ChipFind - документация

Электронный компонент: NDT452AP

Скачать:  PDF   ZIP
June 1996
NDT452AP
P-Channel Enhancement Mode Field Effect Transistor

General Description
Features
________________________________________________________________________________
Absolute Maximum Ratings
T
A
= 25C unless otherwise noted
Symbol
Parameter
NDT452AP
Units
V
DSS
Drain-Source Voltage
-30
V
V
GSS
Gate-Source Voltage
20
V
I
D
Drain Current - Continuous
(Note 1a)
-5
A
- Pulsed
- 15
P
D
Maximum Power Dissipation
(Note 1a)
3
W
(Note 1b)
1.3
(Note 1c)
1.1
T
J
,T
STG
Operating and Storage Temperature Range
-65 to 150
C
THERMAL CHARACTERISTICS
R
JA
Thermal Resistance, Junction-to-Ambient
(Note 1a)
42
C/W
R
JC
Thermal Resistance, Junction-to-Case
(Note 1)
12
C/W
* Order option J23Z for cropped center drain lead.
NDT452AP Rev. B1
-5A, -30V. R
DS(ON)
= 0.065
@ V
GS
= -10V
R
DS(ON)
= 0.1
@ V
GS
= -4.5V.
High density cell design for extremely low R
DS(ON)
.
High power and current handling capability in a widely used
surface mount package.
Power SOT P-Channel enhancement mode power field
effect transistors are produced using Fairchild's proprietary,
high cell density, DMOS technology. This very high density
process is especially tailored to minimize on-state resistance
and provide superior switching performance. These devices
are particularly suited for low voltage applications such as
notebook computer power management and DC motor
control.
D
D
S
G
D
S
G
1997 Fairchild Semiconductor Corporation
Electrical Characteristics
(T
A
= 25C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
OFF CHARACTERISTICS
BV
DSS
Drain-Source Breakdown Voltage
V
GS
= 0 V, I
D
= -250 A
-30
V
I
DSS
Zero Gate Voltage Drain Current
V
DS
= -24 V, V
GS
= 0 V
-1
A
T
J
= 55C
-10
A
I
GSSF
Gate - Body Leakage, Forward
V
GS
= 20 V, V
DS
= 0 V
100
nA
I
GSSR
Gate - Body Leakage, Reverse
V
GS
= -20 V, V
DS
= 0 V
-100
nA
ON CHARACTERISTICS
(Note 2)
V
GS(th)
Gate Threshold Voltage
V
DS
= V
GS
, I
D
= -250 A
-1
-1.6
-2.8
V
T
J
= 125C
-0.7
-1.2
-2.2
R
DS(ON)
Static Drain-Source On-Resistance
V
GS
= -10 V, I
D
= -5.0 A
0.052
0.065
T
J
= 125C
0.075
0.13
V
GS
= -4.5 V, I
D
= -4.3 A
0.085
0.1
I
D(on)
On-State Drain Current
V
GS
= -10 V, V
DS
= -5 V
-15
A
V
GS
= -4.5 V, V
DS
= -5 V
-5
g
FS
Forward Transconductance
V
DS
= -10 V, I
D
= -5.0 A
7
S
DYNAMIC CHARACTERISTICS
C
iss
Input Capacitance
V
DS
= -15 V, V
GS
= 0 V,
f = 1.0 MHz
690
pF
C
oss
Output Capacitance
430
pF
C
rss
Reverse Transfer Capacitance
160
pF
SWITCHING CHARACTERISTICS
(Note 2)
t
D(on)
Turn - On Delay Time
V
DD
= -10 V, I
D
= -1 A,
V
GEN
= -10 V, R
GEN
= 6
9
20
ns
t
r
Turn - On Rise Time
20
30
ns
t
D(off)
Turn - Off Delay Time
40
50
ns
t
f
Turn - Off Fall Time
19
40
ns
Q
g
Total Gate Charge
V
DS
= -10 V,
I
D
= -5.0 A, V
GS
= -10 V
22
30
nC
Q
gs
Gate-Source Charge
3.2
nC
Q
gd
Gate-Drain Charge
5.2
nC
NDT452AP Rev. B1
Electrical Characteristics
(T
A
= 25C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
I
S
Maximum Continuous Drain-Source Diode Forward Current
-2.5
A
V
SD
Drain-Source Diode Forward Voltage
V
GS
= 0 V, I
S
= -2.5 A
(Note 2)
-0.85
-1.2
V
t
rr
Reverse Recovery Time
V
GS
= 0 V, I
F
= -2.5 A, dI
F
/dt = 100 A/s
100
ns
Notes:
1. R
JA
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R
JC
is guaranteed by
design while R
CA
is determined by the user's board design.
P
D
(
t
) =
T
J
-
T
A
R
JA
(
t
)
=
T
J
-
T
A
R
JC
+
R
CA
(
t
)
=
I
D
2
(
t
)
R
DS
(
ON
)
T
J
Typical R
JA
using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:
a. 42
o
C/W when mounted on a 1 in
2
pad of 2oz copper.
b. 95
o
C/W when mounted on a 0.066 in
2
pad of 2oz copper.
c. 110
o
C/W when mounted on a 0.0123 in
2
pad of 2oz copper.
Scale 1 : 1 on letter size paper
2. Pulse Test: Pulse Width < 300s, Duty Cycle < 2.0%.
NDT452AP Rev. B1
1a
1b
1c
NDT452AP Rev. B1
-4
-3
-2
-1
0
-20
-15
-10
-5
0
V , DRAIN-SOURCE VOLTAGE (V)
I , DRAIN-SOURCE CURRENT (A)
V = -10V
GS
DS
D
-4.0
-6.0
-5.0
-3.5
-3.0
-4.5
-50
-25
0
25
50
75
100
125
150
0.6
0.8
1
1.2
1.4
1.6
T , JUNCTION TEMPERATURE (C)
DRAIN-SOURCE ON-RESISTANCE
J
V = -10V
GS
I = -5.0A
D
R , NORMALIZED
DS(ON)
-50
-25
0
25
50
75
100
125
150
0.6
0.7
0.8
0.9
1
1.1
1.2
T , JUNCTION TEMPERATURE (C)
GATE-SOURCE THRESHOLD VOLTAGE
I = -250A
D
V = V
DS
GS
J
V , NORMALIZED
th
-20
-16
-12
-8
-4
0
0.5
1
1.5
2
2.5
3
I , DRAIN CURRENT (A)
DRAIN-SOURCE ON-RESISTANCE
D
R , NORMALIZED
DS(on)
V = -3.5V
GS
-10
-5.0
-6.0
- 4.0
-4.5
Typical Electrical Characteristics
Figure 1. On-Region Characteristics.
Figure 2. On-Resistance Variation with Gate
Voltage and Drain Current.
Figure 3. On-Resistance Variation with
Temperature.
Figure 4. On-Resistance Variation with Drain
Current and Temperature.
Figure 5. Transfer Characteristics.
Figure 6. Gate Threshold Variation with
Temperature.
-6
-5
-4
-3
-2
-1
-20
-15
-10
-5
0
V , GATE TO SOURCE VOLTAGE (V)
I , DRAIN CURRENT (A)
V = -10V
DS
GS
D
T = -55C
J
25C
125C
-20
-16
-12
-8
-4
0
0.5
1
1.5
2
I , DRAIN CURRENT (A)
DRAIN-SOURCE ON-RESISTANCE
D
R , NORMALIZED
DS(on)
V = -10V
GS
T = 125C
J
25C
-55C
NDT452AP Rev. B1
-50
-25
0
25
50
75
100
125
150
0.94
0.96
0.98
1
1.02
1.04
1.06
1.08
1.1
T , JUNCTION TEMPERATURE (C)
DRAIN-SOURCE BREAKDOWN VOLTAGE
I = -250A
D
BV , NORMALIZED
DSS
J
0
0.4
0.8
1.2
1.6
2
0.001
0.01
0.1
1
5
1 0
2 0
-V , BODY DIODE FORWARD VOLTAGE (V)
-I , REVERSE DRAIN CURRENT (A)
T = 125C
J
25C
-55C
V = 0V
GS
SD
S
0
5
10
15
20
25
0
2
4
6
8
10
Q , GATE CHARGE (nC)
-V , GATE-SOURCE VOLTAGE (V)
g
GS
I = -5.0A
D
V = -5V
DS
-10V
-20V
0.1
0.2
0.5
1
2
5
1 0
30
1 0 0
2 0 0
3 0 0
5 0 0
1 0 0 0
2 0 0 0
-V , DRAIN TO SOURCE VOLTAGE (V)
CAPACITANCE (pF)
DS
C iss
f = 1 MHz
V = 0V
GS
C oss
C rss
Figure 7. Breakdown Voltage Variation with
Temperature.
Figure 8. Body Diode Forward Voltage Variation
with Current and Temperature
.
Figure 9. Capacitance Characteristics.
Figure 10. Gate Charge Characteristics.
Typical Electrical Characteristics
D
S
-V
DD
R
L
V
OUT
V
GS
DUT
V
IN
R
GEN
G
Figure 11. Switching Test Circuit.
Figure 12. Switching Waveforms.
10%
50%
90%
10%
90%
90%
50%
V
IN
V
OUT
o n
off
d(off)
f
r
d(on)
t
t
t
t
t
t
INVERTED
10%
PULSE WIDTH