ChipFind - документация

Электронный компонент: NSPW300

Скачать:  PDF   ZIP
-0-
No. STSE-CW2157B
<Cat.No.031110>














SPECIFICATIONS FOR NICHIA WHITE LED

MODEL :
NSPW300BS












NICHIA CORPORATION
-1-
Nichia STSE-CW2157B-1
<Cat.No.040204>

1.SPECIFICATIONS
(1) Absolute Maximum Ratings (Ta=25C)
Item
Symbol
Absolute Maximum Rating
Unit
Forward Current
I
F
30 mA
Pulse Forward Current
I
FP
100
mA
Reverse Voltage
V
R
5
V
Power Dissipation
P
D
120
mW
Operating Temperature
T
opr
-30 ~ +
85 C
Storage Temperature
T
stg
-40 ~ +100
C
Soldering Temperature
T
sld
265C for 10sec.
I
FP
Conditions : Pulse Width 10msec. and Duty 1/10

(2) Initial Electrical/Optical Characteristics
(Ta=25C)
Item
Symbol
Condition
Min.
Typ.
Max.
Unit
Forward Voltage
V
F
I
F
=20[mA]
-
3.6
4.0
V
Reverse Current
I
R
V
R
= 5[V]
-
-
50
A
Rank T
Iv
I
F
=20[mA]
5520 6400 7800 mcd
Rank S
Iv
I
F
=20[mA]
3900 4600 5520 mcd
Luminous Intensity
Rank R
Iv
I
F
=20[mA]
2760 3200 3900 mcd
! Luminous Intensity Measurement allowance is 10%.

Color Ranks (I
F
=20mA,Ta=25C)
Rank a0
Rank b1
x 0.280 0.264 0.283 0.296
x 0.287 0.283 0.330 0.330
y 0.248 0.267 0.305 0.276
y 0.295 0.305 0.360 0.339
Rank b2
Rank c0
x 0.296 0.287 0.330 0.330
x 0.330 0.330 0.361 0.356
y 0.276 0.295 0.339 0.318
y 0.318 0.360 0.385 0.351
! Color Coordinates Measurement allowance is 0.01.
! One delivery will include up to two consecutive color ranks and three luminous intensity ranks of the products.
The quantity-ratio of the ranks is decided by Nichia.

2.TYPICAL INITIAL OPTICAL/ELECTRICAL CHARACTERISTICS
Please refer to figure's page.
3.OUTLINE DIMENSIONS AND MATERIALS
Please refer to figure's page.
Material as follows ; Resin(Mold)
: Epoxy Resin (over YAG Phosphor)
Leadframe
: Ag plating Copper Alloy

<
=
<
=
-2-
Nichia STSE-CW2157B
<Cat.No.031110>
4.PACKAGING
The LEDs are packed in cardboard boxes after packaging in anti-electrostatic bags.
Please refer to figure's page.
The label on the minimum packing unit shows ; Part Number, Lot Number, Ranking, Quantity
In order to protect the LEDs from mechanical shock, we pack them in cardboard boxes for transportation.
The LEDs may be damaged if the boxes are dropped or receive a strong impact against them,
so precautions must be taken to prevent any damage.
The boxes are not water resistant and therefore must be kept away from water and moisture.
When the LEDs are transported, we recommend that you use the same packing method as Nichia.
5.LOT NUMBER
The first six digits number shows lot number.
The lot number is composed of the following characters;
"#$$$$ - !%
" - Year ( 2 for 2002, 3 for 2003 )
# - Month ( 1 for Jan., 9 for Sep., A for Oct., B for Nov. )
$$$$
- Nichia's Product Number
! - Ranking by Color Coordinates
%
- Ranking by Luminous Intensity























-3-
Nichia STSE-CW2157B
<Cat.No.031110>
6.RELIABILITY
(1) TEST ITEMS AND RESULTS
Test Item
Standard
Test Method
Test Conditions
Note
Number of
Damaged
Resistance to
Soldering Heat
JEITA ED-4701
300 302
Tsld=260 5C, 10sec.
3mm from the base of the epoxy bulb
1 time
0/100
Solderability
JEITA ED-4701
300 303
Tsld=235 5C, 5sec.
(using flux)
1 time
over 95%
0/100
Thermal Shock
JEITA ED-4701
300 307
0C ~ 100C
15sec. 15sec.
100 cycles
0/100
Temperature Cycle
JEITA ED-4701
100 105
-40C ~ 25C ~ 100C ~ 25C
30min.
5min.
30min.
5min.
100 cycles
0/100
Moisture Resistance Cyclic
JEITA ED-4701
200 203
25C ~ 65C ~ -10C
90%RH 24hrs./1cycle
10 cycles
0/100
Terminal Strength
(bending test)
JEITA ED-4701
400 401
Load 5N (0.5kgf)
0 ~ 90 ~ 0 bend 2 times
No noticeable
damage
0/100
Terminal Strength
(pull test)
JEITA ED-4701
400 401
Load 10N (1kgf)
10 1 sec.
No noticeable
damage
0/100
High Temperature Storage
JEITA ED-4701
200 201
Ta=100C
1000hrs.
0/100
Temperature Humidity
Storage
JEITA ED-4701
100 103
Ta=60C, RH=90%
1000hrs.
0/100
Low Temperature Storage
JEITA ED-4701
200 202
Ta=-40C
1000hrs.
0/100
Steady State Operating Life
Ta=25C, I
F
=30mA 1000hrs.
0/100
Steady State Operating Life
of High Humidity Heat
60C, RH=90%, I
F
=20mA 500hrs.
0/100
Steady State Operating Life
of Low Temperature
Ta=-30C, I
F
=20mA 1000hrs.
0/100

(2) CRITERIA FOR JUDGING THE DAMAGE
Criteria for Judgement
Item
Symbol
Test Conditions
Min. Max.
Forward Voltage
V
F
I
F
=20mA -
U.S.L.*)$ 1.1
Reverse Current
I
R
V
R
=5V -
U.S.L.*)$ 2.0
Luminous Intensity
I
V
I
F
=20mA L.S.L.**)$ 0.7
-
*) U.S.L.
:
Upper Standard Level **) L.S.L.
:
Lower Standard Level



-4-
Nichia STSE-CW2157B
<Cat.No.031110>
7.CAUTIONS
The
LEDs are devices which are materialized by combining Blue LEDs and special phosphors.
Consequently, the color of the LEDs is changed a little by an operating current.
Care should be taken after due consideration when using LEDs.

(1) Lead Forming
When forming leads, the leads should be bent at a point at least 3mm from the base of the epoxy bulb.
Do not use the base of the leadframe as a fulcrum during lead forming.
Lead forming should be done before soldering.
Do not apply any bending stress to the base of the lead. The stress to the base may damage the LED's
characteristics or it may break the LEDs.
When mounting the LEDs onto a printed circuit board, the holes on the circuit board should be exactly
aligned with the leads of the LEDs. If the LEDs are mounted with stress at the leads, it causes
deterioration of the epoxy resin and this will degrade the LEDs.

(2) Storage
The LEDs should be stored at 30C or less and 70%RH or less after being shipped from Nichia and
the storage life limits are 3 months. If the LEDs are stored for 3 months or more, they can be stored
for a year in a sealed container with a nitrogen atmosphere and moisture absorbent material.
Nichia LED leadframes are comprised of a silver plated copper alloy. The silver surface may be
affected by environments which contain corrosive gases and so on. Please avoid conditions which
may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty
during soldering operations. It is recommended that the LEDs be used as soon as possible.
Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where
condensation can occur.

(3) Static Electricity
Static electricity or surge voltage damages the LEDs.
It is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.
All devices, equipment and machinery must be properly grounded. It is recommended that measures
be taken against surge voltage to the equipment that mounts the LEDs.
When inspecting the final products in which LEDs were assembled, it is recommended to check
whether the assembled LEDs are damaged by static electricity or not. It is easy to find
static-damaged LEDs by a light-on test or a VF
test at a lower current (below 1mA is recommended).
Damaged LEDs will show some unusual characteristics such as the leak current remarkably
increases, the forward voltage becomes lower, or the LEDs do not light at the low current.
Criteria : (V
F
> 2.0V at I
F
=0.5mA)




-5-
Nichia STSE-CW2157B
<Cat.No.031110>
(4) Soldering Conditions
Nichia LED leadframes are comprised of a silver plated copper alloy. This substance has a low
thermal coefficient (easily conducts heat). Careful attention should be paid during soldering.
Solder the LED no closer than 3mm from the base of the epoxy bulb. Soldering beyond the base
of the tie bar is recommended.
Recommended soldering conditions
Dip Soldering
Soldering
Pre-Heat
Pre-Heat Time
Solder Bath
Temperature
Dipping Time
Dipping Position
120C Max.
60 seconds Max.
260C Max.

10 seconds Max.
No lower than 3 mm from the
base of the epoxy bulb.
Temperature
Soldering Time
Position
350C Max.
3 seconds Max.
No closer than 3 mm from the
base of the epoxy bulb.
Do not apply any stress to the lead particularly when heated.
The LEDs must not be repositioned after soldering.
After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until
the LEDs return to room temperature.
Direct soldering onto a PC board should be avoided. Mechanical stress to the resin may be caused
from warping of the PC board or from the clinching and cutting of the leadframes. When it is
absolutely necessary, the LEDs may be mounted in this fashion but the User will assume responsibility
for any problems. Direct soldering should only be done after testing has confirmed that no damage,
such as wire bond failure or resin deterioration, will occur. Nichia's LEDs should not be soldered
directly to double sided PC boards because the heat will deteriorate the epoxy resin.
When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize
the mechanical stress on the LEDs.
Cut the LED leadframes at room temperature. Cutting the leadframes at high temperatures may
cause failure of the LEDs.
(5) Heat Generation
Thermal design of the end product is of paramount importance. Please consider the heat generation
of the LED when making the system design. The coefficient of temperature increase per input
electric power is affected by the thermal resistance of the circuit board and density of LED
placement on the board, as well as other components. It is necessary to avoid intense heat generation
and operate within the maximum ratings given in this specification.
The operating current should be decided after considering the ambient maximum temperature of LEDs.
(6) Cleaning
It is recommended that isopropyl alcohol be used as a solvent for cleaning the LEDs. When using
other solvents, it should be confirmed beforehand whether the solvents will dissolve the resin or not.
Freon solvents should not be used to clean the LEDs because of worldwide regulations.
Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic
cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition.
Before cleaning, a pre-test should be done to confirm whether any damage to the LEDs will occur.
-6-
Nichia STSE-CW2157B
<Cat.No.031110>
(7) Safety Guideline for Human Eyes
In 1993, the International Electric Committee (IEC) issued a standard concerning laser product safety
(IEC 825-1). Since then, this standard has been applied for diffused light sources (LEDs) as well
as lasers. In 1998 IEC 60825-1 Edition 1.1 evaluated the magnitude of the light source.
In 2001 IEC 60825-1 Amendment 2 converted the laser class into 7 classes for end products.
Components are excluded from this system. Products which contain visible LEDs are now classified
as class 1. Products containing UV LEDs are class 1M. Products containing LEDs can be classified
as class 2 in cases where viewing angles are narrow, optical manipulation intensifies the light, and/or the
energy emitted is high. For these systems it is recommended to avoid long term exposure.
It is also recommended to follow the IEC regulations regarding safety and labeling
of products.
(8) Others
Care must be taken to ensure that the reverse voltage will not exceed the absolute maximum rating
when using the LEDs with matrix drive.
Flashing lights have been known to cause discomfort in people; you can prevent this by taking
precautions during use. Also, people should be cautious when using equipment that has had LEDs
incorporated into it.
The LEDs described in this brochure are intended to be used for ordinary electronic equipment (such
as office equipment, communications equipment, measurement instruments and household appliances).
Consult Nichia's sales staff in advance for information on the applications in which exceptional quality
and reliability are required, particularly when the failure or malfunction of the LEDs may directly
jeopardize life or health (such as for airplanes, aerospace, submersible repeaters, nuclear reactor
control systems, automobiles, traffic control equipment, life support systems and safety devices).
User shall not reverse engineer by disassembling or analysis of the LEDs without having prior written
consent from Nichia. When defective LEDs are found, the User shall inform Nichia directly before
disassembling or analysis.
The formal specifications must be exchanged and signed by both parties before large volume purchase begins.
The appearance and specifications of the product may be modified for improvement without notice.














0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
480
620
550
540
530
520
580
570
560
600
610
590
630
470
460
490
510
500
a0
b1
b2
c0
x
y
ICI Chromaticity Diagram
-7-
!
Color Coordinates Measurement allowance is 0.01.
Nichia STSE-CW2157B
<Cat.No.031110>
Allo
wabl
e

Fo
rwa
r
d
Cu
rr
en
t I
F
(mA
)
Re
l
a
tiv
e
Lu
mi
n
o
sity

(
a
.
u
.
)
Re
l
a
t
i
v
e
Luminosity

(a.u.
)
Forward Current I
FP
(mA)
Al
l
owa
b
l
e
Fo
rward C
urren
t
I
FP
(mA
)
!
Ambient Temperature vs.
Allowable Forward Current
Ambient Temperature Ta (C)
!
Ambient Temperature vs.
Relative Luminosity
Ambient Temperature Ta (C)
!
Ambient Temperature vs.
Forward Voltage
Ambient Temperature Ta (C)
Fo
rw
a
r
d
V
o
ltag
e

V
F
(V
)
Duty Ratio (%)
!
Forward Current vs.
Relative Luminosity
Fo
rward C
u
rren
t
I
FP
(mA
)
Forward Voltage V
F
(V)
!
Forward Voltage vs.
Forward Current
!
Duty Ratio vs.
Allowable Forward Current
60
80
100
40
0
20
200
100
50
20
10
30
40
30
20
0
10
2.0
1.0
0.5
0.2
200
100
50
20
10
5
1
2.5
3.0
3.5
4.0
4.5
5.0
0
20
40
60
100 120
80
0
20
60 80 100
40
-40 -20
0 20
60 80 100
40
-40 -20
5.4
4.6
4.2
3.4
3.0
2.6
3.8
5.0
4.0
3.0
2.5
1.5
1.0
0.5
0
2.0
3.5
1
5
10 20
100
50
Ta=25C
Ta=25C
Ta=25C
I
FP
=5mA
I
FP
=20mA
I
FP
=60mA
I
FP
=20mA
-8-








<
C
a
t
.
N
o
.
031110
>
N
i
c
h
i
a

S
T
S
E
-
C
W
2157
B
TYP.CHARACTERISTICS
Model
NSPWxxxx
NICHIA CORPORATION
Title
No.
011210110251
Y-Y
X-X
R
e
lati
ve
Em
ission I
n
ten
s
i
t
y
(
a
.u.)
Re
la
tiv
e

L
u
m
i
nosi
t
y
(a.u.)
!
Ambient Temperature vs.
Chromaticity Coordinate
!
Directivity (NSPW300BS)
!
Spectrum
!
Forward Current vs.
Chromaticity Coordinate
Radiation Angle
x
y
Wavelength
(nm)
Ta=25C
I
F
=20mA
1
0.5
0
1
0.5
0
0.29 0.30 0.31 0.32 0.33 0.34
0.35
0.34
0.33
0.31
0.30
0.32
0.35
0.33
0.30
0.34
0.32
0.31
350
450
550
750
650
1.2
1
0.8
0.4
0.2
0
0.6
0.29 0.30 0.31 0.32 0.33 0.34
x
y
0
30
0.5
90
60
1
0
10 20
30
40
50
60
70
80
90
-30C
0C
25C
50C
85C
1mA
20mA
50mA
100mA
5mA
Ta=25C
I
FP
=20mA
Ta=25C
I
F
=20mA
-9-








<
C
a
t
.
N
o
.
0
31110
>
N
i
c
h
i
a

S
T
S
E
-
C
W
215
7
B
TYP.CHARACTERISTICS
Model
NSPW300BS
NICHIA CORPORATION
Title
No.
011210110261
1
0.3
0.3
Stopper
ITEM MATERIALS
RESIN
Epoxy Resin (over YAG Phosphor)
LEAD FRAME
Ag Plating Copper Alloy
Remark
:
Bare copper alloy is exposed at tie-bar portion
after cutting.
The lamps have sharp and hard points that may
injure human eyes or fingers etc., so please pay
enough care in the handling.
5
6
1.5MAX.

3.1

3.8
1
11 0.5
3.5
Anode
(2)
(2.
5
)
27.5 1
!
0.5 0.05
1.1
Cathode
Nichia
ST
S
E-CW
2157
B
<
C
a
t
.No.0
31110
>
-10-
Unit
mm
Allow
NICHIA CORPORATION
No.
OUTLINE
DIMENSIONS
010817104921
Title
Model
NSPW300BS
0.2
Scale
3/1
Anti-electrostatic bag
Cardboard box
360!135!215!4t
Cardboard
Cardboard
Print
Label
The quantity is printed on this bag.
N I C H I A
XXXX
LED
TYPE NxPxxxxxx

LOT xxxxxx-!"
QTY pcs
NICHIA CORPORATION
491 OKA,KAMINAKA,ANAN,TOKUSHIMA,JAPAN
CAUTION TO
ELECTROSTATIC DAMAGE
XXXX LED
TYPE NxPxxxxxx
LOT xxxxxx-!"
QTY PCS
NICHIA
NICHIA CORPORATION
491 OKA, KAMINAKA, ANAN, TOKUSHIMA,
JAPAN
#
One box contains 8 bags at maximum.

Nichia STSE-CW21
5
7B
<Cat.No.031110>
NICHIA CORPORATION
No.
PACKING
031029201103
Title
Model
NxPxxxxxx
-11-
Anti-electrostatic bag
Cardboard box B
360!135!215!4t
Cardboard
Cardboard
Cardboard box A
#
The cardboard box B contains
2 cardboard box A at maximum.

Print
Label
#
Put this label on the cardboard box B.
The quantity is printed on this bag.
N I C H I A
XXXX
LED
TYPE NxPxxxxxx

LOT xxxxxx-!"
QTY pcs
NICHIA CORPORATION
491 OKA,KAMINAKA,ANAN,TOKUSHIMA,JAPAN
CAUTION TO
ELECTROSTATIC DAMAGE
XXXX LED
TYPE NxPxxxxxx
LOT xxxxxx-!"
QTY PCS
NICHIA
NICHIA CORPORATION
491 OKA, KAMINAKA, ANAN, TOKUSHIMA,
JAPAN

Nichia STSE-CW21
5
7B
<Cat.No.031110>
NICHIA CORPORATION
No.
PACKING
031029201113
Title
Model
NxPxxxxxx
-12-
Cardboard box
425!135!355!4t
Cardboard
Cardboard
Anti-electrostatic bag
Print
Label

N I C H I A
XXXX
LED
TYPE NxPxxxxxx

LOT xxxxxx-!"
QTY pcs
NICHIA CORPORATION
491 OKA,KAMINAKA,ANAN,TOKUSHIMA,JAPAN
CAUTION TO
ELECTROSTATIC DAMAGE
The quantity is printed on this bag.
#
One box contains 20 bags at maximum.
XXXX LED
TYPE NxPxxxxxx
LOT xxxxxx-!"
QTY PCS
NICHIA
NICHIA CORPORATION
491 OKA, KAMINAKA, ANAN, TOKUSHIMA,
JAPAN

Nichia STSE-CW21
5
7B
<Cat.No.031110>
NICHIA CORPORATION
No.
PACKING
031029201123
Title
Model
NxPxxxxxx
-13-
#
The cardboard box B contains 4 cardboard box A at maximum.
Anti-electrostatic bag
Cardboard box B
425!135!355!4t
Cardboard
Cardboard box A
Cardboard
Print
Label





The quantity is printed on this bag.
#
Put this label on the cardboard box B.
N I C H I A
XXXX
LED
TYPE NxPxxxxxx

LOT xxxxxx-!"
QTY pcs
NICHIA CORPORATION
491 OKA,KAMINAKA,ANAN,TOKUSHIMA,JAPAN
CAUTION TO
ELECTROSTATIC DAMAGE
XXXX LED
TYPE NxPxxxxxx
LOT xxxxxx-!"
QTY PCS
NICHIA
NICHIA CORPORATION
491 OKA, KAMINAKA, ANAN, TOKUSHIMA,
JAPAN

Nichia STSE-CW21
5
7B
<Cat.No.031110>
NICHIA CORPORATION
No.
PACKING
031029201133
Title
Model
NxPxxxxxx
-14-