading on the SDA pin.
6. Power down mode is defined as RST pin = Low with all clock and data lines held static.
7. Valid with the recommended capacitor values on FILT+ and VQ as shown in
Figures 7
and
8
.
Parameters
Symbol
Min
Typ
Max
Units
Interchannel Isolation
(1 kHz)
-
110
-
dB
DC Accuracy
Interchannel Gain Mismatch
-
0.1
-
dB
Gain Drift
-
100
-
ppm/C
Analog Output
Full Scale Differential-
PCM, DSD processor
Output Voltage
Direct DSD mode
V
FS
66%V
A
47%V
A
67%V
A
48%V
A
68%V
A
49%V
A
Vpp
Vpp
Output Impedance
(Note 3)
Z
OUT
-
130
-
Max DC Current draw from an AOUT pin
I
OUTmax
-
1.0
-
mA
Min AC-Load Resistance
R
L
-
3
-
k
Max Load Capacitance
C
L
-
100
-
pF
Quiescent Voltage
V
Q
-
50% V
A
-
VDC
Max Current draw from V
Q
I
QMAX
-
10
-
A
Parameters
Symbol
Min
Typ
Max
Units
Power Supplies
Power Supply Current
normal operation, VA= 5 V
(Note 4)
VD= 2.5 V
(Note 5)
Interface current, VLC=5 V
VLS=5 V
(Note 6)
power-down state (all supplies)
I
A
I
D
I
LC
I
LS
I
pd
-
-
-
-
-
83
18
2
84
200
92
24
-
-
-
mA
mA
A
A
A
Power Dissipation
(Note 4)
VA = 5 V, VD = 2.5 V
normal operation
(Note 6)
power-down
-
-
460
1
540
-
mW
mW
Package Thermal Resistance
JA
JC
-
-
48
15
-
-
C/Watt
C/Watt
Power Supply Rejection Ratio
(Note 7)
(1 kHz)
(60
Hz)
PSRR
-
-
60
40
-
-
dB
dB
DS620A1
11
CS4384
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
The filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sam-
ple rate by multiplying the given characteristic by Fs.
(See
(Note 12)
)
Notes:
8. Slow Roll-off interpolation filter is only available in software mode.
9. Response is clock dependent and will scale with Fs.
10. For Single-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.
For Double-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.
For Quad-Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.
11. De-emphasis is available only in Single-Speed Mode; Only 44.1 kHz De-emphasis is available in hardware
mode.
12. Amplitude vs. Frequency plots of this data are available in the
"Filter Response Plots" on page 44
.
Parameter
Fast Roll-Off
Unit
Min Typ
Max
Combined Digital and On-chip Analog Filter Response - Single-Speed Mode - 48 kHz
Passband
(Note 9)
to -0.01 dB corner
to -3 dB corner
0
0
-
-
.454
.499
Fs
Fs
Frequency Response
10 Hz to 20 kHz
-0.01
-
+0.01
dB
StopBand
0.547
-
-
Fs
StopBand Attenuation
(Note 10)
102
-
-
dB
Group Delay
-
10.4/Fs
-
s
De-emphasis Error
(Note 11)
Fs = 32 kHz
(Relative to 1 kHz)
Fs = 44.1 kHz
Fs = 48 kHz
-
-
-
-
-
-
0.36
0.21
0.14
dB
dB
dB
Combined Digital and On-chip Analog Filter Response - Double-Speed Mode - 96 kHz
Passband
(Note 9)
to -0.01 dB corner
to -3 dB corner
0
0
-
-
.430
.499
Fs
Fs
Frequency Response
10 Hz to 20 kHz
-0.01
-
+0.01
dB
StopBand
.583
-
-
Fs
StopBand Attenuation
(Note 10)
80
-
-
dB
Group Delay
-
6.15/Fs
-
s
Combined Digital and On-chip Analog Filter Response - Quad-Speed Mode - 192 kHz
Passband
(Note 9)
to -0.01 dB corner
to -3 dB corner
0
0
-
-
.105
.490
Fs
Fs
Frequency Response
10 Hz to 20 kHz
-0.01
-
+0.01
dB
StopBand
.635
-
-
Fs
StopBand Attenuation
(Note 10)
90
-
-
dB
Group Delay
-
7.1/Fs
-
s
12
DS620A1
CS4384
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
(CONTINED)
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE
Parameter
Slow Roll-Off
(Note 8)
Unit
Min
Typ
Max
Single-Speed Mode - 48 kHz
Passband
(Note 9)
to -0.01 dB corner
to -3 dB corner
0
0
-
-
0.417
0.499
Fs
Fs
Frequency Response
10 Hz to 20 kHz
-0.01
-
+0.01
dB
StopBand
.583
-
-
Fs
StopBand Attenuation
(Note 10)
64
-
-
dB
Group Delay
-
7.8/Fs
-
s
De-emphasis Error
(Note 11)
Fs = 32 kHz
(Relative to 1 kHz)
Fs = 44.1 kHz
Fs = 48 kHz
-
-
-
-
-
-
0.36
0.21
0.14
dB
dB
dB
Double-Speed Mode - 96 kHz
Passband
(Note 9)
to -0.01 dB corner
to -3 dB corner
0
0
-
-
.296
.499
Fs
Fs
Frequency Response
10 Hz to 20 kHz
-0.01
-
+0.01
dB
StopBand
.792
-
-
Fs
StopBand Attenuation
(Note 10)
70
-
-
dB
Group Delay
-
5.4/Fs
-
s
Quad-Speed Mode - 192 kHz
Passband
(Note 9)
to -0.01 dB corner
to -3 dB corner
0
0
-
-
.104
.481
Fs
Fs
Frequency Response
10 Hz to 20 kHz
-0.01
-
+0.01
dB
StopBand
.868
-
-
Fs
StopBand Attenuation
(Note 10)
75
-
-
dB
Group Delay
-
6.6/Fs
-
s
Parameter
Min
Typ
Max
Unit
DSD Processor mode
Passband
(Note 9)
to -3 dB corner
0
-
50
kHz
Frequency Response
10 Hz to 20 kHz
-0.05
-
+0.05
dB
Roll-off
27
-
-
dB/Oct
Direct DSD mode
Passband
(Note 9)
to -0.1 dB corner
to -3 dB corner
0
0
-
-
26.9
176.4
kHz
kHz
Frequency Response 10 Hz to 20 kHz
-0.1
-
0
dB
DS620A1
13
CS4384
DIGITAL CHARACTERISTICS
13. Any pin except supplies. Transient currents of up to 100 mA on the input pins will not cause SCR latch-up
Parameters
Symbol Min Typ
Max
Units
Input Leakage Current
(Note 13)
I
in
-
-
10
A
Input Capacitance
-
8
-
pF
High-Level Input Voltage
Serial I/O
Control I/O
V
IH
V
IH
70%
70%
-
-
-
-
V
LS
V
LC
Low-Level Input Voltage
Serial I/O
Control I/O
V
IL
V
IL
-
-
-
-
30%
30%
V
LS
V
LC
High-Level Output Voltage (I
OH
= -1.2 mA)
Control I/O
V
OH
80%
-
-
V
LC
Low-Level Output Voltage (I
OL
= 1.2 mA)
Control I/O
V
OL
-
-
20%
V
LC
MUTEC auto detect input high voltage
V
IH
70%
-
-
VA
MUTEC auto detect input low voltage
V
IL
-
-
30%
VA
Maximum MUTEC Drive Current
I
max
-
3
-
mA
MUTEC High-Level Output Voltage
V
OH
-
VA
-
V
MUTEC Low-Level Output Voltage
V
OL
-
0
-
V
14
DS620A1
CS4384
SWITCHING CHARACTERISTICS - PCM
(Inputs: Logic 0 = GND, Logic 1 = VLS, C
L
= 30 pF)
Notes:
14. After powering up, RST should be held low until after the power supplies and clocks are settled.
15. See
Tables 1
-
3
for suggested MCLK frequencies.
16. Not required for TDM mode.
Parameters Symbol
Min
Max
Units
RST pin Low Pulse Width
(Note 14)
1
-
ms
MCLK Frequency
1.024
55.2
MHz
MCLK Duty Cycle
(Note 15)
45
55
%
Input Sample Rate - LRCK (Manual selection)
Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode
F
s
F
s
F
s
4
50
100
54
108
216
kHz
kHz
kHz
Input Sample Rate - LRCK (Auto detect)
Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode
Fs
Fs
Fs
4
84
170
54
108
216
kHz
kHz
kHz
LRCK Duty Cycle
(Note 16)
45
55
%
SCLK Duty Cycle
45
55
%
SCLK High Time
t
sckh
8
-
ns
SCLK Low Time
t
sckl
8
-
ns
LRCK Edge to SCLK Rising Edge
t
lcks
5
-
ns
SCLK Rising Edge to LRCK Falling Edge
t
lckd
5
-
ns
SDIN Setup Time Before SCLK Rising Edge
t
ds
3
-
ns
SDIN Hold Time After SCLK Rising Edge
t
dh
5
-
ns
sckh
sckl
t
t
SDIN1
dh
t
ds
t
lcks
t
lckd
t
SCLK
LRCK
lcks
t
M SB
MSB-1
SDINx
t
ds
SCLK
LRCK
MSB
t
dh
t
sckh
t
sckl
t
lcks
MSB-1
Figure 1. Serial Audio Interface Timing
Figure 2. TDM Serial Audio Interface Timing
DS620A1
15
CS4384
SWITCHING CHARACTERISTICS - DSD
(Logic 0 = AGND = DGND; Logic 1 = VLS; C
L
= 30 pF)
Parameter
Symbol Min Typ
Max
Unit
MCLK Duty Cycle
40
-
60
%
DSD_SCLK Pulse Width Low
t
sclkl
160
-
-
ns
DSD_SCLK Pulse Width High
t
sclkh
160
-
-
ns
DSD_SCLK Frequency
(64x Oversampled)
(128x Oversampled)
1.024
2.048
-
-
3.2
6.4
MHz
MHz
DSD_A / _B valid to DSD_SCLK rising setup time
t
sdlrs
20
-
-
ns
DSD_SCLK rising to DSD_A or DSD_B hold time
t
sdh
20
-
-
ns
DSD clock to data transition (Phase Modulation mode)
t
dpm
-20
-
20
ns
sclkh
t
sclkl
t
DSDxx
DSD_SCLK
sdlrs
t
sdh
t
Figure 3. Direct Stream Digital - Serial Audio Input Timing
dpm
t
DSDxx
DSD_SCLK
(64Fs)
DSD_SCLK
(128Fs)
dpm
t
Figure 4. Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode
16
DS620A1
CS4384
SWITCHING CHARACTERISTICS - CONTROL PORT - IC FORMAT
(Inputs: Logic 0 = GND, Logic 1 = VLC, C
L
= 30 pF)
Notes:
17. Data must be held for sufficient time to bridge the transition time, t
fc
, of SCL.
Parameter
Symbol
Min
Max
Unit
SCL Clock Frequency
f
scl
-
100
kHz
RST Rising Edge to Start
t
irs
500
-
ns
Bus Free Time Between Transmissions
t
buf
4.7
-
s
Start Condition Hold Time (prior to first clock pulse)
t
hdst
4.0
-
s
Clock Low time
t
low
4.7
-
s
Clock High Time
t
high
4.0
-
s
Setup Time for Repeated Start Condition
t
sust
4.7
-
s
SDA Hold Time from SCL Falling
(Note 17)
t
hdd
0
-
s
SDA Setup time to SCL Rising
t
sud
250
-
ns
Rise Time of SCL and SDA
t
rc
, t
rc
-
1
s
Fall Time SCL and SDA
t
fc
, t
fc
-
300
ns
Setup Time for Stop Condition
t
susp
4.7
-
s
Acknowledge Delay from SCL Falling
t
ack
300
1000
ns
t buf
t hdst
t hdst
t
low
t r
t f
t
hdd
t high
t sud
t sust
t susp
Stop
Start
Start
Stop
Repeated
SDA
SCL
t irs
RST
Figure 5. Control Port Timing - IC Format
DS620A1
17
CS4384
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI
TM
FORMAT
(Inputs: Logic 0 = GND, Logic 1 = VLC, C
L
= 30 pF)
Notes:
18. t
spi
only needed before first falling edge of CS after RST rising edge. t
spi
= 0 at all other times.
19. Data must be held for sufficient time to bridge the transition time of CCLK.
20. For F
SCK
< 1 MHz.
Parameter
Symbol
Min
Max
Unit
CCLK Clock Frequency
f
sclk
-
6
MHz
RST Rising Edge to CS Falling
t
srs
500
-
ns
CCLK Edge to CS Falling
(Note 18)
t
spi
500
-
ns
CS High Time Between Transmissions
t
csh
1.0
-
s
CS Falling to CCLK Edge
t
css
20
-
ns
CCLK Low Time
t
scl
66
-
ns
CCLK High Time
t
sch
66
-
ns
CDIN to CCLK Rising Setup Time
t
dsu
40
-
ns
CCLK Rising to DATA Hold Time
(Note 19)
t
dh
15
-
ns
Rise Time of CCLK and CDIN
(Note 20)
t
r2
-
100
ns
Fall Time of CCLK and CDIN
(Note 20)
t
f2
-
100
ns
t r2
t f2
t dsu t
dh
t
sch
t scl
CS
CCLK
CDIN
t css
t
csh
t spi
t srs
RST
Figure 6. Control Port Timing - SPI Format
18
DS620A1
CS4384
VLS
MCLK
VD
AOUT1
8
32
0.1 F
+
1 F
+2.5 V
SDIN1
9
1 F
0.1 F
+
+
20
21
FILT+
VQ
7
6
LRCK
SCLK
SDIN3
SDIN2
39
0.1 F
47 F
VA
0.1 F
+
1 F
0.1 F
+1.8 V to +5 V
+5 V
4
43
SDIN4
13
14
Analog Conditioning
and Muting
AOUT2
38
Analog Conditioning
and Muting
AOUT3 35
Analog Conditioning
and Muting
AOUT4 34
Analog Conditioning
and Muting
AOUT5 29
Analog Conditioning
and Muting
AOUT6
28
Analog Conditioning
and Muting
AOUT7 25
Analog Conditioning
and Muting
AOUT8
24
Analog Conditioning
and Muting
MUTEC1
41
22
Mute
Drive
MUTEC234
11
31
GND
GND
5
Micro-
Controller
VLC
0.1 F
+1.8 V to +5 V
18
2
48
DSD4
3
42
DSD_SCLK
DSD1
DSD6
DSD5
DSD7
DSD2
DSD3
46
45
47
1
44
DSD8
16
15
SCL/CCLK
SDA/CDIN
ADO/CS
RST
19
17
2 K
2 K
Note: Necessary for I
2
C
control port operation
Note*
CS4384
TST*
*Pins:
10, 12
DSD
Audio
Source
220
470
470
Digital
Audio
Source
PCM
Pins: 23, 26, 27,
30, 33, 36, 37, 40
TST_OUT
Figure 7. Typical Connection Diagram, Software Mode
DS620A1
19
CS4384
VLS
CS4384
MCLK
VD
8
32
0.1 F
+
1 F
+2.5 V
SDIN1
9
7
6
LRCK
SCLK
SDIN3
SDIN2
VA
0.1 F
+
1 F
+1.8 V to +5 V
+5 V
4
43
SDIN4
13
14
11
31
GND
GND
5
Stand-Alone
Mode
Configuration
VLC
0.1 F
+1.8 V to +5 V
18
2
48
DSDB2
3
12
M3
DSDA1
DSDB3
DSDA3
DSDA4
DSDB1
DSDA2
46
45
47
1
44
DSDB4
16
15
M2
M1
M0
RST
19
17
42
DSD_SCLK
10
M4
220
470
Digital
Audio
Source
PCM
DSD
Audio
Source
470
0.1 F
Optional
47 K
AOUT1
1 F
0.1 F
+
+
20
21
FILT+
VQ
39
0.1 F
47 F
Analog Conditioning
and Muting
AOUT2 38
Analog Conditioning
and Muting
AOUT3 35
Analog Conditioning
and Muting
AOUT4 34
Analog Conditioning
and Muting
AOUT5
29
Analog Conditioning
and Muting
AOUT6 28
Analog Conditioning
and Muting
AOUT7 25
Analog Conditioning
and Muting
AOUT8 24
Analog Conditioning
and Muting
MUTEC1 41
22
Mute
Drive
MUTEC234
Pins: 23, 26, 27,
30, 33, 36, 37, 40
TST_OUT
Figure 8. Typical Connection Diagram, Hardware Mode
20
DS620A1
CS4384
3. APPLICATIONS
The CS4384 serially accepts twos complement formatted PCM data at standard audio sample rates including 48,
44.1 and 32 kHz in SSM, 96, 88.2 and 64 kHz in DSM, and 192, 176.4 and 128 kHz in QSM. Audio data is input via
the serial data input pins (SDINx). The Left/Right Clock (LRCK) determines which channel is currently being input
on SDINx, and the Serial Clock (SCLK) clocks audio data into the input data buffer. For more information on serial
audio interfaces see AN282 "The 2-Channel Serial Audio Interface: A Tutorial".
The CS4384 can be configured in hardware mode by the M0, M1, M2, M3 and M4 pins and in software mode
through IC or SPI.
3.1
Master Clock
MCLK/LRCK must be an integer ratio as shown in
Tables 1
-
3
. The LRCK frequency is equal to Fs, the
frequency at which words for each channel are input to the device. The MCLK-to-LRCK frequency ratio and
speed mode is detected automatically during the initialization sequence by counting the number of MCLK
transitions during a single LRCK period and by detecting the absolute speed of MCLK. Internal dividers are
then set to generate the proper internal clocks.
Tables 1
-
3
illustrate several standard audio sample rates
and the required MCLK and LRCK frequencies. Please note there is no required phase relationship, but
MCLK, LRCK and SCLK must be synchronous.
Sample Rate
(kHz)
MCLK (MHz)
256x
384x
512x
768x
1024x
1152x
32
8.1920
12.2880
16.3840
24.5760
32.7680
36.8640
44.1
11.2896
16.9344
22.5792
33.8688
45.1584
48
12.2880
18.4320
24.5760
36.8640
49.1520
Table 1. Single-Speed Mode Standard Frequencies
Sample Rate
(kHz)
MCLK (MHz)
128x
192x
256x
384x
512x
64
8.1920
12.2880
16.3840
24.5760
32.7680
88.2
11.2896
16.9344
22.5792
33.8688
45.1584
96
12.2880
18.4320
24.5760
36.8640
49.1520
Table 2. Double-Speed Mode Standard Frequencies
Sample Rate
(kHz)
MCLK (MHz)
64x
96x
128x
192x
256x
176.4
11.2896
16.9344
22.5792
33.8688
45.1584
192
12.2880
18.4320
24.5760
36.8640
49.1520
Table 3. Quad-Speed Mode Standard Frequencies
= Denotes clock ratio and sample rate combinations which are NOT supported under auto
speed-mode detection. Please see
"Switching Characteristics - PCM" on page 14
.
DS620A1
21
CS4384
3.2
Mode Select
In hardware mode operation is determined by the Mode Select pins. The state of these pins are continually
scanned for any changes. These pins require connection to supply or ground as outlined in
Figure 8
. For
M0, M1, M2 supply is VLC and for M3 and M4 supply is VLS.
Tables 4
-
6
show the decode of these pins.
In software mode, the operational mode and data format are set in the FM and DIF registers.
M1
(DIF1)
M0
(DIF0)
DESCRIPTION
FORMAT
FIGURE
0
0
Left Justified, up to 24-bit data
0
9
0
1
I
2
S, up to 24-bit data
1
10
1
0
Right Justified, 16-bit Data
2
11
1
1
Right Justified, 24-bit Data
3
12
Table 4. PCM Digital Interface Format, Hardware Mode Options
M4
M3
M2
(DEM)
M1
M0
DESCRIPTION
0
0
0
Table 4
Single-Speed without De-Emphasis (4 kHz to 50 kHz sample rates)
0
0
1
Single-Speed with 44.1 kHz De-Emphasis; see
Figure 20
0
1
0
Double-Speed (50 kHz to 100 kHz sample rates)
0
1
1
Quad-Speed (100 kHz to 200 kHz sample rates)
1
0
0
Auto Speed-Mode Detect (32 kHz to 200 kHz sample rates)
1
0
1
Auto Speed-Mode Detect with 44.1 kHz De-Emphasis; see
Figure 20
1
1
Table 6
DSD Processor Mode
Table 5. Mode Selection, Hardware Mode Options
M2
M1
M0
DESCRIPTION
0
0
0
64x oversampled DSD data with a 4x MCLK to DSD data rate
0
0
1
64x oversampled DSD data with a 6x MCLK to DSD data rate
0
1
0
64x oversampled DSD data with a 8x MCLK to DSD data rate
0
1
1
64x oversampled DSD data with a 12x MCLK to DSD data rate
1
0
0
128x oversampled DSD data with a 2x MCLK to DSD data rate
1
0
1
128x oversampled DSD data with a 3x MCLK to DSD data rate
1
1
0
128x oversampled DSD data with a 4x MCLK to DSD data rate
1
1
1
128x oversampled DSD data with a 6x MCLK to DSD data rate
Table 6. Direct Stream Digital (DSD), Hardware Mode Options
22
DS620A1
CS4384
3.3
Digital Interface Formats
The serial port operates as a slave and supports the IS, Left-Justified, Right-Justified, One-Line Mode
(OLM) and TDM digital interface formats with varying bit depths from 16 to 32 as shown in
Figures 9
-
19
.
Data is clocked into the DAC on the rising edge. OLM and TDM configurations are only supported in soft-
ware mode.
LRCK
SCLK
Left Channel
Right Channel
SDINx
+3 +2 +1
+5 +4
-1 -2 -3 -4 -5
+3 +2 +1
+5 +4
-1 -2 -3 -4
MSB
LSB
MSB
LSB
Figure 9. Format 0 - Left-Justified up to 24-bit Data
LRCK
SCLK
Left Channel
Right Channel
SDINx
+3 +2 +1
+5 +4
-1 -2 -3 -4 -5
+3 +2 +1
+5 +4
-1 -2 -3 -4
MSB
MSB
LSB
LSB
Figure 10. Format 1 - IS up to 24-bit Data
LRCK
SCLK
Left Channel
Right Channel
SDINx
6 5 4 3 2 1 0
9 8 7
15 14 13 12 11 10
6 5 4 3 2 1 0
9 8 7
15 14 13 12 11 10
32 clocks
Figure 11. Format 2 - Right-Justified 16-bit Data
LRCK
SCLK
Left Channel
SDINx
6 5 4 3 2 1 0
7
23 22 21 20 19 18
6 5 4 3 2 1 0
7
23 22 21 20 19 18
32 clocks
0
Right Channel
Figure 12. Format 3 - Right-Justified 24-bit Data
LRCK
SCLK
Left Channel
Right Channel
SDINx
6 5 4 3 2 1 0
9 8 7
15 14 13 12 11 10
1 0
6 5 4 3 2 1 0
9 8 7
15 14 13 12 11 10
17 16
17 16
32 clocks
19 18
19 18
Figure 13. Format 4 - Right-Justified 20-bit Data
DS620A1
23
CS4384
3.3.1
OLM #1
OLM #1 serial audio interface format operates in single, double, or quad-speed mode and will slave to
SCLK at 128 Fs. Six channels of MSB first 20-bit PCM data are input on SDIN1. The last two channels
are input on SDIN4.
3.3.2
OLM #2
OLM #2 serial audio interface format operates in single, double, or quad-speed mode and will slave to
SCLK at 256 Fs. Six channels of MSB first 24-bit PCM data are input on SDIN1.
The last two channels
are input on SDIN4.
LRCK
SCLK
Left Channel
Right Channel
SDINx
6 5 4 3 2 1 0
9 8 7
15 14 13 12 11 10
1 0
6 5 4 3 2 1 0
9 8 7
15 14 13 12 11 10
17 16
17 16
32 clocks
Figure 14. Format 5 - Right-Justified 18-bit Data
LRCK
SCLK
LSB
MSB
20 clks
64 clks
64 clks
LSB
MSB
LSB
MSB
LSB
MSB
LSB
MSB
LSB
MSB
MSB
DAC_A1
20 clks
20 clks
20 clks
20 clks
20 clks
Left Channel
Right Channel
20 clks
20 clks
SDIN4
SDIN1
DAC_A2
DAC_A3
DAC_A4
DAC_B1
DAC_B4
DAC_B2
DAC_B3
Figure 15. Format 8 - One Line Mode 1
LSB
MSB
24 clks
128 clks
LSB
MSB
LSB
MSB
LSB
MSB
LSB
MSB
LSB
MSB
MSB
DAC_A1
24 clks
24 clks
24 clks
24 clks
24 clks
Left Channel
Right Channel
24 clks
24 clks
128 clks
LRCK
SCLK
SDIN1
SDIN4
DAC_A4
DAC_A2
DAC_A3
DAC_B1
DAC_B2
DAC_B3
DAC_B4
Figure 16. Format 9 - One Line Mode 2
24
DS620A1
CS4384
3.3.3
OLM #3
OLM #3 serial audio interface format operates in single, double, or quad-speed mode and will slave to
SCLK at 256 Fs. Eight channels of MSB first 20-bit PCM data are input on SDIN1.
3.3.4
OLM #4
OLM #4 serial audio interface format operates in single, double, or quad-speed mode and will slave to
SCLK at 256 Fs. Eight channels of MSB first 24-bit PCM data are input on SDIN1.
LSB
MSB
20 clks
128 clks
LSB
MSB
LSB
MSB
LSB
MSB
LSB
MSB
LSB
MSB
MSB
DAC_A1
20 clks
20 clks
20 clks
20 clks
20 clks
Left Channel
Right Channel
128 clks
LRCK
SCLK
SDIN1
DAC_A2
DAC_A3
DAC_B1
DAC_B2
DAC_B3
LSB
MSB
20 clks
DAC_A4
LSB
MSB
20 clks
DAC_B4
Figure 17. Format 10 - One Line Mode 3
LSB
MSB
24 clks
128 clks
LSB
MSB
LSB
MSB
LSB
MSB
LSB
MSB
LSB
MSB
MSB
DAC_A1
24 clks
24 clks
24 clks
24 clks
24 clks
Left Channel
Right Channel
128 clks
LRCK
SCLK
SDIN1
DAC_A2
DAC_A3
DAC_B1
DAC_B2
DAC_B3
LSB
MSB
24 clks
DAC_A4
LSB
MSB
24 clks
DAC_B4
Figure 18. Format 11 - One Line Mode 4
DS620A1
25
CS4384
3.3.5
TDM
The TDM serial audio interface format operates in single, double, or quad-speed mode and will slave to
SCLK at 256 Fs. Data is received most significant bit first on the first SCLK after an LRCK transition and
is valid on the rising edge of SCLK. LRCK identifies the start of a new frame and is equal to the sample
rate, Fs. LRCK is sampled as valid on the rising SCLK edge preceding the most significant bit of the first
data sample and must be held valid for one SCLK period. Each time slot is 32 bits wide, with the valid data
sample left justified within the time slot with the remaining bits being zero padded.
3.4
Oversampling Modes
The CS4384 operates in one of three oversampling modes based on the input sample rate. Mode selection
is determined by the M4, M3 and M2 pins in hardware mode or the FM bits in software mode. Single-Speed
mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double-Speed mode
supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad-speed mode sup-
ports input sample rates up to 200 kHz and uses an oversampling ratio of 32x.
The auto-speed mode detect feature allows for the automatic selection of speed mode based off of the in-
coming sample rate. This allows the CS4384 to accept a wide range of sample rates with no external inter-
vention necessary. The auto-speed mode detect feature is available in both hardware and software mode.
3.5
Interpolation Filter
To accommodate the increasingly complex requirements of digital audio systems, the CS4384 incorporates
selectable interpolation filters for each mode of operation. A "fast" and a "slow" roll-off filter is available in
each of Single, Double, and Quad-Speed modes. These filters have been designed to accommodate a va-
riety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used (see the
"Parameter
Definitions" on page 48
for more details).
When in hardware mode, only the "fast" roll-off filter is available.
Filter specifications can be found in
Section 2
, and filter response plots can be found in
Figures 28
to
51
.
DAC_B2
LRCK
SCLK
LSB
MSB
LSB
MSB
LSB
MSB
LSB
MSB
LSB
MSB
SDIN1
DAC_A1
DAC_A2
DAC_B1
DAC_A3
256 clks
32 clks
32 clks
32 clks
32 clks
32 clks
LSB
MSB
DAC_B3
32 clks
LSB
MSB
DAC_A4
32 clks
LSB
MSB
DAC_B4
32 clks
LSB
LSB
MSB
zero
Data
Figure 19. Format 12 - TDM Mode
26
DS620A1
CS4384
3.6
De-Emphasis
The CS4384 includes on-chip digital de-emphasis filters. The de-emphasis feature is included to accommo-
date older audio recordings that utilize pre-emphasis equalization as a means of noise reduction.
Figure 20
shows the de-emphasis curve. The frequency response of the de-emphasis curve will scale proportionally
with changes in sample rate, Fs if the input sample rate does not match the coefficient which has been se-
lected.
In software mode the required de-emphasis filter coefficients for 32 kHz, 44.1 kHz, or 48 kHz are selected
via the de-emphasis control bits.
In hardware mode only the 44.1 kHz coefficient is available (enabled through the M2 pin). If the input sample
rate is not 44.1 kHz and de-emphasis has been selected then the corner frequencies of the de-emphasis
filter will be scaled by a factor of the actual Fs over 44,100.
3.7
ATAPI Specification
The
CS4384
implements the channel mixing functions of the ATAPI CD-ROM specification. The
ATAPI functions are applied per A-B pair. Refer to
Table 9 on page 42
and
Figure 21
for additional informa-
tion.
Gain
dB
-10dB
0dB
Frequency
T2 = 15 s
T1=50 s
F1
F2
3.183 kHz
10.61 kHz
Figure 20. De-Emphasis Curve
A Channel
Volume
Control
Aout Ax
AoutBx
Left Chan
nel
Audio D
ata
Right Chan
nel
Audio D
ata
B Channel
Volume
Control
MUTE
MUTE
SDINx
Figure 21. ATAPI Block Diagram (x = channel pair 1, 2, 3, or 4)
DS620A1
27
CS4384
3.8
Direct Stream Digital (DSD) Mode
In software mode the DSD/PCM bits (Reg. 02h) are used to configure the device for DSD mode. The DSD_DIF bits
(Reg 04h) then control the expected DSD rate and MCLK ratio.
The DIR_DSD bit (Reg 04h) selects between two proprietary methods for DSD to analog conversion. The first
method uses a decimation free DSD processing technique which allows for features such as matched PCM level
output, DSD volume control, and 50kHz on chip filter. The second method sends the DSD data directly to the on-
chip switched-capacitor filter for conversion (without the above mentioned features).
The DSD_PM_EN bit (Reg. 04h) selects Phase Modulation (data plus data inverted) as the style of data input. In
this mode the DSD_PM_mode bit selects whether a 128Fs or 64x clock is used for phase modulated 64x data (see
Figure 22
). Use of phase modulation mode may not directly effect the performance of the CS4384, but may lower
the sensitivity to board level routing of the DSD data signals.
The CS4384 can detect errors in the DSD data which does not comply with the SACD specification. The
STATIC_DSD and INVALID_DSD bits (Reg. 04h) allow the CS4384 to alter the incoming invalid DSD data.
Depending on the error, the data may either be attenuated or replaced with a muted DSD signal (the MUTEC pins
would be set according to the DAMUTE bit (Reg. 08h)).
More information for any of these register bits can be found in the
"Parameter Definitions" on page 48
.
The DSD input structure and analog outputs are designed to handle a nominal 0 dB-SACD (50% modulation index)
at full rated performance. Signals of +3 dB-SACD may be applied for brief periods of time however, performance at
these levels is not guaranteed. If sustained +3 dB-SACD levels are required, the digital volume control should be
set to -3.0 dB. This same volume control register affects PCM output levels. There is no need to change the vol-
ume control setting between PCM and DSD in order to have the 0 dB output levels match (both 0 dBFS and 0 dB-
SACD will output at -3 dB in this case).
Figure 22. DSD Phase Modulation Mode Diagram
BCKA
(128Fs)
BCKD
(64Fs)
DSD_SCLK
DSDAx,
DSDBx
D1
D1
D1
D0
D2
D2
D0
DSD_SCLK
DSDAx,
DSDBx
BCKA
(64Fs)
DSD_SCLK
DSD Phase
Modulation Mode
DSD Normal Mode
Not Used
Not Used
Not Used
28
DS620A1
CS4384
3.9
Grounding and Power Supply Arrangements
As with any high resolution converter, the CS4384 requires careful attention to power supply and grounding
arrangements if its potential performance is to be realized. The Typical Connection Diagram shows the rec-
ommended power arrangements, with VA, VD, VLC, and VLS connected to clean supplies. If the ground
planes are split between digital ground and analog ground, the GND pins of the CS4384 should be connect-
ed to the analog ground plane.
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted
coupling into the DAC.
3.9.1
Capacitor Placement
Decoupling capacitors should be placed as close to the DAC as possible, with the low value ceramic ca-
pacitor being the closest. To further minimize impedance, these capacitors should be located on the same
layer as the DAC. If desired, all supply pins with similar voltage ratings may be connected to the same
supply, but a decoupling capacitor should still be placed on each supply pin.
Note:
All decoupling capacitors should be referenced to analog ground.
The CDB4384 evaluation board demonstrates the optimum layout and power supply arrangements.
3.10 Analog Output and Filtering
The CS4384 does not include phase or amplitude compensation for an external filter. Therefore, the DAC
system phase and amplitude response will be dependent on the external analog circuitry.
Figure 23
shows how the full-scale analog output level specification is derived.
Figure 24
shows how the recommended output filtering with location for optional mute circuit
AOUT
Full-Scale Output Level= AOUT= 3.35 Vpp
4.175 V
2.5 V
0.825 V
Figure 23. Full-Scale Output
Figure 24. Recommended Output Filter
DS620A1
29
CS4384
3.11 The MUTEC Outputs
The MUTEC1 and MUTEC234 pins have an auto-polarity detect feature. The MUTEC output pins are high imped-
ance at the time of reset. The external mute circuitry needs to be self biased into an active state in order to be
muted during reset. Upon release of reset, the CS4384 will detect the status of the MUTEC pins (high or low) and
will then select that state as the polarity to drive when the mutes become active. The external-bias voltage level
that the MUTEC pins see at the time of release of reset must meet the "MUTEC auto detect input high/low voltage"
specs as outlined in the Digital Characteristics section.
Figure 25
shows a single example of both an active high and an active low mute drive circuit. In these designs, the
pull-up and pull-down resistors have been especially chosen to meet the input high/low threshold when used with
the MMUN2111 and MMUN2211 internal bias resistances of 10 k
.
Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute minimum in
extraneous clicks and pops. Also, use of the Mute Control function can enable the system designer to achieve idle
channel noise/signal-to-noise ratios which are only limited by the external mute circuit.
Figure 25. Recommended Mute Circuitry
3.12 Recommended Power-Up Sequence
3.12.1 Hardware Mode
1. Hold RST low until the power supplies and configuration pins are stable, and the master and left/right
clocks are locked to the appropriate frequencies, as discussed in
Section 3.1
. In this state, the
registers are reset to the default settings, FILT+ will remain low, and VQ will be connected to VA/2.
If RST can not be held low long enough the SDINx pins should remain static low until all other clocks
are stable, and if possible the RST should be toggled low again once the system is stable.
2. Bring RST high. The device will remain in a low power state with FILT+ low and will initiate the
Hardware power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024
LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).
30
DS620A1
CS4384
3.12.2 Software Mode
1. Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the
appropriate frequencies, as discussed in
Section 3.1
. In this state, the registers are reset to the default
settings, FILT+ will remain low, and VQ will be connected to VA/2.
2. Bring RST high. The device will remain in a low power state with FILT+ low for 512 LRCK cycles in
Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-
Speed Mode).
3. In order to reduce the chances of clicks and pops, perform a write to the CP_EN bit prior to the
completion of approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double-
Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode). The desired register settings can be
loaded while keeping the PDN bit set to 1. Set the RMP_UP and RMP_DN bits to 1, then set the
format and mode control bits to the desired settings.
If more than the stated number of LRCK cycles passes before CPEN bit is written then the chip will
enter Hardware mode and begin to operate with the M0-M4 as the mode settings. CPEN bit may be
written at anytime, even after the Hardware sequence has begun. It is advised that if the CPEN bit
can not be set in time then the SDINx pins should remain static low (this way no audio data can be
converted incorrectly by the hardware mode settings).
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 s.
3.13 Recommended Procedure for Switching Operational Modes
For systems where the absolute minimum in clicks and pops is required, it is recommended that the MUTE
bits are set prior to changing significant DAC functions (such as changing sample rates or clock sources).
The mute bits may then be released after clocks have settled and the proper modes have been set.
It is required to have the device held in reset if the minimum high/low time specs of MCLK can not be met
during clock source changes.
3.14 Control Port Interface
The control port is used to load all the internal register settings in order to operate in software mode (see
the
"Parameter Definitions" on page 48
). The operation of the control port may be completely asynchronous
with the audio sample rate. However, to avoid potential interference problems, the control port pins should
remain static if no operation is required.
The control port operates in one of two modes:
IC
or SPI.
3.14.1 MAP Auto Increment
The device has MAP (memory address pointer) auto increment capability enabled by the INCR bit (also
the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive
IC
writes or reads and
SPI writes. If INCR is set to 1, MAP will auto increment after each byte is written, allowing block reads or
writes of successive registers.
3.14.2 IC Mode
In the
IC
mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial
control port clock, SCL (see
Figure 26
for the clock to data relationship). There is no CS pin. Pin AD0 en-
ables the user to alter the chip address (001100[AD0][R/W]) and should be tied to VLC or GND as re-
quired, before powering up the device. If the device ever detects a high to low transition on the AD0/CS
pin after power-up, SPI mode will be selected.
DS620A1
31
CS4384
3.14.2.1 IC Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-
tions in
Section 2
.
1. Initiate a START condition to the
IC
bus followed by the address byte. The upper 6 bits must be
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 0. The eighth
bit of the address byte is the R/W bit.
2. Wait for an acknowledge (ACK) from the part, then write to the memory address pointer, MAP. This
byte points to the register to be written.
3. Wait for an acknowledge (ACK) from the part, then write the desired data to the register pointed to by
the MAP.
4. If the INCR bit (see
Section 3.14.1
) is set to 1, repeat the previous step until all the desired registers
are written, then initiate a STOP condition to the bus.
5. If the INCR bit is set to 0 and further
IC
writes to other registers are desired, it is necessary to initiate
a repeated START condition and follow the procedure detailed from step 1. If no further writes to other
registers are desired, initiate a STOP condition to the bus.
3.14.2.2 IC Read
To read from the device, follow the procedure below while adhering to the control port Switching Specifica-
tions.
1. Initiate a START condition to the
IC
bus followed by the address byte. The upper 6 bits must be
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 1. The eighth
bit of the address byte is the R/W bit.
2. After transmitting an acknowledge (ACK), the device will then transmit the contents of the register
pointed to by the MAP. The MAP register will contain the address of the last register written to the
MAP, or the default address (see
Section 3.14.1
) if an
IC
read is the first operation performed on the
device.
3. Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK.
4. If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Con-
tinue providing a clock and issue an ACK after each byte until all the desired registers are read, then
initiate a STOP condition to the bus.
5. If the INCR bit is set to 0 and further
IC
reads from other registers are desired, it is necessary to initiate
a repeated START condition and follow the procedure detailed from steps 1 and 2 from the
IC
Write
instructions followed by step 1 of the
IC
Read section. If no further reads from other registers are de-
sired, initiate a STOP condition to the bus.
SDA
SC L
001100
ADDR
AD0
R/W
Start
ACK
DATA
1-8
ACK
DATA
1-8
ACK
Stop
N ote: If operation is a write, this byte contains the M em ory A ddress Pointer, M A P.
Note 1
Figure 26. Control Port Timing, IC Mode
32
DS620A1
CS4384
3.14.3 SPITM Mode
In SPI mode, data is clocked into the serial control data line, CDIN, by the serial control port clock, CCLK
(see
Figure 27
for the clock to data relationship). There is no AD0 pin. Pin CS is the chip select signal and
is used to control SPI writes to the control port. When the device detects a high to low transition on the
AD0/CS pin after power-up, SPI mode will be selected. All signals are inputs and data is clocked in on the
rising edge of CCLK.
3.14.3.1 SPI Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifica-
tions in
Section 2
.
1. Bring CS low.
2. The address byte on the CDIN pin must then be 00110000.
3. Write to the memory address pointer, MAP. This byte points to the register to be written.
4. Write the desired data to the register pointed to by the MAP.
5. If the INCR bit (see
Section 3.14.1
) is set to 1, repeat the previous step until all the desired registers
are written, then bring CS high.
6. If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring
CS high, and follow the procedure detailed from step 1. If no further writes to other registers are de-
sired, bring CS high.
3.15 Memory Address Pointer (MAP)
3.15.1 INCR (Auto Map Increment Enable)
Default = `0'
0 - Disabled
1 - Enabled
3.15.2 MAP4-0 (Memory Address Pointer)
Default = `00000'
7
6
5
4
3
2
1
0
INCR
Reserved
Reserved
MAP4
MAP3
MAP2
MAP1
MAP0
0
0
0
0
0
0
0
0
MAP
MSB
LSB
DATA
byte 1
byte n
R/W
MAP = Mem ory Address Pointer
ADDRESS
CHIP
CDIN
CCLK
CS
0011000
Figure 27. Control Port Timing, SPI Mode
DS620A1
33
CS4384
4. REGISTER QUICK REFERENCE
Addr
Function
7
6
5
4
3
2
1
0
01h Chip Revision
PART4
PART3
PART2
PART1
PART0
REV
REV
REV
default
0
0
0
0
0
x
x
x
02h Mode Control
CPEN
FREEZE
DSD/PCM DAC4_DIS DAC3_DIS DAC2_DIS DAC1_DIS
PDN
default
0
0
0
0
0
0
0
1
03h PCM Control
DIF3
DIF2
DIF1
DIF0
Reserved
Reserved
FM1
FM0
default
0
0
0
0
0
0
1
1
04h DSD Control
DSD_DIF2 DSD_DIF1 DSD_DIF0 DIR_DSD STATIC_D
SD
INVALID_D
SD
DSD_PM_
MD
DSD_PM_
EN
default
0
0
0
0
1
0
0
0
05h Filter Control
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
FILT_SEL
default
0
0
0
0
0
0
0
0
06h Invert Control
INV_B4
INV_A4
INV_B3
INV_A3
INV_B2
INV_A2
INV_B1
INV_A1
default
0
0
0
0
0
0
0
0
07h Group Control
Reserved
MUTEC
Reserved
P1_A=B
P2_A=B
P3_A=B
P4_A=B
SNGLVOL
default
0
0
0
0
0
0
0
0
08h Ramp and Mute
SZC1
SZC0
RMP_UP
RMP_DN
PAMUTE
DAMUTE
MUTE_P1 MUTE_P0
default
1
0
1
1
1
1
0
0
09h Mute Control
MUTE_B4 MUTE_A4 MUTE_B3 MUTE_A3 MUTE_B2 MUTE_A2 MUTE_B1 MUTE_A1
default
0
0
0
0
0
0
0
0
0Ah Mixing Control
Pair 1 (AOUTx1)
Reserved
P1_DEM1 P1_DEM0 P1ATAPI4 P1ATAPI3
P1ATAPI2
P1ATAPI1 P1ATAPI0
default
0
0
0
0
1
0
0
1
0Bh Vol. Control A1
A1_VOL7
A1_VOL6
A1_VOL5
A1_VOL4
A1_VOL3
A1_VOL2
A1_VOL1
A1_VOL0
default
0
0
0
0
0
0
0
0
0Ch Vol. Control B1
B1_VOL7
B1_VOL6
B1_VOL5
B1_VOL4
B1_VOL3
B1_VOL2
B1_VOL1
B1_VOL0
default
0
0
0
0
0
0
0
0
0Dh Mixing Control
Pair 2 (AOUTx1)
Reserved
P2_DEM1 P2_DEM0 P2ATAPI4 P2ATAPI3
P2ATAPI2
P2ATAPI1 P2ATAPI0
default
0
0
0
0
1
0
0
1
0Eh Vol. Control A2
A2_VOL7
A2_VOL6
A2_VOL5
A2_VOL4
A2_VOL3
A2_VOL2
A2_VOL1
A2_VOL0
default
0
0
0
0
0
0
0
0
0Fh Vol. Control B2
B2_VOL7
B2_VOL6
B2_VOL5
B2_VOL4
B2_VOL3
B2_VOL2
B2_VOL1
B2_VOL0
default
0
0
0
0
0
0
0
0
10h Mixing Control
Pair 3 (AOUTx1)
Reserved
P3_DEM1 P3_DEM0 P3ATAPI4 P3ATAPI3
P3ATAPI2
P3ATAPI1 P3ATAPI0
default
0
0
0
0
1
0
0
1
11h Vol. Control A3
A3_VOL7
A3_VOL6
A3_VOL5
A3_VOL4
A3_VOL3
A3_VOL2
A3_VOL1
A3_VOL0
default
0
0
0
0
0
0
0
0
12h Vol. Control B3
B3_VOL7
B3_VOL6
B3_VOL5
B3_VOL4
B3_VOL3
B3_VOL2
B3_VOL1
B3_VOL0
default
0
0
0
0
0
0
0
0
13h Mixing Control
Pair 4 (AOUTx1)
Reserved
P4_DEM1 P4_DEM0 P4ATAPI4 P4ATAPI3
P4ATAPI2
P4ATAPI1 P4ATAPI0
default
0
0
0
0
1
0
0
1
34
DS620A1
CS4384
5. REGISTER DESCRIPTION
Note: All registers are read/write in IC mode and write only in SPI, unless otherwise noted.
5.1
Chip Revision (address 01h)
5.1.1
Part Number ID (part) [Read Only]
00000- CS4384
Revision ID (REV) [Read Only]
000 - Revision A0
001 - Revision B0
Function:
This read-only register can be used to identify the model and revision number of the device.
5.2
Mode Control 1 (address 02h)
5.2.1
Control Port Enable (CPEN)
Default = 0
0 - Disabled
1 - Enabled
Function:
This bit defaults to 0, allowing the device to power-up in Stand-Alone mode. The Control port mode can
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the reg-
isters and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user
should write this bit within 10 ms following the release of Reset.
14h Vol. Control A4
A4_VOL7
A4_VOL6
A4_VOL5
A4_VOL4
A4_VOL3
A4_VOL2
A4_VOL1
A4_VOL0
default
0
0
0
0
0
0
0
0
15h Vol. Control B4
B4_VOL7
B4_VOL6
B4_VOL5
B4_VOL4
B4_VOL3
B4_VOL2
B4_VOL1
B4_VOL0
default
0
0
0
0
0
0
0
0
16h PCM clock mode Reserved
Reserved
MCLKDIV
Reserved
Reserved
Reserved
Reserved
Reserved
default
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
PART4
PART3
PART2
PART1
PART0
REV2
REV1
REV0
0
0
0
0
0
-
-
-
7
6
5
4
3
2
1
0
CPEN
FREEZE
DSD/PCM
DAC4_DIS
DAC3_DIS
DAC2_DIS
DAC1_DIS
PDN
0
0
0
0
0
0
0
1
Addr
Function
7
6
5
4
3
2
1
0
DS620A1
35
CS4384
5.2.2
Freeze Controls (FREEZE)
Default = 0
0 - Disabled
1 - Enabled
Function:
This function allows modifications to be made to the registers without the changes taking effect until the
FREEZE is disabled. To make multiple changes in the Control port registers take effect simultaneously,
enable the FREEZE Bit, make all register changes, then Disable the FREEZE bit.
5.2.3
PCM/DSD Selection (DSD/PCM)
Default = 0
0 - PCM
1 - DSD
Function:
This function selects DSD or PCM Mode. The appropriate data and clocks should be present before
changing modes, or else MUTE should be selected.
5.2.4
DAC Pair Disable (DACx_DIS)
Default = 0
0 - Enabled
1 - Disabled
Function:
When enabled the respective DAC channel pairx (AOUTAx and AOUTBx) will remain in a reset state. It
is advised that changes to these bits be made while the power down bit is enabled to eliminate the pos-
sibility of audible artifacts.
5.2.5
Power Down (PDN)
Default = 1
0 - Disabled
1 - Enabled
Function:
The entire device will enter a low-power state when this function is enabled, and the contents of the control
registers are retained in this mode. The power-down bit defaults to `enabled' on power-up and must be
disabled before normal operation in Control Port mode can occur.
5.3
PCM Control (address 03h)
5.3.1
Digital Interface Format (DIF)
Default = 0000 - Format 0 (Left Justified, up to 24-bit data)
7
6
5
4
3
2
1
0
DIF3
DIF2
DIF1
DIF0
Reserved
Reserved
FM1
FM0
0
0
0
0
0
0
1
1
36
DS620A1
CS4384
Function:
These bits select the interface format for the serial audio input. The DSD/PCM bit determines whether
PCM or DSD mode is selected.
The required relationship between the Left/Right clock, serial clock and serial data is defined by the Digital
Interface Format and the options are detailed in
Figures 9
-
21
.
5.3.2
Functional Mode (FM)
Default = 11
00 - Single-Speed Mode (4 to 50 kHz sample rates)
01 - Double-Speed Mode (50 to 100 kHz sample rates)
10 - Quad-Speed Mode (100 to 200 kHz sample rates)
11 - Auto Speed Mode detect (32 kHz to 200 kHz sample rates)
Function:
Selects the required range of input sample rates or Auto Speed Mode.
5.4
DSD Control (address 04h)
5.4.1
DSD Mode Digital Interface Format (DSD_DIF)
Default = 000 - Format 0 (64x oversampled DSD data with a 4x MCLK to DSD data rate)
Function:
The relationship between the oversampling ratio of the DSD audio data and the required Master clock to
DSD data rate is defined by the Digital Interface Format pins.
DIF3
DIF2
DIF1
DIF0
DESCRIPTION
Format
FIGURE
0
0
0
0
Left Justified, up to 24-bit data
0
9
0
0
0
1
I
2
S, up to 24-bit data
1
10
0
0
1
0
Right Justified, 16-bit data
2
11
0
0
1
1
Right Justified, 24-bit data
3
12
0
1
0
0
Right Justified, 20-bit data
4
13
0
1
0
1
Right Justified, 18-bit data
5
14
1
0
0
0
One-line Mode 1, 24-bit Data +SDIN4
8
15
1
0
0
1
One-line Mode 2, 20-bit Data +SDIN4
9
17
1
0
1
0
One-line Mode 3, 24-bit 6-channel
10
18
1
0
1
1
One-line Mode 4, 20-bit 6-channel
11
20
1
1
0
0
TDM
12
21
X
X
X
X
All other combinations are Reserved
Table 7. Digital Interface Formats - PCM Mode
7
6
5
4
3
2
1
0
DSD_DIF2
DSD_DIF1
DSD_DIF0
DIR_DSD
STATIC_DSD INVALID_DSD
DSD_PM_MD DSD_PM_EN
0
0
0
0
1
1
0
0
DS620A1
37
CS4384
The DSD/PCM bit determines whether PCM or DSD mode is selected.
5.4.2
Direct DSD Conversion (DIR_DSD)
Function:
When set to 0 (default), DSD input data is sent to the DSD processor for filtering and volume control func-
tions.
When set to 1, DSD input data is sent directly to the switched capacitor DACs for a pure DSD conversion.
In this mode the full scale DSD and PCM levels will not be matched (see
Section 2
), the dynamic range
performance may be reduced, the volume control is inactive, and the 50 kHz low pass filter is not available
(see
Section 2
for filter specifications).
5.4.3
Static DSD Detect (STATIC_DSD)
Function:
When set to 1 (default), the DSD processor checks for 28 consecutive zeroes or ones and, if detected,
sends a mute signal to the DACs. The MUTEC pins will eventually go active according to the DAMUTE
register.
When set to 0, this function is disabled.
5.4.4
Invalid DSD Detect (INVALID_DSD)
Function:
When set to 1, the DSD processor checks for greater than 24 out of 28 bits of the same value and, if de-
tected, will attenuate the data sent to the DACs. The MUTEC pins go active according to the DAMUTE
register.
When set to 0 (default), this function is disabled.
5.4.5
DSD Phase Modulation Mode Select (DSD_PM_MODE)
Function:
When set to 0 (default), the 128Fs (BCKA) clock should be input to DSD_SCLK for phase modulation
mode. (See
Figure 20 on page 26
.)
When set to 1, the 64Fs (BCKD) clock should be input to DSD_SCLK for phase modulation mode.
DIF2
DIF1
DIFO
DESCRIPTION
0
0
0
64x oversampled DSD data with a 4x MCLK to DSD data rate
0
0
1
64x oversampled DSD data with a 6x MCLK to DSD data rate
0
1
0
64x oversampled DSD data with a 8x MCLK to DSD data rate
0
1
1
64x oversampled DSD data with a 12x MCLK to DSD data rate
1
0
0
128x oversampled DSD data with a 2x MCLK to DSD data rate.
1
0
1
128x oversampled DSD data with a 3x MCLK to DSD data rate.
1
1
0
128x oversampled DSD data with a 4x MCLK to DSD data rate.
1
1
1
128x oversampled DSD data with a 6x MCLK to DSD data rate.
Table 8. Digital Interface Formats - DSD Mode
38
DS620A1
CS4384
5.4.6
DSD Phase Modulation Mode Enable (DSD_PM_EN)
Function:
When set to 1, DSD phase modulation input mode is enabled and the DSD_PM_MODE bit should be set
accordingly.
When set to 0 (default), this function is disabled (DSD normal mode).
5.5
Filter Control (address 05h)
5.5.1
Interpolation Filter Select (FILT_SEL)
Function:
When set to 0 (default), the Interpolation Filter has a fast roll off.
When set to 1, the Interpolation Filter has a slow roll off.
The specifications for each filter can be found in the Analog characteristics table, and response plots can
be found in
Figures 26
to
49
.
5.6
Invert Control (address 06h)
5.6.1
Invert Signal Polarity (INV_xx)
Function:
When set to 1, this bit inverts the signal polarity of channel xx.
When set to 0 (default), this function is disabled.
5.7
Group Control (address 07h)
5.7.1
Mutec Pin Control (MUTEC)
Default = 0
0 - Two Mute control signals
1 - Single mute control signal on MUTEC1
Function:
Selects how the internal mute signals are routed to the MUTEC1 and MUTEC234 pins. When set to `0',
a logical AND of DAC pair 1 mute control signals are output on MUTEC1 and a logical AND of the mute
control signals of DAC pairs 2, 3, and 4 are output on MUTEC234. When set to `1', a logical AND of all
DAC pair mute control signals is output on the MUTEC1 pin, MUTEC234 will remain static. For more in-
formation on the use of the mute control function see the MUTEC1 and MUTEC234 pins in
Section 3.11
.
7
6
5
4
3
2
1
0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
FILT_SEL
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
INV_B4
INV_A4
INV_B3
INV_A3
INV_B2
INV_A2
INV_B1
INV_A1
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
Reserved
MUTEC
Reserved
P1_A=B
P2_A=B
P3_A=B
P4_A=B
SNGLVOL
0
0
0
0
0
0
0
0
DS620A1
39
CS4384
5.7.2
Channel A Volume = Channel B Volume (Px_A=B)
Default = 0
0 - Disabled
1 - Enabled
Function:
The AOUTAx and AOUTBx volume levels are independently controlled by the A and the B Channel Vol-
ume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are deter-
mined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes
are ignored when this function is enabled.
5.7.3
Single Volume Control (SNGLVOL)
Default = 0
0 - Disabled
1 - Enabled
Function:
The individual channel volume levels are independently controlled by their respective Volume Control
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel Volume
Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.
5.8
Ramp and Mute (address 08h)
5.8.1
Soft Ramp and Zero Cross Control (SZC)
Default = 10
00 - Immediate Change
01 - Zero Cross
10 - Soft Ramp
11 - Soft Ramp on Zero Crossings
Function:
Immediate Change
When Immediate Change is selected all level changes will take effect immediately in one step.
Zero Cross
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a tim-
eout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal
does not encounter a zero crossing. The zero cross function is independently monitored and implemented
for each channel.
Soft Ramp
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramp-
ing, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.
7
6
5
4
3
2
1
0
SZC1
SZC0
RMP_UP
RMP_DN
PAMUTE
DAMUTE
MUTE_P1
MUTE_P0
1
0
1
1
1
1
0
0
40
DS620A1
CS4384
Soft Ramp on Zero Crossing
Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes or
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change
will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz
sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently
monitored and implemented for each channel.
5.8.2
Soft Volume Ramp-Up After Error (RMP_UP)
Function:
An un-mute will be performed after executing an LRCK/MCLK ratio change or error, and after changing
the Functional Mode.
When set to 1 (default), this un-mute is effected, similar to attenuation changes, by the Soft and Zero
Cross bits in the Volume and Mixing Control register.
When set to 0, an immediate un-mute is performed in these instances.
Note:
For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.
5.8.3
Soft Ramp-Down Before Filter Mode Change (RMP_DN)
Function:
If either the FILT_SEL or DEM bits are changed the DAC will stop conversion for a period of time to
change its filter values. This bit selects how the data is effected prior to and after the change of the filter
values.
When set to 1 (default), a mute will be performed prior to executing a filter mode change and an un-mute
will be performed after executing the filter mode change. This mute and un-mute are effected, similar to
attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register.
When set to 0, an immediate mute is performed prior to executing a filter mode change.
Note:
For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.
5.8.4
PCM Auto-Mute (PAMUTE)
Function:
When set to 1 (default) the Digital-to-Analog converter output will mute following the reception of 8192
consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. De-
tection and muting is done independently for each channel. The quiescent voltage on the output will be
retained and the Mute Control pin will go active during the mute period.
When set to 0 this function is disabled.
5.8.5
DSD Auto-Mute (DAMUTE)
Function:
When set to 1 (default) the Digital-to-Analog converter output will mute following the reception of 256 re-
peated 8-bit DSD mute patterns (as defined in the SACD specification).
A single bit not fitting the repeated mute pattern (mentioned above) will release the mute. Detection and
muting is done independently for each channel. The quiescent voltage on the output will be retained and
the Mute Control pin will go active during the mute period.
DS620A1
41
CS4384
5.8.6
MUTE Polarity and DETECT (MUTEP1:0)
Default = 00
00 - Auto polarity detect, selected from MUTEC1 pin
01 - Reserved
10 - Active low mute polarity
11 - Active high mute polarity
Function:
Auto mute polarity detect (00)
See
Section 3.11 on page 29
for the description.
Active low mute polarity (10)
When RST is low the outputs are high impedance and will need to be biased active. Once reset has been
released and after this bit is set, the MUTEC output pins will be active low polarity.
Active high mute polarity (11)
At reset time the outputs are high impedance and will need to be biased active. Once reset has been re-
leased and after this bit is set, the MUTEC output pins will be active high polarity.
5.9
Mute Control (address 09h)
5.9.1
Mute (MUTE_xx)
Default = 0
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will
be retained. The muting function is affected, similarly to attenuation changes, by the Soft and Zero Cross
bits. The MUTE pins will go active during the mute period according to the MUTEC bit.
5.10 Mixing Control (address 0Ah, 0Dh, 10h, 13h)
5.10.1 De-Emphasis Control (PX_DEM1:0)
Default = 00
00 - Disabled
01 - 44.1 kHz
10 - 48 kHz
11 - 32 kHz
Function:
7
6
5
4
3
2
1
0
MUTE_B4
MUTE_A4
MUTE_B3
MUTE_A3
MUTE_B2
MUTE_A2
MUTE_B1
MUTE_A1
0
0
0
0
0
0
0
0
7
6
5
4
3
2
1
0
Reserved
Px_DEM1
Px_DEM0
PxATAPI4
PxATAPI3
PxATAPI2
PxATAPI1
PxATAPI0
0
0
0
0
1
0
0
1
42
DS620A1
CS4384
Selects the appropriate digital filter to maintain the standard 15
s/50
s digital de-emphasis filter re-
sponse at 32, 44.1 or 48 kHz sample rates. (
Figure 20 on page 26
)
De-emphasis is only available in Single-Speed Mode.
5.11 ATAPI Channel Mixing and Muting (ATAPI)
Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo)
Function:
The CS4384 implements the channel mixing functions of the ATAPI CD-ROM specification. The ATAPI
functions are applied per A-B pair. Refer to
Table 9
and
Figure 21
for additional information.
ATAPI4
ATAPI3
ATAPI2
ATAPI1
ATAPI0
AOUTAx
AOUTBx
0
0
0
0
0
MUTE
MUTE
0
0
0
0
1
MUTE
bR
0
0
0
1
0
MUTE
bL
0
0
0
1
1
MUTE
b[(L+R)/2]
0
0
1
0
0
aR
MUTE
0
0
1
0
1
aR
bR
0
0
1
1
0
aR
bL
0
0
1
1
1
aR
b[(L+R)/2]
0
1
0
0
0
aL
MUTE
0
1
0
0
1
aL
bR
0
1
0
1
0
aL
bL
0
1
0
1
1
aL
b[(L+R)/2]
0
1
1
0
0
a[(L+R)/2]
MUTE
0
1
1
0
1
a[(L+R)/2]
bR
0
1
1
1
0
a[(L+R)/2]
bL
0
1
1
1
1
a[(L+R)/2]
b[(L+R)/2]
1
0
0
0
0
MUTE
MUTE
1
0
0
0
1
MUTE
bR
1
0
0
1
0
MUTE
bL
1
0
0
1
1
MUTE
[(bL+aR)/2]
1
0
1
0
0
aR
MUTE
1
0
1
0
1
aR
bR
1
0
1
1
0
aR
bL
1
0
1
1
1
aR
[(aL+bR)/2]
1
1
0
0
0
aL
MUTE
1
1
0
0
1
aL
bR
1
1
0
1
0
aL
bL
1
1
0
1
1
aL
[(aL+bR)/2]
1
1
1
0
0
[(aL+bR)/2]
MUTE
1
1
1
0
1
[(aL+bR)/2]
bR
1
1
1
1
0
[(bL+aR)/2]
bL
1
1
1
1
1
[(aL+bR)/2]
[(aL+bR)/2]
Table 9. ATAPI Decode
DS620A1
43
CS4384
5.12 Volume Control (address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h, 14h, 15h)
These eight registers provide individual volume and mute control for each of the eight channels.
The values for "xx" in the bit fields above are as follows:
Register address 0Bh - xx = A1
Register address 0Ch - xx = B1
Register address 0Eh - xx = A2
Register address 0Fh - xx = B2
Register address 11h - xx = A3
Register address 12h - xx = B3
Register address 14h - xx = A4
Register address 15h - xx = B4
5.12.1 Digital Volume Control (xx_VOL7:0)
Default = 00h (0 dB)
Function:
The Digital Volume Control registers allow independent control of the signal levels in 1/2 dB increments
from 0 to -127.5 dB. Volume settings are decoded as shown in
Table 10
. The volume changes are imple-
mented as dictated by the Soft and Zero Cross bits in the Power and Muting Control register. Note that
the values in the volume setting column in
Table 10
are approximate. The actual attenuation is determined
by taking the decimal value of the volume register and multiplying by 6.02/12.
5.13 PCM Clock Mode (address 16h)
5.13.1 Master Clock Divide by 2 Enable (MCLKDIV)
Function:
When set to 1, the MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2
prior to all other internal circuitry.
When set to 0 (default), MCLK is unchanged.
7
6
5
4
3
2
1
0
xx_VOL7
xx_VOL6
xx_VOL5
xx_VOL4
xx_VOL3
xx_VOL2
xx_VOL1
xx_VOL0
0
0
0
0
0
0
0
0
Binary Code
Decimal Value
Volume Setting
00000000
0
0 dB
00000001
1
-0.5 dB
00000110
6
-3.0 dB
11111111
255
-127.5 dB
Table 10. Example Digital Volume Settings
7
6
5
4
3
2
1
0
Reserved
Reserved
MCLKDIV
Reserved
Reserved
Reserved
Reserved
Reserved
0
0
0
0
0
0
0
0
44
DS620A1
CS4384
6. FILTER RESPONSE PLOTS
0.4
0.5
0.6
0.7
0.8
0.9
1
-120
-100
-80
-60
-40
-20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.4
0.42
0.44
0.46
0.48
0.5
0.52
0.54
0.56
0.58
0.6
-120
-100
-80
-60
-40
-20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 28. Single-Speed (fast) Stopband Rejection
Figure 29. Single-Speed (fast) Transition Band
0.45
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0.55
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
Frequency(normalized to Fs)
Amplitude (dB)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
-0.02
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 30. Single-Speed (fast) Transition Band (detail)
Figure 31. Single-Speed (fast) Passband Ripple
0.4
0.5
0.6
0.7
0.8
0.9
1
-120
-100
-80
-60
-40
-20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.4
0.42
0.44
0.46
0.48
0.5
0.52
0.54
0.56
0.58
0.6
-120
-100
-80
-60
-40
-20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 32. Single-Speed (slow) Stopband Rejection
Figure 33. Single-Speed (slow) Transition Band
DS620A1
45
CS4384
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
-0.02
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
0.45
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0.55
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 34. Single-Speed (slow) Transition Band (detail)
Figure 35. Single-Speed (slow) Passband Ripple
0.4
0.5
0.6
0.7
0.8
0.9
1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.4
0.42
0.44
0.46
0.48
0.5
0.52
0.54
0.56
0.58
0.6
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 36. Double-Speed (fast) Stopband Rejection
Figure 37. Double-Speed (fast) Transition Band
0.45
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0.55
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.02
0.015
0.01
0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 38. Double-Speed (fast) Transition Band (detail)
Figure 39. Double-Speed (fast) Passband Ripple
46
DS620A1
CS4384
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 40. Double-Speed (slow) Stopband Rejection
Figure 41. Double-Speed (slow) Transition Band
0.45
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0.55
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.02
0.015
0.01
0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 42. Double-Speed (slow) Transition Band (detail)
Figure 43. Double-Speed (slow) Passband Ripple
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 44. Quad-Speed (fast) Stopband Rejection
Figure 45. Quad-Speed (fast) Transition Band
DS620A1
47
CS4384
0.45
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0.55
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0
0.05
0.1
0.15
0.2
0.25
0.2
0.15
0.1
0.05
0
0.05
0.1
0.15
0.2
Frequency(normalized to Fs)
Amplitude (dB)
Figure 46. Quad-Speed (fast) Transition Band (detail)
Figure 47. Quad-Speed (fast) Passband Ripple
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 48. Quad-Speed (slow) Stopband Rejection
Figure 49. Quad-Speed (slow) Transition Band
0.45
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0.55
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0
0.02
0.04
0.06
0.08
0.1
0.12
0.02
0.015
0.01
0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 50. Quad-Speed (slow) Transition Band (detail)
Figure 51. Quad-Speed (slow) Passband Ripple
48
DS620A1
CS4384
7. REFERENCES
1. How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters, by Steven Harris. Paper
presented at the 93rd Convention of the Audio Engineering Society, October 1992.
2. CDB4364 Datasheet
3. Design Notes for a 2-Pole Filter with Differential Input, by Steven Green. Cirrus Logic Application Note AN48
4. The
IC
-Bus Specification: Version 2.0, Philips Semiconductors, December 1998.
http://www.semiconductors.philips.com
5. AN282 "The 2-Channel Serial Audio Interface: A Tutorial"
8. PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N)
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made
with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full
scale. This technique ensures that the distortion components are below the noise level and do not affect the
measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-
1991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's
output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in deci-
bels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
Gain Error
The deviation from the nominal full scale analog output for a full scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/C.
DS620A1
49
CS4384
9. PACKAGE DIMENSIONS
INCHES
MILLIMETERS
DIM
MIN
NOM
MAX
MIN
NOM
MAX
A
---
0.055
0.063
---
1.40
1.60
A1
0.002
0.004
0.006
0.05
0.10
0.15
B
0.007
0.009
0.011
0.17
0.22
0.27
D
0.343
0.354
0.366
8.70
9.0 BSC
9.30
D1
0.272
0.28
0.280
6.90
7.0 BSC
7.10
E
0.343
0.354
0.366
8.70
9.0 BSC
9.30
E1
0.272
0.28
0.280
6.90
7.0 BSC
7.10
e*
0.016
0.020
0.024
0.40
0.50 BSC
0.60
L
0.018
0.24
0.030
0.45
0.60
0.75
0.000
4
7.000
0.00
4
7.00
* Nominal pin pitch is 0.50 mm
Controlling dimension is mm.
JEDEC Designation: MS022
48L LQFP PACKAGE DRAWING
E1
E
D1
D
1
e
L
B
A1
A
50
DS620A1
CS4384
10.ORDERING INFORMATION
11.REVISION HISTORY
Release
Date
Changes
A1
August 2005
Initial Release
Product
Description
Package
Pb-Free
Grade
Temp Range
Container Order #
CS4384
114 dB, 192 kHz 8-
channel D/A Con-
verter
48-pin
LQFP
YES
Commercial -10 to +70 C
Tray
CS4384-CQZ
Tape & Reel CS4384-CQZR
Automotive
-40 to +85 C
Tray
CS4384-DQZ
Tape & Reel CS4384-DQZR
CDB4384
CS4384 Evaluation Board
-
-
-
-
CDB4384
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find the one nearest to you go to www.cirrus.com
IMPORTANT NOTICE
"Advance" product information describes products that are in development and subject to development changes. Cirrus Logic, Inc. and its subsidiaries ("Cirrus")
believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS
IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment,
including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use
of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of
Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or
other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the infor-
mation only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such
as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR
USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY
DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDER-
STOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUD-
ING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT
IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL
APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND
OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION
WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
SPI is a trademark of Motorola, Inc.