ChipFind - документация

Электронный компонент: FDP7030L

Скачать:  PDF   ZIP
April 1998
FDP7030L / FDB7030L
N-Channel Logic Level Enhancement Mode Field Effect Transistor
General Description
Features
_________________________________________________________________________________
Absolute Maximum Ratings
T
C
= 25C unless otherwise noted
Symbol
Parameter
FDP7030L
FDB7030L
Units
V
DSS
Drain-Source Voltage
30
V
V
GSS
Gate-Source Voltage - Continuous
20
V
I
D
Drain Current
- Continuous
(Note 1)
100
A
75
- Pulsed
(Note 1)
300
P
D
Total Power Dissipation @ T
C
= 25C
125
W
Derate above 25C
0.83
W/C
T
J
,T
STG
Operating and Storage Temperature Range
-65 to 175
C
T
L
Maximum lead temperature for soldering purposes,
1/8" from case for 5 seconds
275
C
THERMAL CHARACTERISTICS
R
JC
Thermal Resistance, Junction-to-Case
1.2
C/W
R
JA
Thermal Resistance, Junction-to-Ambient
62.5
C/W
FDP7030L Rev.D
1
100 A, 30 V. R
DS(ON)
= 0.007
@ V
GS
=10 V
R
DS(ON)
= 0.010
@ V
GS
=5 V
.
Critical DC electrical parameters specified at elevated
temperature.
Rugged internal source-drain diode can eliminate the need
for an external Zener diode transient suppressor.
High density cell design for extremely low R
DS(ON)
.
175C maximum junction temperature rating.
These N-Channel logic level enhancement mode power field
effect transistors are produced using Fairchild's proprietary,
high cell density, DMOS technology. This very high density
process is especially tailored to minimize on-state resistance.
These devices are particularly suited for low voltage
applications such as DC/DC converters and high efficiency
switching circuits where fast switching, low in-line power
loss, and resistance to transients are needed.
S
D
G
1998 Fairchild Semiconductor Corporation
Electrical Characteristics
(T
C
= 25C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
DRAIN-SOURCE AVALANCHE RATINGS
(Note 1)
W
DSS
Single Pulse Drain-Source Avalanche Energy
V
DD
= 15 V, I
D
= 38 A
200
mJ
I
AR
Maximum Drain-Source Avalanche Current
38
A
OFF CHARACTERISTICS
BV
DSS
Drain-Source Breakdown Voltage
V
GS
= 0 V, I
D
= 250 A
30
V
BV
DSS
/
T
J
Breakdown Voltage Temp. Coefficient
I
D
= 250 A, Referenced to 25
o
C
36
mV/
o
C
I
DSS
Zero Gate Voltage Drain Current
V
DS
= 24 V, V
GS
= 0 V
10
A
T
J
=125 C
1
mA
I
GSSF
Gate - Body Leakage, Forward
V
GS
= 20 V, V
DS
= 0 V
100
nA
I
GSSR
Gate - Body Leakage, Reverse
V
GS
= -20 V, V
DS
= 0 V
-100
nA
ON CHARACTERISTICS
(Note 2)
V
GS(th)
Gate Threshold Voltage
V
DS
= V
GS
, I
D
= 250 A
1
1.5
2
V
V
GS(th)
/
T
J
Gate Threshold Voltage Temp.Coefficient
I
D
= 250 A, Referenced to 25
o
C
-5
mV/
o
C
R
DS(ON)
Static Drain-Source On-Resistance
V
GS
= 10 V, I
D
= 50 A
0.006
0.007
T
J
= 125C
0.009
0.011
V
GS
= 5 V, I
D
= 40 A
0.009
0.01
I
D(on)
On-State Drain Current
V
GS
= 10 V, V
DS
= 10 V
60
A
g
FS
Forward Transconductance
V
DS
= 10 V, I
D
= 50 A
50
S
DYNAMIC CHARACTERISTICS
C
iss
Input Capacitance
V
DS
= 15 V, V
GS
= 0 V,
f = 1.0 MHz
2150
pF
C
oss
Output Capacitance
1290
pF
C
rss
Reverse Transfer Capacitance
420
pF
SWITCHING CHARACTERISTICS
(Note 2)
t
D(on)
Turn - On Delay Time
V
DD
= 15 V, I
D
= 75 A,
V
GS
= 10 V, R
GEN
= 6
R
GS
= 10
10
20
nS
t
r
Turn - On Rise Time
160
225
nS
t
D(off)
Turn - Off Delay Time
70
95
nS
t
f
Turn - Off Fall Time
140
195
nS
Q
g
Total Gate Charge
V
DS
= 12 V
I
D
= 50 A, V
GS
= 4.5 V
35
50
nC
Q
gs
Gate-Source Charge
12
nC
Q
gd
Gate-Drain Charge
18
nC
DRAIN-SOURCE DIODE CHARACTERISTICS
I
S
Maximum Continuos Drain-Source Diode Forward Current
(Note 1)
100
A
I
SM
Maximum Pulsed Drain-Source Diode Forward Current
(Note 2)
300
A
V
SD
Drain-Source Diode Forward Voltage
V
GS
= 0 V, I
S
= 50 A
(Note 2)
1
1.3
V
T
J
= 125C
0.85
1.1
Notes
1. Calculated continuous current based on maximum allowable junction temperature. Actual maximum continuous current limited by package constraints to 75A.
2. Pulse Test: Pulse Width < 300 s, Duty Cycle < 2.0%.
FDP7030L Rev.D
1
FDP7030L Rev.D
1
Typical Electrical Characteristics
0
0.5
1
1.5
2
2.5
0
20
40
60
80
100
V , DRAIN-SOURCE VOLTAGE (V)
I , DRAIN-SOURCE CURRENT (A)
DS
D
8.0
4.0
4.5
5.0
3.5
6.0
V = 10V
GS
3.0
-50
-25
0
25
50
75
100
125
150
175
0.6
0.8
1
1.2
1.4
1.6
T , JUNCTION TEMPERATURE (C)
DRAIN-SOURCE ON-RESISTANCE
J
R , NORMALIZED
DS(ON)
V = 10V
GS
I = 50A
D
1
1.5
2
2.5
3
3.5
4
4.5
5
0
10
20
30
40
50
60
V , GATE TO SOURCE VOLTAGE (V)
I , DRAIN CURRENT (A)
25
125C
V = 10V
DS
GS
D
T = -55C
A
Figure 5. Transfer Characteristics
.
0
20
40
60
80
100
0.5
1
1.5
2
2.5
3
I , DRAIN CURRENT (A)
DRAIN-SOURCE ON-RESISTANCE
D
R , NORMALIZED
DS(ON)
4.5
5.0
10.0
4.0
6.0
8.0
V =3.5V
GS
Figure 1. On-Region Characteristics.
0
0.2
0.4
0.6
0.8
1
1.2
1.4
0.0001
0.001
0.01
0.1
1
10
60
V , BODY DIODE FORWARD VOLTAGE (V)
I , REVERSE DRAIN CURRENT (A)
T = 125C
A
25C
-55C
V =0V
GS
SD
S
2
4
6
8
10
0
0.005
0.01
0.015
0.02
0.025
V , GATE TO SOURCE VOLTAGE (V)
GS
R , ON-RESISTANCE (OHM)
DS(ON)
125C
25C
I =50A
D
Figure 3. On-Resistance Variation
with Temperature
.
Figure 4. On-Resistance
Variation with
Gate-to-Source Voltage.
Figure 2. On-Resistance Variation with
Drain Current and Gate
Voltage.
Figure 6. Body Diode Forward Voltage
Variation with Source Current
and Temperature.
FDP7030L Rev.D
1
Typical Electrical Characteristics
(continued)
0
20
40
60
80
0
2
4
6
8
10
Q , GATE CHARGE (nC)
V , GATE-SOURCE VOLTAGE (V)
g
GS
I = 50A
D
V = 6.0V
DS
24V
12V
1
2
5
10
20
30
200
500
1000
2000
3000
5000
V , DRAIN TO SOURCE VOLTAGE (V)
CAPACITANCE (pF)
DS
f = 1 MHz
V = 0V
GS
C
oss
C
iss
C
rss
Figure 8. Capacitance Characteristics.
Figure 7. Gate Charge Characteristics.
0.1
0.5
1
5
10
30
50
1
2
5
10
20
50
100
300
500
V , DRAIN-SOURCE VOLTAGE (V))
I , DRAIN CURRENT (A)
DS
D
100s
1ms
10ms
100ms
DC
R Limit
DS(ON)
10s
V = 10V
SINGLE PULSE
R = 1.2 C/W
T = 25 C
GS
C
JC
o
Figure 9. Maximum Safe Operating Area.
0.01
0.1
1
10
100
1000
0
2000
4000
6000
8000
SINGLE PULSE TIME (ms)
POWER (W)
SINGLE PULSE
R =1.2 C/W
T = 25C
JC
C
Figure 10. Single Pulse Maximum Power
Dissipation.
0.01
0.05
0.1
0.5
1
5
10
50
100
500
1000
0.01
0.02
0.03
0.05
0.1
0.2
0.3
0.5
1
t ,TIME (ms)
TRANSIENT THERMAL RESISTANCE
Single Pulse
D = 0.5
0.1
0.05
0.02
0.01
0.2
Duty Cycle, D = t /t
1 2
R (t) = r(t) * R
R = 1.2 C/W
JC
JC
JC
T - T = P * R (t)
JC
C
J
P(pk)
t
1
t
2
r(t), NORMALIZED EFFECTIVE
1
Figure 11. Transient Thermal Response Curve.