ChipFind - документация

Электронный компонент: RL56CSMV/6

Скачать:  PDF   ZIP
'DWD 6KHHW
&RQH[DQW 3URSULHWDU\ ,QIRUPDWLRQ
2UGHU 1R (
'HFHPEHU
5/&609
AnyPortTM Multi-Service Access Processor
The RL56CSMV/6 is a member of the Conexant
TM
AnyPortTM
family of multi-service access processors, and provides a
complete solution to the transport of multiple media types
between circuit-switched remote access and a variety of back-
end networks (Table 1). AnyPort processors are ideally suited
for the network infrastructures resulting from the convergence
of voice and data networking, addressing new requirements
such as Voice and Fax over packet networks, ISDN and Cellular
Data, while maintaining support of traditional PSTN Data/Fax
needs.
The processor and data pumps use an internal core voltage of
+2.5V, supplied by external pins (VCORE), for low power
consumption.
The RL56CSMV/6 transcends existing modem solutions by
providing a complete system solution for multi-service remote
access. The combined DSP/RISC architecture provides an ideal
engine to run Conexant's extensive suite of field-proven
modulations, echo cancellers, voice coders, and
communications protocols. In addition, performing functions
such as T.38, V.120, async-to-sync HDLC conversion for PPP,
V.110, and synchronous HDLC for PPP on ISDN connections,
in the access processor allows system designers to reduce
system overhead and increase scalability.
The RL56CSMV/6 is a low-power system providing six
communication channels in a single package. Powerful and
downloadable DSP-based data pumps employ on-chip SRAM
to allow upgrades to future voice and communication
modulation schemes. An advanced RISC microcontroller
manages three dual data pumps simultaneously. An innovative
host interface to the Multi-Service Access Processor system
uses a shared SDRAM memory to increase data throughput
while reducing system cost and space. A programmable time
slot selection feature provides direct digital connection to a
T1/E1/PRI framing device.
A 35mm BGA package houses the RL56CSMV/6 with extra
balls available for thermal vias to minimize heat. A built-in
phase lock loop (PLL) minimizes board noise while easing
design. A quick-wake sleep mode further reduces power
consumption on idle channels.
Features
Generic
Six access channels in one package
+3.3V/+2.5V operation with +5V tolerant inputs
Downloadable controller firmware and data pump code
Advanced RISC Machines (ARM) architecture
Low-power sleep mode with quick wake
Glueless interface to Conexant Bt8370 T1/E1/PRI framer with time
slot selection
Built-in phase lock loop (PLL)
Signaling
DTMF detection and generation
Multi-frequency tone support for legacy network equipment (R1
and R2)
Data
Data modem modes
-
PSTN: ITU-T V.90, K56flex, K56Plus, V.34 (33.6 kbps), V.FC,
V.32 bis, V.32, V.22 bis, V.22A/B, V.23, and V.21; Bell 212A
and 103
-
ISDN: 64/56 kbps ISDN Basic Rate Interface B Channel HDLC
control, or data pass-through mode for HDLC processing
elsewhere in the central site system
Internal error correction and data compression (ECC)
-
V.42 LAPM and MNP 2-4 error correction
-
V.42 bis and MNP 5 data compression
-
MNP 10EC
TM
enhanced cellular
Async/sync HDLC conversion
V.120 ISDN data
V.110 cellular data
LAP-B X.75
Voice
Baseline configuration:
-
G.723.1 and G.723.1 Annex A
-
G.711
-law and A-law
-
G.729 Annex A and Annex B
-
G.168 128 ms Network Echo Canceller
Patented robust jitter buffer
Voice API using Mailbox Messages
FAX
Fax modem send and receive rates up to 33600 bps
V.34, V.17, V.33, V.29, V.27 ter, and V.21 channel 2,
Group 3, T.30 protocol and Class 1, 2 supported
T.38 real-time fax protocol
Communications software-compatible AT commands
5/&609
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
2
Conexant
100467E
Conexant Proprietary Information
7DEOH 5/&609 )DPLO\ 0RGHOV DQG )XQFWLRQV
0RGHO2UGHU3DUW 1XPEHUV
6XSSRUWHG ,QWHUIDFH)XQFWLRQV
0DUNHWLQJ 0RGHO 1XPEHU
3DUW 1XPEHU
3DFNDJH
9&25( 3LQV
'DWD
)D[
9RLFH
5/&609/3
R7181-34
371-Pin 35 mm BGA
+2.5V
Yes
Yes
Yes
Copyright Conexant Systems, Inc., 1999. All Rights Reserved.
Information in this document is provided in connection with Conexant Systems, Inc. ("Conexant") products. These materials are provided by
Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no responsibility for errors or
omissions in these materials. Conexant may make changes to specifications and product descriptions at any time, without notice. Conexant
makes no commitment to update the information contained herein. Conexant shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to its specifications and product descriptions.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Conexant's Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.
THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO
SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. Conexant further does not warrant the accuracy or completeness of the information, text, graphics or other items
contained within these materials. Conexant shall not be liable for any special, indirect, incidental, or consequential damages, including without
limitation, lost revenues or lost profits, which may result from the use of these materials.
Conexant products are not intended for use in medical, life saving or life sustaining applications. Conexant customers using or selling
Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages resulting from
such improper use or sale.
The following are trademarks of Conexant Systems, Inc.: Conexant, the Conexant C symbol, "What's Next in Communications Technologies",
AnyPort, and MNP EC. Product names or services listed in this publication are for identification purposes only, and may be trademarks of
third parties. Third-party brands and names are the property of their respective owners.
ARM is a trademark of ARM Ltd.
Reader Response: Conexant strives to produce quality documentation and welcomes your feedback. Please send
comments and suggestions to conexant.tech.pubs@conexant.com. For technical questions, contact your local Conexant
sales office or field applications engineer.
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
5/&609
100467E
Conexant
3
Conexant Proprietary Information
Technical Specifications
General Description
The RL56CSMV/6 provides the processing core for six
channels of a central site Remote Access Server
supporting high speed T1/E1/PRI digital lines. The OEM
adds two oscillators, SDRAM, and discrete components to
complete the Multi-Service Access Processor system.
The access processor includes a full-featured, self-
contained data/fax/Voice modem solution shown in Figure
1. Data modem handshake, fax modem protocol, voice
codecs, and ISDN data connection functions are
supported and controlled through the AT command set.
Digital Data Pump (DDP)
The DDP is a +3.3V/+2.5V Conexant data pump
supporting PSTN data/fax modem operation, ISDN B
Channel call termination mode, and voice
coding/decoding. The DDP executes internal code
including downloadable modules from on-chip memory.
Digital data transfers serially between the T1/E1 framer
device and the DDP at a data rate up to 8.192 Mbps. The
T1/E1 framing device provides a strobe signal and the
DDP TSA logic detects where the data for the channel
starts in the serial TDM data stream using a
programmable counter. The DDP performs PCM -law or
A-law conversion and synchronizes with an external
network clock.
ARM Microcontroller (MCU)
The ARM MCU performs the command processing and
interfaces to the central site system controller via a 16-bit
parallel host interface. Two 64-word deep FIFOs are used
for improved data throughput between the access
processor and system controller. This single powerful
RISC processor controls six separate channels. A
SDRAM loader is available to support download from the
central site system controller on startup, if desired.
Access Processor Operation
In data modem modes, each channel can independently
connect to PSTN data modems at rates up to 56 kbps or
ISDN terminal adapters at rates up to 64 kbps. A
downloadable architecture allows for software download.
For PSTN modems, complete handshake and data rate
negotiations are performed. By optimizing the modem
configuration for line conditions, the DDP can connect at
the highest data rate that the channel can support from 56
kbps to 300 bps with automatic fallback. Automode
operation in V.34 is provided in accordance with PN3320
and in V.32 bis in accordance with PN2330. All tone and
pattern detection functions required by the applicable ITU
or Bell standard are supported. Asynchronous to
synchronous conversion is supported inside the controller
to ease PPP processing in PSTN data mode.
When the remote end is an ISDN terminal adapter, the
RL56CSMV/6 provides HDLC control including HDLC
Flag generation/detection, bit stuffing/extraction, and CRC
generation/checking. V.120, V.110, and LAP-B X.75 are
also supported. V.120 is a standard for encapsulating
asynchronous data communications traffic into ISDN data
streams.
In fax modem mode, the RL56CSMV/6 supports Group 3
facsimile send and receive speeds of 33600, 31200,
28800, 26400, 24000, 21600, 19200, 16800, 14400,
12000, 9600, 7200, 4800, and 2400 bps. Fax modem
modes support T.30 and T.38 fax requirements. Fax data
transmission and reception performed by the access
processor are controlled and monitored through the EIA-
578 Class 1 and Class 2 command interface. Both
transmit and receive fax data are buffered within the
access processor.
In Voice mode, the CSMV/6 encodes PCM audio data
from the line into Real-Time Protocol (RTP) packets for
the Host, and decodes RTP packets from the Host, to
output PCM audio data to the line. In Voice mode, DTMF
digits can be detected and transmitted, and a Voice
Activity Detector can be enabled.
Access Processor Firmware
Access processor firmware performs processing of
general modem control, command sets, error correction
and data compression, fax class 1 and class 2, voice
coding and decoding (optional), and central site system
controller interface functions.
The firmware is provided in object code form for executing
from external SDRAM after download on startup using the
ROM-coded Boot Loader. Equipment designers can add
their own functions in firmware using commonly available
development tools and the C programming language.
Hardware Interface Signals
The RL56CSMV/6 interface is illustrated in Figure 2.
The 371-pin BGA package identifying pin locations for the
RL56CSMV/6 is shown in Figure 3.
The RL56CSMV/6 pin signals in the 371-pin BGA are
listed by location in Table 2 and by interface in Table 3.
The RL56CSMV/6 application signals are listed by
interface in Table 4.
Additional Information
Additional information is described in the RL56CSMV/6
AnyPort Multi-Service Access Processor Hardware
Interface Description (Order No. 100469, formerly 1192),
the RL56DDP Designer's Guide (Doc. No. 1141), the
CSMV/6 AnyPortTM Multi-Service Access Processor
Software Interface Description (Doc. No. 100597, formerly
1148), and the Command Reference Manual (Doc. No.
100468, formerly 1195).
5/&609
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
4
Conexant
100467E
Conexant Proprietary Information
100469_F1-1 CSMV/6 SID
MCU_CLKIN
+3.3V
+2.5V
GND
P O W E R
SUPPLY
AB_SCLK
AB_FSYNC
AB_RXDATA
AB_TXDATA
AB_TSAEN#
C U S T O M E R
S Y S T E M
C O N T R O L L E R
R L 5 6 C S M V / 6
M I C R O
C O N T R O L L E R
U N I T
( M C U )
C H C E
ADDRESS (5)
DATA (16)
CONTROL
STATUS
S D R A M
16 Mbit (2 x 512k x 16)
or
64 Mbit (4 x 1M x 16)
or
128 Mbit (4 x 2M x 16)
M E M O R Y B U S ( M B )
C H A B
D U A L
D I G I T A L
D A T A P U M P
( D D P )
CE_SCLK
CE_FSYNC
CE_RXDATA
CE_TXDATA
CE_TSAEN#
D U A L
D I G I T A L
D A T A P U M P
( D D P )
M C U
C L O C K
T 1 / E 1
T R A N S C E I V E R
F R A M E R
( C O N E X A N T
B t 8 3 7 0
O R E Q U I V A L E N T
T1/E1
OR
PRIMARY RATE
LINE INTERFACE
SCLK
FSYNC
RXDATA
TXDATA
C H D F
DF_SCLK
DF_FSYNC
DF_RXDATA
DF_TXDATA
DF_TSAEN#
D U A L
D I G I T A L
D A T A P U M P
( D D P )
H O S T B U S ( H B )
DP_CLKIN
D D P
C L O C K
VGG
VDD3.3
VCORE
VGG
VGG
BZX84C5V1
FOR +5V TOLERANT I/O
)LJXUH 5/&609 ,PSOHPHQWDWLRQ ([DPSOH %ORFN 'LDJUDP
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
5/&609
100467E
Conexant
5
Conexant Proprietary Information
100469_F3-1 CSMV/6 HIDF
A[12:1]
D[15:0]
MCU_CLKOUT
W R #
RAS#
CAS#
BS0
BS1
CS0
P O W E R
SUPPLY
R L 5 6 C S M V / 6
M I C R O
C O N T R O L L E R
UNIT
(MCU)
MCU_CLKIN
DP_CLKIN
MCU_RESET#
ROME
DP_TEST#
XYCNT
HBA[5:1]
HBD[15:0]
HBCLK
HBEN#
HBCS#
HBRD#
H B W R #
HBACKR#
H B A C K W #
HBRQSTR
H B R Q S T W
HBIRQ#
S D R A M
16 Mbit (2 x 512k x 16)
or
64 Mbit (4 x 1M x 16)
or
128 Mbit (4 x 2M x 16)
M E M O R Y B U S ( M B )
CUSTOMER
SYSTEM
CONTROLLER
HOST
INTERFACE
D D P
C L O C K
T1/E1
T R A N S C E I V E R
F R A M E R
( C O N E X A N T
Bt8370
O R E Q U I V A L E N T
SCLK
FSYNC
RXDATA
TXDATA
C H C E
CE_SCLK
CE_FSYNC
CE_RXDATA
CE_TXDATA
CE_TSAEN#
CE_PLLVDD
CE_PLLGND
D U A L
DIGITAL
D A T A P U M P
(DDP)
H O S T B U S ( H B )
M C U
C L O C K
VCORE
VDD3.3
VGG
G N D
C H A B
AB_SCLK
AB_FSYNC
AB_RXDATA
AB_TXDATA
AB_TSAEN#
AB_PLLVDD
AB_PLLGND
D U A L
DIGITAL
D A T A P U M P
(DDP)
C H D F
DF_SCLK
DF_FSYNC
DF_RXDATA
DF_TXDATA
DF_TSAEN#
AB_PLLVDD
CE_PLLVDD
DF_PLLVDD
AB_PLLGND
CE_PLLGND
DF_PLLGND
D U A L
DIGITAL
D A T A P U M P
(DDP)
+2.5V
+3.3V
G N D
RD#
CS2
CS1
0.1
10 TANT
VDD3.3
+
10
A[11:0]
D[15:0]
CLK
W E #
RAS#
CAS#
DQML
D Q M U
CS#
N C
N C
N C
0.1
10 TANT
+2.5V
+
10
MCU_PLLVDD
10K
VDD3.3
JTAG
TCK
TDI
TDO
TMS
TRST#
DPBS_TCLK
DPBS_TDI
DPBS_TDO
DPBS_TMS
DPBS_TRST#
3K
3K
33
33
33
VGG
VGG
BZX84C5V1
FOR +5V TOLERANT I/O
T1/E1
OR
PRIMARY RATE
LINE INTERFACE
)LJXUH 5/&609 +DUGZDUH ,QWHUIDFH 6LJQDOV
5/&609
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
6
Conexant
100467E
Conexant Proprietary Information
PIN A1 CORNER
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
TOP VIEW
BOTTOM VIEW
MD230F3 371BGA
)LJXUH 3LQ %*$ 3DFNDJH
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
5/&609
100467E
Conexant
7
Conexant Proprietary Information
7DEOH 5/&609 3LQ 6LJQDOV E\ 3LQ /RFDWLRQ
5HI
&RO
5HI
5RZ
/RF
6LJQDO
,)
/RF
6LJQDO
,)
/RF
6LJQDO
,)
/RF
6LJQDO
,)
$
'B'3567 3'
7(67
%
&B'35;&/. 3&
7(67
)
&(B6&/.
&+ &(
-
9''
9
$
%B'3567 3%
7(67
%
$B'3&6
7(67
)
(B'63567
7(67
-
*1'
*1'
$
&B'3567 3&
7(67
&
&(B5;'$7$
&+ &(
)
9&25(
9
-
*1'
*1'
$
9**
=(1(5
&
&B'36$&/.
7(67
)
&B'3&6
7(67
-
*1'
*1'
$
&(B'63&6
7(67
&
&B'33)
7(67
)
*1'
*1'
-
*1'
*1'
$
$
0%
&
)B'3&6
7(67
)
*1'
*1'
-
'B'33)
7(67
$
$
0%
&
9&25(
9
)
*1'
*1'
-
1&
1&
$
$
0%
&
&(B<&/.
7(67
)
*1'
*1'
-
$%B,$&/.,1
7(67
$
$
0%
&
&(B;&/.
7(67
)
*1'
*1'
.
%6
0%
$
$
0%
&
&B'63567
7(67
)
*1'
*1'
.
'3%6B7'2
-7$*
$
'
0%
&
&(B3//*1'
*1'
)
*1'
*1'
.
9''
9
$
'
0%
&
)B'635'
7(67
)
*1'
*1'
.
*1'
*1'
$
'
0%
&
'3%6B7567
-7$*
)
%B'635'
7(67
.
*1'
*1'
$
'
0%
&
9&25(
9
)
7(67B'3
7(67
.
*1'
*1'
$
'3B&/.,1
6<6
&
&B'3,17 3&
7(67
)
%B'36$&/.
7(67
.
*1'
*1'
$
$B'3$
7(67
&
&B'3*3
7(67
)
%B(<(6<1&
(<(
.
%B'35;&/. 3%
7(67
$
%B'3,17 3%
7(67
&
9''
9
*
&B(<(6<1&
(<(
.
%B'37;&/. 3%
7(67
$
%B(<(;<
(<(
&
$%B3//9''
9
*
&B'365,2
7(67
.
$%B5;'$7$
&+ $%
$
$%B'63,17
7(67
&
(B'635'
7(67
*
&(B3//9''
9
/
'
0%
$
$%B;&/.
7(67
&
(B'63:7
7(67
*
&B'3,$&/.
7(67
/
'
0%
$
$%B<&/.
7(67
&
)B'63:7
7(67
*
*1'
*1'
/
&B(<(;<
(<(
$
$B'635'
7(67
&
(B'3$
7(67
*
*1'
*1'
/
;<&17
7(67
$
$%B76$(1
&+ $%
&
)B'3$
7(67
*
*1'
*1'
/
%B'33)
7(67
$
$B'63:7
7(67
&
(B(<(;<
(<(
*
*1'
*1'
/
$%B7;'$7$
&+ $%
$
$B'33)
7(67
&
%B'37;' 3%
7(67
*
*1'
*1'
0
'
0%
$
$B'63567
7(67
&
9''
9
*
*1'
*1'
0
'
0%
%
&(B7;'$7$
&+ &(
&
%B'3*3
7(67
*
*1'
*1'
0
'
0%
%
$B'3567 3$
7(67
&
1&
1&
*
*1'
*1'
0
9''
9
%
1&
1&
'
&(B,$&/.,1
7(67
*
%B'3,$&/.
7(67
0
$%B'63&6
7(67
%
)B'3567 3)
7(67
'
(B'3&6
7(67
*
1&
1&
0
%B'63567
7(67
%
7,&$&79
7(67
'
&B'365,1
7(67
*
)B'365,2
7(67
1
'
0%
%
7$&.
7(67
'
9''
9
*
$%B6&/.
&+ $%
1
'
0%
%
1&
1&
'
3%
1&
+
&B(<(&/.
(<(
1
'
0%
%
1&
1&
'
%B&7/6,1
7(67
+
1&
1&
1
:5
0%
%
(B'3567 3(
7(67
(
&(B)6<1&
&+ &(
+
&(B'63,17
7(67
1
$%B3//*1'
*1'
%
'
0%
(
(B'33)
7(67
+
&B'3$
7(67
1
'3%6B7&/.
-7$*
%
'
0%
(
&B'3*3
7(67
+
*1'
*1'
3
&$6
0%
%
'
0%
(
)B'33)
7(67
+
*1'
*1'
3
5$6
0%
%
'
0%
(
&B'63:7
7(67
+
*1'
*1'
3
0&8B&/.,1
6<6
%
'B'35;' 3'
7(67
(
&B'635'
7(67
+
*1'
*1'
3
')B'63,17
7(67
%
1&
1&
(
*1'
*1'
+
*1'
*1'
3
5'
0%
%
%B'3*3
7(67
(
*1'
*1'
+
*1'
*1'
3
'B(<(;<
(<(
%
1&
1&
(
*1'
*1'
+
*1'
*1'
5
$B'37;&/. 3$
7(67
%
%B'35;' 3%
7(67
(
%B'365,1
7(67
+
*1'
*1'
5
65$0%,67 3'
7(67
%
)B(<(;<
(<(
(
%B'3$
7(67
+
*1'
*1'
5
0&8B&/.287
0%
%
$B(<(;<
(<(
(
%B'63:7
7(67
+
9''
9
5
'B'37;&/. 3'
7(67
%
$B'365,2
7(67
(
%B'3&6
7(67
+
(B'365,2
7(67
5
')B<&/.
7(67
%
&B'35;' 3&
7(67
(
)B'63567
7(67
+
$%B)6<1&
&+ $%
5
')B;&/.
7(67
%
&B'37;' 3&
7(67
(
%B'365,2
7(67
-
&B&7/6,1
7(67
7
$B'35;' 3$
7(67
%
&B'37;&/. 3&
7(67
(
%B(<(&/.
(<(
-
&(B76$(1
&+ &(
7
(B'3,17 3(
7(67
1RWHV
3LQ 6LJQDO 1& 1R LQWHUQDO FRQQHFWLRQ ,) 1& 1R H[WHUQDO FRQQHFWLRQ
&RQQHFW DOO 9** SLQV WR *1' WKURXJK RQH9 ]HQHU GLRGH IRU 9 WROHUDQW LQSXWV FRQQHFW DOO 9** SLQV WR 9'' IRU 9 LQSXWV
5/&609
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
8
Conexant
100467E
Conexant Proprietary Information
7DEOH 5/&609 3LQ 6LJQDOV E\ 3LQ /RFDWLRQ &RQWLQXHG
5HI
&RO
5HI
5RZ
/RF
6LJQDO
,)
/RF
6LJQDO
,)
/RF
6LJQDO
,)
/RF
6LJQDO
,)
7
9&25(
9
<
*1'
*1'
$'
0&8B3//9''
9
$)
+%'
+%
7
'B'3,17 3'
7(67
<
*1'
*1'
$'
9''
9
$)
+%'
+%
7
9&25(
9
<
*1'
*1'
$'
9''
9
$)
+%'
+%
7
9&25(
9
<
'B'3$
7(67
$'
9&25(
9
$)
+%'
+%
8
$B'3,17 3$
7(67
<
'B(<(&/.
(<(
$'
+%'
+%
$)
+%'
+%
8
3(
1&
<
1&
1&
$'
+%$
+%
$)
+%'
+%
8
9&25(
9
<
:.5(6B'3
7(67
$'
+%$
+%
$)
+%'
+%
8
*1'
*1'
$$
65$0%,67 3(
7(67
$'
'3%6B7',
-7$*
$)
+%'
+%
8
*1'
*1'
$$
(B'37;&/. 3(
7(67
$'
')B3//*1'
*1'
$)
+%$
+%
8
*1'
*1'
$$
9''
9
$'
'B'63567
7(67
$)
+%$
+%
8
*1'
*1'
$$
75(4$
*1'
$'
$
0%
$)
+%5'
+%
8
9**
=(1(5
$$
*1'
*1'
$'
')B'63&6
7(67
$)
'B'36$&/.
7(67
8
')B76$(1
&+ ')
$$
*1'
*1'
$'
$
0%
$)
+%,54
+%
8
'B&7/6,1
7(67
$$
*1'
*1'
$'
$
0%
$)
$
0%
9
(B'35;' 3(
7(67
$$
*1'
*1'
$'
$
0%
$)
'3%6B706
-7$*
9
(B'37;' 3(
7(67
$$
*1'
*1'
$'
3&
1&
$)
$
0%
9
1&
1&
$$
*1'
*1'
$'
:5
0%
$)
$
0%
9
*1'
*1'
$$
*1'
*1'
$'
')B5;'$7$
&+ ')
$)
$
0%
9
*1'
*1'
$$
'B'3,$&/.
7(67
$'
&6
0%
$)
$
0%
9
*1'
*1'
$$
9**
=(1(5
$(
3)
1&
$)
$
0%
9
*1'
*1'
$$
'B(<(6<1&
(<(
$(
7'2
-7$*
$)
3%
1&
9
*1'
*1'
$$
&6
0%
$(
7&.
-7$*
9
*1'
*1'
$%
3)
1&
$(
+%54675
+%
9
*1'
*1'
$%
3&
1&
$(
+%5467:
+%
9
'B'35;&/. 3'
7(67
$%
)B'37;' 3)
7(67
$(
+%'
+%
9
'B'37;' 3'
7(67
$%
75(4%
*1'
$(
+%'
+%
9
')B3//9''
9
$%
7,&&/.
*1'
$(
+%'
+%
:
$B'35;&/. 3$
7(67
$%
6&$102'(
*1'
$(
+%'
+%
:
$B'37;' 3$
7(67
$%
6&$1(1
*1'
$(
+%'
+%
:
9&25(
9
$%
*1'
*1'
$(
+%'
+%
:
*1'
*1'
$%
'B'635'
7(67
$(
+%'
+%
:
*1'
*1'
$%
'B'63:7
7(67
$(
+%$
+%
:
*1'
*1'
$%
'B'3*3
7(67
$(
+%&6
+%
:
*1'
*1'
$%
'B'3&6
7(67
$(
+%:5
+%
:
*1'
*1'
$%
')B,$&/.,1
7(67
$(
+%&/.
+%
:
*1'
*1'
$%
')B)6<1&
&+ ')
$(
+%(1
+%
:
*1'
*1'
$%
'B'365,2
7(67
$(
$
0%
:
*1'
*1'
$&
7567
-7$*
$(
$
0%
:
'B'3*3
7(67
$&
)B'35;&/. 3)
7(67
$(
$
0%
:
0&8B5(6(7
6<6
$&
9''
9
$(
$
0%
:
520(
6<6
$&
&6
0%
$(
9''
9
:
%6
0%
$&
')B7;'$7$
&+ ')
$(
'B'365,1
7(67
<
3'
1&
$&
')B6&/.
&+ ')
$(
$
0%
<
(B'35;&/. 3(
7(67
$'
)B'3,17 3)
7(67
$(
3$
1&
<
9''
9
$'
706
-7$*
$(
3$
1&
<
*1'
*1'
$'
9''
9
$)
)B'35;' 3)
7(67
<
*1'
*1'
$'
9''
9
$)
)B'37;&/. 3)
7(67
<
*1'
*1'
$'
9''
9
$)
7',
-7$*
<
*1'
*1'
$'
9&25(
9
$)
+%$&.5
+%
<
*1'
*1'
$'
9&25(
9
$)
+%$&.:
+%
1RWHV
3LQ 6LJQDO 1& 1R LQWHUQDO FRQQHFWLRQ ,) 1& 1R H[WHUQDO FRQQHFWLRQ
&RQQHFW DOO 9** SLQV WR *1' WKURXJK RQH9 ]HQHU GLRGH IRU 9 WROHUDQW LQSXWV FRQQHFW DOO 9** SLQV WR 9'' IRU 9 LQSXWV
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
5/&609
100467E
Conexant
9
Conexant Proprietary Information
7DEOH 5/&609 3LQ 6LJQDOV E\ ,QWHUIDFH
5HI
&RO
5HI
5RZ
/RF
6LJQDO
,)
/RF
6LJQDO
,)
/RF
6LJQDO
,)
/RF
6LJQDO
,)
$'
0&8B3//9''
9
(
%B(<(&/.
(<(
-
*1'
*1'
$(
+%'
+%
$'
9&25(
9
)
%B(<(6<1&
(<(
-
*1'
*1'
$)
+%'
+%
$'
9&25(
9
$
%B(<(;<
(<(
-
*1'
*1'
$)
+%'
+%
$'
9&25(
9
+
&B(<(&/.
(<(
-
*1'
*1'
$(
+%'
+%
&
9&25(
9
*
&B(<(6<1&
(<(
.
*1'
*1'
$)
+%'
+%
&
9&25(
9
/
&B(<(;<
(<(
.
*1'
*1'
$'
+%'
+%
)
9&25(
9
<
'B(<(&/.
(<(
.
*1'
*1'
$(
+%'
+%
7
9&25(
9
$$
'B(<(6<1&
(<(
.
*1'
*1'
$)
+%'
+%
7
9&25(
9
3
'B(<(;<
(<(
8
*1'
*1'
$)
+%'
+%
7
9&25(
9
&
(B(<(;<
(<(
8
*1'
*1'
$(
+%'
+%
8
9&25(
9
%
)B(<(;<
(<(
8
*1'
*1'
$)
+%'
+%
:
9&25(
9
1
$%B3//*1'
*1'
8
*1'
*1'
$(
+%'
+%
&
$%B3//9''
9
&
&(B3//*1'
*1'
9
*1'
*1'
$(
+%'
+%
*
&(B3//9''
9
$'
')B3//*1'
*1'
9
*1'
*1'
$)
+%'
+%
9
')B3//9''
9
$$
*1'
*1'
9
*1'
*1'
$(
+%'
+%
$$
9''
9
$$
*1'
*1'
9
*1'
*1'
$(
+%(1
+%
$&
9''
9
$$
*1'
*1'
9
*1'
*1'
$)
+%,54
+%
$'
9''
9
$$
*1'
*1'
9
*1'
*1'
$)
+%5'
+%
$'
9''
9
$$
*1'
*1'
9
*1'
*1'
$(
+%54675
+%
$'
9''
9
$$
*1'
*1'
:
*1'
*1'
$(
+%5467:
+%
$'
9''
9
$$
*1'
*1'
:
*1'
*1'
$(
+%:5
+%
$'
9''
9
$%
*1'
*1'
:
*1'
*1'
1
'3%6B7&/.
-7$*
$(
9''
9
(
*1'
*1'
:
*1'
*1'
$'
'3%6B7',
-7$*
&
9''
9
(
*1'
*1'
:
*1'
*1'
.
'3%6B7'2
-7$*
&
9''
9
(
*1'
*1'
:
*1'
*1'
$)
'3%6B706
-7$*
'
9''
9
)
*1'
*1'
:
*1'
*1'
&
'3%6B7567
-7$*
+
9''
9
)
*1'
*1'
:
*1'
*1'
$(
7&.
-7$*
-
9''
9
)
*1'
*1'
<
*1'
*1'
$)
7',
-7$*
.
9''
9
)
*1'
*1'
<
*1'
*1'
$(
7'2
-7$*
0
9''
9
)
*1'
*1'
<
*1'
*1'
$'
706
-7$*
<
9''
9
)
*1'
*1'
<
*1'
*1'
$&
7567
-7$*
$
9**
=(1(5
)
*1'
*1'
<
*1'
*1'
$
$
0%
$$
9**
=(1(5
)
*1'
*1'
<
*1'
*1'
$
$
0%
8
9**
=(1(5
*
*1'
*1'
<
*1'
*1'
$'
$
0%
+
$%B)6<1&
&+ $%
*
*1'
*1'
<
*1'
*1'
$'
$
0%
.
$%B5;'$7$
&+ $%
*
*1'
*1'
$%
6&$1(1
*1'
$(
$
0%
*
$%B6&/.
&+ $%
*
*1'
*1'
$%
6&$102'(
*1'
$(
$
0%
$
$%B76$(1
&+ $%
*
*1'
*1'
$%
7,&&/.
*1'
$'
$
0%
/
$%B7;'$7$
&+ $%
*
*1'
*1'
$$
75(4$
*1'
$'
$
0%
(
&(B)6<1&
&+ &(
*
*1'
*1'
$%
75(4%
*1'
$)
$
0%
&
&(B5;'$7$
&+ &(
*
*1'
*1'
$(
+%$
+%
$)
$
0%
)
&(B6&/.
&+ &(
+
*1'
*1'
$'
+%$
+%
$)
$
0%
-
&(B76$(1
&+ &(
+
*1'
*1'
$)
+%$
+%
$
$
0%
%
&(B7;'$7$
&+ &(
+
*1'
*1'
$)
+%$
+%
$
$
0%
$%
')B)6<1&
&+ ')
+
*1'
*1'
$'
+%$
+%
$
$
0%
$'
')B5;'$7$
&+ ')
+
*1'
*1'
$)
+%$&.5
+%
$(
$
0%
$&
')B6&/.
&+ ')
+
*1'
*1'
$)
+%$&.:
+%
$)
$
0%
8
')B76$(1
&+ ')
+
*1'
*1'
$(
+%&/.
+%
$(
$
0%
$&
')B7;'$7$
&+ ')
+
*1'
*1'
$(
+%&6
+%
$)
$
0%
%
$B(<(;<
(<(
+
*1'
*1'
$)
+%'
+%
$(
$
0%
1RWHV
3LQ 6LJQDO 1& 1R LQWHUQDO FRQQHFWLRQ ,) 1& 1R H[WHUQDO FRQQHFWLRQ
&RQQHFW DOO 9** SLQV WR *1' WKURXJK RQH9 ]HQHU GLRGH IRU 9 WROHUDQW LQSXWV FRQQHFW DOO 9** SLQV WR 9'' IRU 9 LQSXWV
5/&609
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
10
Conexant
100467E
Conexant Proprietary Information
7DEOH 5/&609 3LQ 6LJQDOV E\ ,QWHUIDFH &RQWLQXHG
5HI
&RO
5HI
5RZ
/RF
6LJQDO
,)
/RF
6LJQDO
,)
/RF
6LJQDO
,)
/RF
6LJQDO
,)
$)
$
0%
3
0&8B&/.,1
6<6
%
&B'35;' 3&
7(67
&
(B'63:7
7(67
:
%6
0%
:
0&8B5(6(7
6<6
&
&B'36$&/.
7(67
&
)B'3$
7(67
.
%6
0%
:
520(
6<6
*
&B'365,2
7(67
&
)B'3&6
7(67
3
&$6
0%
$
$B'3$
7(67
'
&B'365,1
7(67
$'
)B'3,17 3)
7(67
$&
&6
0%
%
$B'3&6
7(67
%
&B'37;&/. 3&
7(67
(
)B'33)
7(67
$'
&6
0%
8
$B'3,17 3$
7(67
%
&B'37;' 3&
7(67
%
)B'3567 3)
7(67
$$
&6
0%
$
$B'33)
7(67
(
&B'635'
7(67
$&
)B'35;&/. 3)
7(67
$
'
0%
%
$B'3567 3$
7(67
&
&B'63567
7(67
$)
)B'35;' 3)
7(67
%
'
0%
:
$B'35;&/. 3$
7(67
(
&B'63:7
7(67
*
)B'365,2
7(67
0
'
0%
7
$B'35;' 3$
7(67
$
&(B'63&6
7(67
$)
)B'37;&/. 3)
7(67
0
'
0%
%
$B'365,2
7(67
+
&(B'63,17
7(67
$%
)B'37;' 3)
7(67
0
'
0%
5
$B'37;&/. 3$
7(67
'
&(B,$&/.,1
7(67
&
)B'635'
7(67
1
'
0%
:
$B'37;' 3$
7(67
&
&(B;&/.
7(67
(
)B'63567
7(67
1
'
0%
$
$B'635'
7(67
&
&(B<&/.
7(67
&
)B'63:7
7(67
1
'
0%
$
$B'63567
7(67
8
'B&7/6,1
7(67
$$
65$0%,67 3(
7(67
%
'
0%
$
$B'63:7
7(67
<
'B'3$
7(67
5
65$0%,67 3'
7(67
%
'
0%
0
$%B'63&6
7(67
$%
'B'3&6
7(67
%
7$&.
7(67
%
'
0%
$
$%B'63,17
7(67
$%
'B'3*3
7(67
)
7(67B'3
7(67
$
'
0%
-
$%B,$&/.,1
7(67
:
'B'3*3
7(67
%
7,&$&79
7(67
$
'
0%
$
$%B;&/.
7(67
$$
'B'3,$&/.
7(67
<
:.5(6B'3
7(67
$
'
0%
$
$%B<&/.
7(67
7
'B'3,17 3'
7(67
/
;<&17
7(67
/
'
0%
'
%B&7/6,1
7(67
-
'B'33)
7(67
/
'
0%
(
%B'3$
7(67
$
'B'3567 3'
7(67
5
0&8B&/.287
0%
(
%B'3&6
7(67
9
'B'35;&/. 3'
7(67
3
5$6
0%
%
%B'3*3
7(67
%
'B'35;' 3'
7(67
3
5'
0%
&
%B'3*3
7(67
$)
'B'36$&/.
7(67
$'
:5
0%
*
%B'3,$&/.
7(67
$%
'B'365,2
7(67
1
:5
0%
$
%B'3,17 3%
7(67
$(
'B'365,1
7(67
%
1&
1&
/
%B'33)
7(67
5
'B'37;&/. 3'
7(67
%
1&
1&
$
%B'3567 3%
7(67
9
'B'37;' 3'
7(67
%
1&
1&
.
%B'35;&/. 3%
7(67
$%
'B'635'
7(67
%
1&
1&
%
%B'35;' 3%
7(67
$'
'B'63567
7(67
%
1&
1&
)
%B'36$&/.
7(67
$%
'B'63:7
7(67
&
1&
1&
(
%B'365,2
7(67
$'
')B'63&6
7(67
*
1&
1&
(
%B'365,1
7(67
3
')B'63,17
7(67
+
1&
1&
.
%B'37;&/. 3%
7(67
$%
')B,$&/.,1
7(67
-
1&
1&
&
%B'37;' 3%
7(67
5
')B;&/.
7(67
9
1&
1&
)
%B'635'
7(67
5
')B<&/.
7(67
<
1&
1&
0
%B'63567
7(67
&
(B'3$
7(67
$(
3$
1&
(
%B'63:7
7(67
'
(B'3&6
7(67
$(
3$
1&
-
&B&7/6,1
7(67
7
(B'3,17 3(
7(67
$)
3%
1&
+
&B'3$
7(67
(
(B'33)
7(67
'
3%
1&
)
&B'3&6
7(67
%
(B'3567 3(
7(67
$'
3&
1&
&
&B'3*3
7(67
<
(B'35;&/. 3(
7(67
$%
3&
1&
(
&B'3*3
7(67
9
(B'35;' 3(
7(67
<
3'
1&
*
&B'3,$&/.
7(67
+
(B'365,2
7(67
8
3(
1&
&
&B'3,17 3&
7(67
$$
(B'37;&/. 3(
7(67
$%
3)
1&
&
&B'33)
7(67
9
(B'37;' 3(
7(67
$(
3)
1&
$
&B'3567 3&
7(67
&
(B'635'
7(67
$
'3B&/.,1
6<6
%
&B'35;&/. 3&
7(67
)
(B'63567
7(67
1RWHV
3LQ 6LJQDO 1& 1R LQWHUQDO FRQQHFWLRQ ,) 1& 1R H[WHUQDO FRQQHFWLRQ
&RQQHFW DOO 9** SLQV WR *1' WKURXJK RQH9 ]HQHU GLRGH IRU 9 WROHUDQW LQSXWV FRQQHFW DOO 9** SLQV WR 9'' IRU 9 LQSXWV
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
5/&609
100467E
Conexant
11
Conexant Proprietary Information
7DEOH 5/&609 $SSOLFDWLRQ 6LJQDOV E\ ,QWHUIDFH
5HI
&RO
5HI
5RZ
/RF
6LJQDO
,)
/RF
6LJQDO
,)
/RF
6LJQDO
,)
/RF
6LJQDO
,)
+
$%B)6<1&
&+ $%
$(
+%$
+%
$
$
0%
$
'3B&/.,1
6<6
.
$%B5;'$7$
&+ $%
$'
+%$
+%
$
$
0%
3
0&8B&/.,1
6<6
*
$%B6&/.
&+ $%
$)
+%$
+%
$
$
0%
:
0&8B5(6(7
6<6
$
$%B76$(1
&+ $%
$)
+%$
+%
$
$
0%
:
520(
6<6
/
$%B7;'$7$
&+ $%
$'
+%$
+%
$
$
0%
1
'3%6B7&/.
-7$*
(
&(B)6<1&
&+ &(
$)
+%$&.5
+%
$(
$
0%
$'
'3%6B7',
-7$*
&
&(B5;'$7$
&+ &(
$)
+%$&.:
+%
$)
$
0%
.
'3%6B7'2
-7$*
)
&(B6&/.
&+ &(
$(
+%&/.
+%
$(
$
0%
$)
'3%6B706
-7$*
-
&(B76$(1
&+ &(
$(
+%&6
+%
$)
$
0%
&
'3%6B7567
-7$*
%
&(B7;'$7$
&+ &(
$)
+%'
+%
$(
$
0%
$(
7&.
-7$*
$%
')B)6<1&
&+ ')
$(
+%'
+%
$)
$
0%
$)
7',
-7$*
$'
')B5;'$7$
&+ ')
$)
+%'
+%
$'
$
0%
$(
7'2
-7$*
$&
')B6&/.
&+ ')
$)
+%'
+%
$'
$
0%
$'
706
-7$*
8
')B76$(1
&+ ')
$(
+%'
+%
$(
$
0%
$&
7567
-7$*
$&
')B7;'$7$
&+ ')
$)
+%'
+%
$(
$
0%
$'
+%'
+%
$'
$
0%
$(
+%'
+%
$'
$
0%
$)
+%'
+%
$)
$
0%
$)
+%'
+%
$)
$
0%
$(
+%'
+%
$)
$
0%
$)
+%'
+%
:
%6
0%
$(
+%'
+%
.
%6
0%
$(
+%'
+%
3
&$6
0%
$)
+%'
+%
$&
&6
0%
$(
+%'
+%
$'
&6
0%
$(
+%(1
+%
$$
&6
0%
$)
+%,54
+%
$
'
0%
$)
+%5'
+%
%
'
0%
$(
+%54675
+%
%
'
0%
$(
+%5467:
+%
%
'
0%
$(
+%:5
+%
%
'
0%
$
'
0%
$
'
0%
$
'
0%
/
'
0%
/
'
0%
0
'
0%
0
'
0%
0
'
0%
1
'
0%
1
'
0%
1
'
0%
5
0&8B&/.287
0%
3
5$6
0%
3
5'
0%
$'
:5
0%
1
:5
0%


5/&609
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
12
Conexant
100467E
Conexant Proprietary Information
ELECTRICAL AND ENVIRONMENTAL SPECIFICATIONS
Operating Conditions and Absolute Maximum Ratings
Operating conditions are stated in Table 5.
The absolute maximum ratings are listed in Table 6.
7DEOH 2SHUDWLQJ &RQGLWLRQV
Parameter
Min.
Max.
Units
VDD3.3
+3.0
+3.6
VDC
VCORE
+2.375
+2.625
VDC
Junction Temperature (Tj)
0
110
C
7DEOH $EVROXWH 0D[LPXP 5DWLQJV
Parameter
Symbol
Limits
Units
VCORE Supply Voltage (+2.5V nominal)
VCORE
-0.5 to +3.0
V
VDD3.3 Supply Voltage (+3.3V nominal)
VDD3.3
-0.5 to +4.0
V
Input Voltage
V
IN
-0.5 to (VGG + 0.5)
V
Storage Temperature Range
T
STG
-55 to +125
C
Voltage Applied to Outputs in High Impedance (Off) State
V
HZ
-0.5 to (VGG + 0.5)
V
DC Input Clamp Current
I
IK
20
mA
DC Output Clamp Current
I
OK
20
mA
Static Discharge Voltage (25C)
V
ESD
2500
V
Latch-up Current (25C)
I
TRIG
300
mA
Latch-up Current (125C)
I
TRIG
150
mA
Maximum Junction Temperature
Tj
125
C
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
5/&609
100467E
Conexant
13
Conexant Proprietary Information
Current and Power Requirements
The current and power requirements are listed in Table 7.
7DEOH &XUUHQW DQG 3RZHU 5HTXLUHPHQWV
DDP Clock at 28.224 MHz
DDP Clock at 45 MHz
Mode
Typ.
Current
(mA)
Max.
Current
(mA)
Typ.
Power
(mW)
Max.
Power
(mW)
Typ.
Current
(mA)
Max.
Current
(mA)
Typ.
Power
(mW)
Max.
Power
(mW)
Normal mode (6 Channels Active, Note 1)
+3.3V (VDD3.3)
50
55
165
182
50
55
165
182
+2.5V (VCORE)
343
377
858
944
493
542
1233
1356
Sleep mode (6 Channels in Sleep Mode)
+3.3V (VDD3.3)
23
25
76
83
23
25
76
83
+2.5V (VCORE)
110
121
275
303
110
121
275
303
Notes:
1. Current and power values shown for six channels in active online connected state in a typical modem circuit.
2. Test Conditions: VCORE = +2.5 VDC for typical values; VCORE = +2.625 VDC for maximum values
VDD3.3 = +3.3 VDC for typical values; VDD3.3 = +3.6 VDC for maximum values
Tj = 0C to 110C
3. f = internal operating frequency: MCU = 66 MHz; DDP = 28.224 MHz (during non-G.728 modes) or 45 MHz (during G.728 mode).
5/&609
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
14
Conexant
100467E
Conexant Proprietary Information
Product Thermal Performance
For multi-die packages, an equivalent thermal resistance is used to represent thermal performance. This definition is used to
evaluate thermal performance of the package directly in a system level situation. The defined equivalent thermal resistance is
only valid at the stated power conditions.
Junction Temperature Calculation for Package Type: 35 mm BGA, Size = 35.0 mm * 35.0 mm * 2.27 mm
Maximum junction temperature can be calculated as:
T
j
= P
ja
+ T
a
(1)
Where:
ja
= Equivalent Package Thermal Resistance (C/W)
T
j
= Maximum Junction Temperature (C)
T
a
= Ambient Temperature (C)
P
= Package Total Power Dissipation Value (W)
For this product:
P
= 1.54 (W)
ja
= 21.30 C/W (natural convection)
ja
= 16.50 C/W (1 m/s air flow)
From equation (1) and assuming maximum ambient temperature of 70 C, maximum junction temperature for the natural
convection case is calculated as:
T
j
= 1.54
21.30 + 70 = 102.80 C
Test Structure
Package thermal performance has been tested following JEDEC standards. The BGA package has been mounted at the
center of a 100 mm x 100 mm 6-layer test board and has been tested under different air flow velocities. Figure 4 shows the
system configuration.
B
A
L
P
L
P
A= 100 mm, B = 100 mm ,
L
P
= 2.27 mm and L
B
= 1.50 mm
Air Flow
)LJXUH 7HVW 3HUIRUPDQFH 6WUXFWXUH
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
5/&609
100467E
Conexant
15
Conexant Proprietary Information
3DFNDJH 'LPHQVLRQV 3LQ %*$
5/&609
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
16
Conexant
100467E
Conexant Proprietary Information
REFERENCE
Table 8 identifies referenced specifications and recommendations.
7DEOH 5HIHUHQFHG 6SHFLILFDWLRQV5HFRPPHQGDWLRQV
Reference Number
Description
International Telecommunication Union (ITU) Recommendations
G.168
Digital network echo cancellers
G.711
Pulse code modulation (PCM) of voice frequencies
G.723.1
Dual rate speech coder for multimedia communications transmitting at 5.3 and 6.3 kbit/s
G.723.1 Annex A
Silence compression scheme
G.723.1 Annex B
Alternative specification based on floating point arithmetic
G.726
40, 32, 24, 16 kbit/s adaptive differential pulse code modulation (ADPCM)
G.727
5-, 4-, 3- and 2-bits/sample embedded adaptive differential pulse code modulation (ADPCM)
G.728
Coding of speech at 16 kbit/s using low-delay code excited linear prediction
G.729
Coding of speech at 8 kbit/s using conjugate structure algebraic-code-excited linear-prediction (CS-ACELP)
G.729 Annex A
Reduced complexity 8 kbit/s CS-ACELP speech codec
G.729 Annex B
A silence compression scheme for G.729 optimized for terminals conforming to Recommendation V.70
Q.24
DTMF Detection
V.110
Support of data terminal equipments with V-series type interfaces by an integrated services digital network
V.120
Support by an ISDN of data terminal equipment with V-series type interfaces with provision for statistical
multiplexing
V.17
A 2-wire modem for facsimile applications with rates up to 14 400 bit/s
V.21
300 bits per second duplex modem standardized for use in the general switched telephone network
V.22
1200 bits per second duplex modem standardized for use in the general switched telephone network and on
point-to-point 2-wire leased telephone-type circuits
V.22 bis
2400 bits per second duplex modem using the frequency division technique standardized for use on the
general switched telephone network and on point-to-point 2-wire leased telephone-type circuits
V.23
600/600-baud modem standardized for use in the general switched telephone network
V.27 ter
4800/2400 bits per second modem standardized for use in the general switched telephone network
V.29
9600 bits per second modem standardized for use on point-to-point 4-wire leased telephone-type circuits
V.32
A family of 2-wire, duplex modems operating at data signalling rates of up to 9600 bit/s for use on the general
switched telephone network and on leased telephone-type circuits
V.32 bis
A duplex modem operating at data signalling rates of up to 14 400 bit/s for use on the general switched
telephone network and on leased point-to-point 2-wire telephone-type circuits
V.33
14 400 bits per second modem standardized for use on point-to-point 4-wire leased telephone-type circuits
V.34
A modem operating at data signalling rates of up to 33 600 bit/s for use on the general switched telephone
network and on leased point-to-point 2-wire telephone-type circuits
V.90
A digital modem and analogue modem pair for use on the public switched telephone network (PSTN) at data
signalling rates of up to 56000 bits/sec downstream and up to 33600 bits/s upstream
European Telecommunications Standards Institute (ETSI)
ETSI SMG GSM 06.10
Full Rate voice codec.
Internet Engineering Task Force (IETF)
ietf-avt-rtp-new-00.txt
IETF, December 5, 1997
RTP: A Transport Protocol for Real-Time Applications
$Q\3RUW 0XOWL6HUYLFH $FFHVV 3URFHVVRU
5/&609
100467E
Conexant
17
Conexant Proprietary Information
This page is intentionally blank.
Further Information
literature@conexant.com
1-800-854-8099 (North America)
33-14-906-3980 (International)
Web Site
www.conexant.com
World Headquarters
Conexant Systems, Inc.
4311 Jamboree Road
P. O. Box C
Newport Beach, CA
92658-8902
Phone: (949) 483-4600
Fax: (949) 483-6375
U.S. Florida/South America
Phone: (727) 799-8406
Fax: (727) 799-8306
U.S. Los Angeles
Phone: (805) 376-0559
Fax: (805) 376-8180
U.S. Mid-Atlantic
Phone: (215) 244-6784
Fax: (215) 244-9292
U.S. North Central
Phone: (630) 773-3454
Fax: (630) 773-3907
U.S. Northeast
Phone: (978) 692-7660
Fax: (978) 692-8185
U.S. Northwest/Pacific West
Phone: (408) 249-9696
Fax: (408) 249-7113
U.S. South Central
Phone: (972) 733-0723
Fax: (972) 407-0639
U.S. Southeast
Phone: (919) 858-9110
Fax: (919) 858-8669
U.S. Southwest
Phone: (949) 483-9119
Fax: (949) 483-9090
APAC Headquarters
Conexant Systems Singapore,
Pte. Ltd.
1 Kim Seng Promenade
Great World City
#09-01 East Tower
SINGAPORE 237994
Phone: (65) 737 7355
Fax: (65) 737 9077
Australia
Phone: (61 2) 9869 4088
Fax: (61 2) 9869 4077
China
Phone: (86 2) 6361 2515
Fax: (86 2) 6361 2516
Hong Kong
Phone: (852) 2827 0181
Fax: (852) 2827 6488
India
Phone: (91 11) 692 4780
Fax: (91 11) 692 4712
Korea
Phone: (82 2) 565 2880
Fax: (82 2) 565 1440
Phone: (82 53) 745 2880
Fax: (82 53) 745 1440
Europe Headquarters
Conexant Systems France
Les Taissounieres B1
1681 Route des Dolines
BP 283
06905 Sophia Antipolis Cedex
FRANCE
Phone: (33 1) 41 44 36 50
Fax: (33 4) 93 00 33 03
Europe Central
Phone: (49 89) 829 1320
Fax: (49 89) 834 2734
Europe Mediterranean
Phone: (39 02) 9317 9911
Fax: (39 02) 9317 9913
Europe North
Phone: (44 1344) 486 444
Fax: (44 1344) 486 555
Europe South
Phone: (33 1) 41 44 36 50
Fax: (33 1) 41 44 36 90
Middle East Headquarters
Conexant Systems
Commercial (Israel) Ltd.
P. O. Box 12660
Herzlia 46733, ISRAEL
Phone: (972 9) 952 4064
Fax: (972 9) 951 3924
Japan Headquarters
Conexant Systems Japan Co., Ltd.
Shimomoto Building
1-46-3 Hatsudai,
Shibuya-ku, Tokyo
151-0061 JAPAN
Phone: (81 3) 5371-1567
Fax: (81 3) 5371-1501
Taiwan Headquarters
Conexant Systems, Taiwan Co.,
Ltd.
Room 2808
International Trade Building
333 Keelung Road, Section 1
Taipei 110, TAIWAN, ROC
Phone: (886 2) 2720 0282
Fax: (886 2) 2757 6760
SO990810(V1.3)