ChipFind - документация

Электронный компонент: 74LCX574CW

Скачать:  PDF   ZIP
2001 Fairchild Semiconductor Corporation
DS012406
www.fairchildsemi.com
March 1995
Revised March 2001
7
4
LCX574
Low V
o
lt
age
Oct
a
l D-T
y
pe Fl
ip-
F
lop wit
h

5
V
T
o
le
rant

I
nputs and Output
s
74LCX574
Low Voltage Octal D-Type Flip-Flop
with 5V Tolerant Inputs and Outputs
General Description
The LCX574 is a high-speed, low power octal flip-flop with
a buffered common Clock (CP) and a buffered common
Output Enable (OE). The information presented to the D
inputs is stored in the flip-flops on the LOW-to-HIGH Clock
(CP) transition.
The LCX574 is functionally identical to the LCX374 except
for the pinouts.
The LCX574 is designed for low voltage (2.5V or 3.3V) V
CC
applications with capability of interfacing to a 5V signal
environment. The LCX574 is fabricated with an advanced
CMOS technology to achieve high speed operation while
maintaining CMOS low power dissipation.
Features
s
5V tolerant inputs and outputs
s
2.3V3.6V V
CC
specifications provided
s
7.5 ns t
PD
max (V
CC
=
3.3V), 10
A I
CC
max
s
Power down high impedance inputs and outputs
s
Supports live insertion/withdrawal (Note 1)
s
24 mA output drive (V
CC
=
3.0V)
s
Implements patented noise/EMI reduction circuitry
s
Latch-up performance exceeds 500 mA
s
ESD performance:
Human body model
>
2000V
Machine model
>
200V
Note 1: To Ensure the high-Impedance state during power up or down, OE
should be tied to V
CC
through a pull-up resistor: the minimum value or the
resistor is determined by the current-sourcing capability of the driver.
Ordering Code:
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.
Logic Symbol
Pin Descriptions
Connection Diagram
Order Number
Package Number
Package Description
74LCX574WM
M20B
20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX574SJ
M20D
20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX574MSA
MSA20
20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LCX574MTC
MTC20
20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Pin Names
Description
D
0
D
7
Data Inputs
CP
Clock Pulse Input
OE
3-STATE Output Enable Input
O
0
O
7
3-STATE Outputs
www.fairchildsemi.com
2
74LCX574
Functional Description
The LCX574 consists of eight edge-triggered flip-flops with
individual D-type inputs and 3-STATE true outputs. The
buffered clock and buffered Output Enable are common to
all flip-flops. The eight flip-flops will store the state of their
individual D inputs that meet the setup and hold time
requirements on the LOW-to-HIGH Clock (CP) transition.
With the Output Enable (OE) LOW, the contents of the
eight flip-flops are available at the outputs. When OE is
HIGH, the outputs go to the high impedance state. Opera-
tion of the OE input does not affect the state of the flip-
flops.
Truth Table
H
=
HIGH Voltage Level
L
=
LOW Voltage Level
X
=
Immaterial
Z
=
High Impedance
=
LOW-to-HIGH Transition
NC
=
No Change
Logic Diagram
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
Inputs
Internal
Outputs
Function
OE CP
D
Q
O
n
H
H
L
NC
Z
Hold
H
H
H
NC
Z
Hold
H
L
L
Z
Load
H
H
H
Z
Load
L
L
L
L
Data Available
L
H
H
H
Data Available
L
H
L
NC
NC
No Change in Data
L
H
H
NC
NC
No Change in Data
3
www.fairchildsemi.com
7
4
LCX574
Absolute Maximum Ratings
(Note 2)
Recommended Operating Conditions
(Note 4)
Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated
at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recom-
mended Operating Conditions" table will define the conditions for actual device operation.
Note 3: I
O
Absolute Maximum Rating must be observed.
Note 4: Unused inputs must be held HIGH or LOW. They may not float.
DC Electrical Characteristics
Symbol
Parameter
Value
Conditions
Units
V
CC
Supply Voltage
-
0.5 to
+
7.0
V
V
I
DC Input Voltage
-
0.5 to
+
7.0
V
V
O
DC Output Voltage
-
0.5 to
+
7.0
Output in 3-STATE
V
-
0.5 to V
CC
+
0.5
Output in HIGH or LOW State (Note 3)
I
IK
DC Input Diode Current
-
50
V
I
<
GND
mA
I
OK
DC Output Diode Current
-
50
V
O
<
GND
mA
+
50
V
O
>
V
CC
I
O
DC Output Source/Sink Current
50
mA
I
CC
DC Supply Current per Supply Pin
100
mA
I
GND
DC Ground Current per Ground Pin
100
mA
T
STG
Storage Temperature
-
65 to
+
150
C
Symbol
Parameter
Min
Max
Units
V
CC
Supply Voltage
Operating
2.0
3.6
V
Data Retention
1.5
3.6
V
I
Input Voltage
0
5.5
V
V
O
Output Voltage
HIGH or LOW State
0
V
CC
V
3-STATE
0
5.5
I
OH
/I
OL
Output Current
V
CC
=
3.0V
-
3.6V
24
mA
V
CC
=
2.7V
-
3.0V
12
V
CC
=
2.3V
-
2.7V
8
T
A
Free-Air Operating Temperature
-
40
85
C
t/
V
Input Edge Rate, V
IN
=
0.8V2.0V, V
CC
=
3.0V
0
10
ns/V
Symbol
Parameter
Conditions
V
CC
T
A
=
-
40
C to
+
85
C
Units
(V)
Min
Max
V
IH
HIGH Level Input Voltage
2.3
-
2.7
1.7
V
2.7
-
3.6
2.0
V
IL
LOW Level Input Voltage
2.3
-
2.7
0.7
V
2.7
-
3.6
0.8
V
OH
HIGH Level Output Voltage
I
OH
=
-
100
A
2.3
-
3.6
V
CC
-
0.2
V
I
OH
=
-
8mA
2.3
1.8
I
OH
=
-
12 mA
2.7
2.2
I
OH
=
-
18 mA
3.0
2.4
I
OH
=
-
24 mA
3.0
2.2
V
OL
LOW Level Output Voltage
I
OL
=
100
A
2.3
-
3.6
0.2
V
I
OL
=
8 mA
2.3
0.6
I
OL
=
12 mA
2.7
0.4
I
OL
=
16 mA
3.0
0.4
I
OL
=
24 mA
3.0
0.55
I
I
Input Leakage Current
0
V
I
5.5V
2.3
-
3.6
5.0
A
I
OZ
3-STATE Output Leakage
0
V
O
5.5V
2.3
-
3.6
5.0
A
V
I
=
V
IH
or V
IL
I
OFF
Power-Off Leakage Current
V
I
or V
O
=
5.5V
0
10
A
www.fairchildsemi.com
4
74LCX574
DC Electrical Characteristics
(Continued)
Note 5: Outputs disabled or 3-STATE only.
AC Electrical Characteristics
Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The
specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t
OSHL
) or LOW-to-HIGH (t
OSLH
).
Dynamic Switching Characteristics
Capacitance
Symbol
Parameter
Conditions
V
CC
T
A
=
-
40
C to
+
85
C
Units
(V)
Min
Max
I
CC
Quiescent Supply Current
V
I
=
V
CC
or GND
2.3
-
3.6
10
A
3.6V
V
I
,V
O
5.5V (Note 5)
2.3
-
3.6
10
I
CC
Increase in I
CC
per Input
V
IH
=
V
CC
-
0.6V
2.3
-
3.6
500
A
Symbol
Parameter
T
A
=
-
40
C to
+
85
C, R
L
=
500
Units
V
CC
=
3.3V
0.3V
V
CC
=
2.7V
V
CC
=
2.5
0.2V
C
L
=
50 pF
C
L
=
50 pF
C
L
=
30 pF
Min
Max
Min
Max
Min
Max
f
MAX
Maximum Clock Frequency
150
MHz
t
PHL
Propagation Delay
1.5
8.5
1.5
9.5
1.5
10.5
ns
t
PLH
CP to O
n
1.5
8.5
1.5
9.5
1.5
10.5
t
PZL
Output Enable Time
1.5
8.5
1.5
9.5
1.5
10.5
ns
t
PZH
1.5
8.5
1.5
9.5
1.5
10.5
t
PLZ
Output Disable Time
1.5
6.5
1.5
7.0
1.5
7.8
ns
t
PHZ
1.5
6.5
1.5
7.0
1.5
7.8
t
S
Setup Time
2.5
2.5
4.0
ns
t
H
Hold Time
1.5
1.5
2.0
ns
t
W
Pulse Width
3.3
3.3
4.0
ns
t
OSHL
Output to Output Skew (Note 6)
1.0
ns
t
OSLH
1.0
Symbol
Parameter
Conditions
V
CC
T
A
=
25
C
Units
(V)
Typical
V
OLP
Quiet Output Dynamic Peak V
OL
C
L
=
50 pF, V
IH
=
3.3V, V
IL
=
0V
3.3
0.8
V
C
L
=
30 pF, V
IH
=
2.5V, V
IL
=
0V
2.5
0.6
V
OLV
Quiet Output Dynamic Valley V
OL
C
L
=
50 pF, V
IH
=
3.3V, V
IL
=
0V
3.3
-
0.8
V
C
L
=
30 pF, V
IH
=
2.5V, V
IL
=
0V
2.5
-
0.6
Symbol
Parameter
Conditions
Typical
Units
C
IN
Input Capacitance
V
CC
=
Open, V
I
=
0V or V
CC
7
pF
C
OUT
Output Capacitance
V
CC
=
3.3V, V
I
=
0V or V
CC
8
pF
C
PD
Power Dissipation Capacitance
V
CC
=
3.3V, V
I
=
0V or V
CC
, f
=
10 MHz
25
pF
5
www.fairchildsemi.com
7
4
LCX574
AC LOADING and WAVEFORMS
Generic for LCX Family
FIGURE 1. AC Test Circuit (C
L
includes probe and jig capacitance)
Waveform for Inverting and Non-Inverting Functions
Propagation Delay. Pulse Width and t
rec
Waveforms
3-STATE Output Low Enable and
Disable Times for Logic
3-STATE Output High Enable and
Disable Times for Logic
Setup Time, Hold Time and Recovery Time for Logic
t
rise
and t
fall
FIGURE 2. Waveforms
(Input Characteristics; f =1MHz, t
r
= t
f
= 3ns)
Test
Switch
t
PLH
, t
PHL
Open
t
PZL
, t
PLZ
6V at V
CC
=
3.3
0.3V
V
CC
x 2 at V
CC
=
2.5
0.2V
t
PZH
,t
PHZ
GND
Symbol
V
CC
3.3V
0.3V
2.7V
2.5V
0.2V
V
mi
1.5V
1.5V
V
CC
/2
V
mo
1.5V
1.5V
V
CC
/2
V
x
V
OL
+
0.3V
V
OL
+
0.3V
V
OL
+
0.15V
V
y
V
OH
-
0.3V
V
OH
-
0.3V
V
OH
-
0.15V