ChipFind - документация

Электронный компонент: FT0807DD00TR

Скачать:  PDF   ZIP
On-State Current
8 Amp
FT08...D
SURFACE MOUNT TRIAC
This series of TRIACs uses a high performance
PNPN technology.
These devices are intended for AC control
applications using surface mount technology.
The high commutation performances combined with
high sensitivity, make them perfect in all applications
like solid state relays, home appliances, power tools,
small motor drives...
Jun - 02
Absolute Maximum Ratings, according to IEC publication No. 134
RMS On-state Current
Non-repetitive On-State Current
Non-repetitive On-State Current
Fusing Current
Peak Gate Current
Peak Gate Dissipation
Gate Dissipation
Critical rate of rise of on-state current
Operating Temperature Range
Storage Temperature Range
Lead Temperature for soldering
I
T(RMS)
PARAMETER
CONDITIONS
Min.
Max.
Unit
DPAK
(Plastic)
Gate Trigger Current
< 5 mA to < 50 mA
Off-State Voltage
200 V 600 V
SYMBOL
I
TSM
I
TSM
I
2
t
I
GM
P
GM
P
G(AV)
T
j
T
stg
T
L
All Conduction Angle, T
C
= 110 C
Half Cycle, 60 Hz
Half Cycle, 50 Hz
t
p
= 10 ms, Half Cycle
20 s max.
20 s max.
20 ms max.
10s max.
8
84
80
36
50
-40
-40
A
A
A
A
2
s
A
W
W
A/s
C
C
C
4
10
1
+125
+150
260
di/dt
MT1
MT2
G
MT2
Repetitive Peak Off State
Voltage
PARAMETER
VOLTAGE
Unit
SYMBOL
V
DRM
V
RRM
B
200
V
M
600
D
400
Tr
100 ns, F = 120 Hz
T
j
= 125 C
I
G
= 2 x I
GT
FT08...D
SURFACE MOUNT TRIAC
Jun - 02
PART NUMBER INFORMATION
FAGOR
SCR
CURRENT
CASE
VOLTAGE
SENSITIVITY
F
T
08
08
B
D
00
FORMING
TR
PACKAGING
Electrical Characteristics
Gate Trigger Current
Off-State Leakage Current
Threshold Voltage
Dynamic Resistance
On-state Voltage
Gate Trigger Voltage
Gate Non Trigger Voltage
Holding Current
Latching Current
Critical Rate of Voltage Rise
PARAMETER
CONDITIONS
SENSITIVITY
Unit
SYMBOL
I
GT
(1)
I
DRM
V
D
= 12 V
DC
, R
L
= 30
mA
1
5
0.85
1.55
1.3
0.2
1.6
70
mA
mA
A
V
m
V
V
V
mA
mA
V/s
A/ms
MAX
MAX
MAX
MAX
MAX
MAX
MAX
MIN
MAX
MAX
MAX
MIN
MIN
MIN
MIN
/I
RRM
V
TM
(2)
V
GT
V
GD
I
H
(2)
I
L
dv / dt
(2)
R
th(j-a)
Thermal Resistance
Junction-Ambient
T
j
= 25 C
V
R
= V
RRM
,
I
T
= 11 Amp, tp = 380 s, T
j
= 25 C
V
D
= 12 V
DC
, R
L
= 30
, T
j
= 25 C
I
T
= 100 mA
, Gate open, T
j
= 25 C
I
G
= 1.2 I
GT
,
T
j
= 25 C
V
D
= 0.67 x V
DRM
, Gate open
T
j
= 125 C
Quadrant
Q1Q3
Q1Q3
Q1Q3
Q1,Q3
Q2
V
D
= V
DRM
, R
L
= 3.3K
, T
j
= 125 C
C/W
C/W
(1) Minimum I
GT
is guaranted at 5% of I
GT
max.
(2) For either polarity of electrode MT2 voltage with reference to electrode MT1.
R
th(j-c)
Thermal Resistance
Junction-Case
(dI/dt)c
(2)
Critical Rate of Current Rise (dv/dt)c= 0.1 V/s T
j
= 125 C
(dv/dt)c= 10 V/s T
j
= 125 C
without snubber Tj = 125 C
V
to
(2)
R
d
(2)
T
j
= 125 C
T
j
= 125 C
60
T
j
= 125 C
T
j
= 25 C
07
5
7
11
25
16
50
08
10
14
35
10
10
15
20
3.5
1.8
-
15
20
30
100
5.4
2.8
-
25
25
50
200
9
4.5
-
50
80
80
250
9
4.5
4.5
35
50
60
400
9
4.5
4.5
10
8
6
4
2
0
Jun - 02
Fig. 1a: Maximum power dissipation versus
RMS on-state current (FT0807.D, FT0808.D).
0
25
50
75
100
125
P (W)
Fig. 2: Correlation between maximum power dissipation
and maximum allowable temperatures (Tamb and Tcase)
for different thermal resistances heatsink + contact.
T case (C)
-110
-115
-120
-125
Fig. 3: RMS on-state current versus ambient
temperature
Fig. 5: Relative variation of gate trigger current
and holding current versus junction temperature
(typical values).
IGT, IH (Tj) / IGT, IH (Tj = 25 C)
FT08...D
SURFACE MOUNT TRIAC
I T(RMS) (A)
0
2
10
8
6
4
2
0
4
6
8
P (W)
Tamb (C)
Tj (C)
Tamb (C)
IT(RMS)(A)
1
3
5
7
= 90
= 60
= 30
9
8
7
6
5
4
3
2
1
0
0
25
50
75
100
125
-40
0
2.5
2.0
1.5
1.0
0.5
0.0
40
80
120
-20
20
60
100
180
= 180
= 120
Fig. 1b: Maximum power dissipation versus
RMS on-state current (FT0811.D, FT0814.D).
0
2
10
8
6
4
2
0
4
6
8
P (W)
IT(RMS)(A)
1
3
5
7
= 90
= 60
180
= 120
= 180
= 30
1.0
K = [Zth(j-c) / Rth (j-c)]
Fig. 4: Relative variation of thermal impedance
junction to case versus pulse duration.
1E-3
1E-2
1E-1
1E+0
tp (s)
0.5
0.2
0.1
Rth=15 C/W
Rth=10 C/W
Rth=5 C/W
Rth=0 C/W
= 180
Rth(j-a) = Rth(j-c)
= 180
Rth(j-a) = 55 C/W
S(Cu) = 1.75 cm2
140
IH
IGT
FT08...D
SURFACE MOUNT TRIAC
500
1
10
ITSM(A). I
2
t (A
2
s)
Fig. 7: Non repetitive surge peak on-state
current for a sinusoidal pulse with width:
tp < 10 ms, and corresponding value of I
2
t.
tp(ms)
2
5
Fig. 8: On-state characteristics (maximum
values).
1
10
100
1000
Fig. 6: Non repetitive surge peak on-state
current versus number of cycles.
80
70
60
50
40
30
20
10
0
I TSM (A)
Number of cycles
Fig. 9: Thermal resistance junction to ambient
versus copper surface under tab (Epoxy printed
circuit board FR4, copper thickness: 35 m).
Tj initial = 25 C
F = 50 Hz
100
10
I
2
t
ITSM
Tj initial = 25 C
Jun - 02
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5
ITM(A)
4.0
100.0
VTM(V)
4.5
10.0
1.0
0.1
5.0
Tj = Tj max.
Tj = 25 C
Rth(j-a) (C/W)
S(Cu) (cm
2
)
0
100
80
60
40
20
0
2
4
6
8 10 12 14 16 18 20
Tj max
Vto = 0.8 V
Rd = 60 m
FT08...D
SURFACE MOUNT TRIAC
PACKAGE MECHANICAL DATA
DPAK TO 252-AA
A
A1
b
c
c1
c2
D
D1
E
E1
e
H
L
L1
L2
L3
L4
REF.
DIMENSIONS
Milimeters
Min.
Nominal
Max.
2.18
0
0.64
0.46
0.46
5.97
5.21
6.35
5.20
9.40
1.40
2.55
0.46
0.89
0.64
2.30.18
0.12
0.750.1
0.80.013
6.10.1
6.580.14
5.360.1
2.28BSC
9.900.15
2.60.05
0.50.013
1.200.05
0.830.1
2.39
0.127
0.89
0.61
0.56
6.22
5.52
6.73
5.46
10.41
1.78
2.74
0.58
1.27
1.02
Marking: type number
Weight: 0.2 g
8
2
E
L3
D
b
e
4.57 Typ.
1x0.15
H
1.6
L4
A
c2
8
2
8
2
8
2
8
2
L
L2
A1
1.067
0.013
E1
D1
Jun - 02
FOOT PRINT
6.7
6.7
3
1.6
2.3
2.3
1.6
3