ChipFind - документация

Электронный компонент: MCF5372

Скачать:  PDF   ZIP

Document Outline

Freescale Semiconductor, Inc., 2006. All rights reserved.
Preliminary
Freescale Semiconductor
Data Sheet: Advance Information
MCF5373DS
Rev. 0.3, 04/2006
This document contains information on a new product. Specifications and information herein
are subject to change without notice.
Table of Contents
The MCF537x devices are a family of highly-integrated
32-bit microprocessors based on the Version 3 ColdFire
microarchitecture. All MCF537x devices contain a
32-Kbyte internal SRAM, a Fast Ethernet controller, a
2-bank SDR/DDR SDRAM controller, a 16-channel
DMA controller, up to three UARTs, a queued SPI, as
well as other peripherals that enable the MCF537x
family for use in general purpose industrial control
applications. Optional peripherals include USB host and
On-the-Go controllers and cryptography hardware
accelerators.
This document provides an overview of the MCF537x
microprocessor family, focusing on its highly diverse
feature set. It was written from the perspective of the
MCF5373L device. However, it also pertains to the
MCF5372L, MCF5372, and MCF5373. See the
following section for a summary of differences between
the various devices of the MCF537x family.
MCF5373 ColdFire
Microprocessor Data Sheet
Supports MCF5372L, MCF5372, MCF5373L, & MCF5373
by: Microcontroller Division
1
MCF537x Family Configurations ......................... 2
2
Ordering Information ........................................... 3
3
Signal Descriptions.............................................. 3
4
Mechanicals and Pinouts .................................... 8
5
Preliminary Electrical Characteristics ................ 14
6
Revision History ................................................ 40
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
MCF537x Family Configurations
Freescale Semiconductor
2
1
MCF537x Family Configurations
The following table compares the various device derivatives available within the MCF537x family.
Table 1. MCF537x Family Configurations
Module
MCF5372 MCF5372L MCF5373 MCF5373L
ColdFire Version 3 Core with EMAC
(Enhanced Multiply-Accumulate Unit)
x
x
x
x
Core (System) Clock
up to
180 MHz
up to
240 MHz
up to
180 MHz
up to
240 MHz
Peripheral and External Bus Clock
(Core clock
3)
up to
60 MHz
up to
80 MHz
up to
60 MHz
up to
80 MHz
Performance (Dhrystone/2.1 MIPS)
up to 158
up to 211
up to 158
up to 211
Instruction/Data Cache
16 Kbytes
Static RAM (SRAM)
32 Kbytes
SDR/DDR SDRAM Controller
x
x
x
x
USB 2.0 Host
--
x
--
x
USB 2.0 On-the-Go
--
x
--
x
Synchronous Serial Interface (SSI)
x
x
x
x
Fast Ethernet Controller (FEC)
x
x
x
x
Cryptography Hardware Accelerators
--
--
x
x
UARTs
3
3
3
3
I
2
C
x
x
x
x
QSPI
x
x
x
x
PWM Module
--
x
--
x
Real Time Clock
x
x
x
x
32-bit DMA Timers
4
4
4
4
Watchdog Timer (WDT)
x
x
x
x
Periodic Interrupt Timers (PIT)
4
4
4
4
Edge Port Module (EPORT)
x
x
x
x
Interrupt Controllers (INTC)
2
2
2
2
16-channel Direct Memory Access (DMA)
x
x
x
x
FlexBus External Interface
x
x
x
x
General Purpose I/O (GPIO)
up to 46
up to 62
up to 46
up to 62
JTAG - IEEE
1149.1 Test Access Port
x
x
x
x
Package
160 QFP
196
MAPBGA
160 QFP
196
MAPBGA
Ordering Information
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
3
2
Ordering Information
3
Signal Descriptions
The following table lists all the MCF537x pins grouped by function. The "Dir" column is the direction for
the primary function of the pin only. Refer to
Section 4, "Mechanicals and Pinouts,"
for package diagrams.
For a more detailed discussion of the MCF537x signals, consult the MCF5373 Reference Manual
(MCF5373RM).
NOTE
In this table and throughout this document a single signal within a group is
designated without square brackets (i.e., A23), while designations for
multiple signals within a group use brackets (i.e., A[23:21]) and is meant to
include all signals within the two bracketed numbers when these numbers
are separated by a colon.
NOTE
The primary functionality of a pin is not necessarily its default functionality.
Pins that are muxed with GPIO will default to their GPIO functionality.
Table 2. Orderable Part Numbers
Freescale Part
Number
Description
Speed
Temperature
MCF5372CAB180
MCF5372 RISC Microprocessor, 160 QFP
180 MHz
40
to +85
C
MCF5372LCVM240
MCF5372 RISC Microprocessor, 196 MAPBGA
240 MHz
40
to +85
C
MCF5373CAB180
MCF5373 RISC Microprocessor, 160 QFP
180 MHz
40
to +85
C
MCF5373LCVM240
MCF5373 RISC Microprocessor, 256 MAPBGA
240 MHz
40
to +85
C
Table 3. MCF5372/3 Signal Information and Muxing
Signal Name
GPIO
Alternate 1
Alternate 2
Dir.
1
MCF5372
MCF5373
160 QFP
MCF5372L
MCF5373L
196 MAPBGA
Reset
RESET
2
--
--
--
I
95
K13
RSTOUT
--
--
--
O
86
L12
Clock
EXTAL
--
--
--
I
91
L14
XTAL
2
--
--
--
O
93
K14
EXTAL32K
--
--
--
I
--
P13
XTAL32K
--
--
--
O
--
N13
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Signal Descriptions
Freescale Semiconductor
4
FB_CLK
--
--
--
O
40
N1
Mode Selection
RCON
2
--
--
--
I
72
P8
DRAMSEL
--
--
--
I
92
J11
FlexBus
A[23:22]
--
FB_CS[5:4]
--
O
134, 133
A9, B9
A[21:16]
--
--
--
O
132127
C9, D9, A10,
B10, C10, D10
A[15:14]
--
SD_BA[1:0]
--
O
126, 123
A11, B11
A[13:11]
--
SD_A[13:11]
--
O
120118
C11, A12, B12
A10
--
--
--
O
11 A13
A[9:0]
--
SD_A[9:0]
--
O
116107
A14, B14, B13,
C12, D11, C14,
C13, D14D12
D[31:16]
--
SD_D[31:16]
3
--
O
2734, 4653
J2, J1, K4K1,
L4, L3, N2, P1,
P2, N3, L5, P3,
N4, P4
D[15:1]
--
FB_D[31:17]
3
--
O
1623, 5763
F2, F1, G4G1,
H4, H3, L6, M6,
N6, P6, L7, M7,
N7
D0
2
--
FB_D[16]
3
--
O
64
P7
BE/BWE[3:0]
PBE[3:0]
SD_DQM[3:0]
--
O
26, 54, 24, 56
J3, M5, H2, P5
OE
PBUSCTL3
--
--
O
66
M8
TA
2
PBUSCTL2
--
--
I
106
E14
R/W
PBUSCTL1
--
--
O
65
L8
TS
PBUSCTL0
DACK0
--
O
12
E2
Chip Selects
FB_CS[5:4]
PCS[5:4]
--
--
O
--
D8, C8
FB_CS[3:2]
PCS[3:2]
--
--
O
--
B8, A8
FB_CS1
PCS1
--
--
O
135
D7
FB_CS0
--
--
--
O
136
C7
SDRAM Controller
SD_A10
--
--
--
O
43
M2
SD_CKE
--
--
--
O
14
F4
Table 3. MCF5372/3 Signal Information and Muxing (continued)
Signal Name
GPIO
Alternate 1
Alternate 2
Dir.
1
MCF5372
MCF5373
160 QFP
MCF5372L
MCF5373L
196 MAPBGA
Signal Descriptions
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
5
SD_CLK
--
--
--
O
37
L1
SD_CLK
--
--
--
O
38
M1
SD_CS0
--
--
--
O
15
F3
SD_DQS3
--
--
--
O
25
H1
SD_DQS2
--
--
--
O
55
N5
SD_SCAS
--
--
--
O
44
M3
SD_SRAS
--
--
--
O
45
M4
SD_SDR_DQS
--
--
--
O
35
L2
SD_WE
--
--
--
O
13
E1
External Interrupts Port
4
IRQ7
2
PIRQ7
2
--
--
I
102
F13
IRQ6
2
PIRQ6
2
USBHOST_
VBUS_EN
2
--
I
--
F12
IRQ5
2
PIRQ5
2
USBHOST_
VBUS_OC
2
--
I
--
F11
IRQ4
2
PIRQ4
2
SSI_MCLK
2
--
I
101
G14
IRQ3
2
PIRQ3
2
--
--
I
--
G13
IRQ2
2
PIRQ2
2
USB_CLKIN
2
--
I
--
G12
IRQ1
2
PIRQ1
2
DREQ1
2
SSI_CLKIN
I
100
G11
FEC
FEC_MDC
PFECI2C3
I2C_SCL
2
--
O
4
B1
FEC_MDIO
PFECI2C2
I2C_SDA
2
--
I/O
3
A1
FEC_COL
PFECH7
--
--
I
144
B6
FEC_CRS
PFECH6
--
--
I
145
A6
FEC_RXCLK
PFECH5
--
--
I
146
A5
FEC_RXDV
PFECH4
--
--
I
147
B5
FEC_RXD[3:0]
PFECH[3:0]
--
--
I
148151
C5, D5, A4, B4
FEC_RXER
PFECL7
--
--
I
152
C4
FEC_TXCLK
PFECL6
--
--
I
153
A3
FEC_TXEN
PFECL5
--
--
O
154
B3
FEC_TXER
PFECL4
--
--
O
155
A2
FEC_TXD[3:0]
PFECL[3:0]
--
--
O
157, 158, 1, 2
D4, C3, B2, C2
Table 3. MCF5372/3 Signal Information and Muxing (continued)
Signal Name
GPIO
Alternate 1
Alternate 2
Dir.
1
MCF5372
MCF5373
160 QFP
MCF5372L
MCF5373L
196 MAPBGA
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Signal Descriptions
Freescale Semiconductor
6
USB Host & USB On-the-Go
USBOTG_M
--
--
--
I/O
--
H14
USBOTG_P
--
--
--
I/O
--
H13
USBHOST_M
--
--
--
I/O
--
J13
USBHOST_P
--
--
--
I/O
--
J12
PWM
PWM7
PPWM7
--
--
I/O
--
E13
PWM5
PPWM5
--
--
I/O
--
E12
PWM3
PPWM3
DT3OUT
DT3IN
I/O
--
E11
PWM1
PPWM1
DT2OUT
DT2IN
I/O
--
F14
SSI
The SSI signals do not have dedicated bond pads. Please refer to the following pins for muxing: IRQ4 for SSI_MCLK,
IRQ1 for SSI_CLKIN, U1CTS for SSI_BCLK, U1RTS for SSI_FS, U1RXD for SSI_RXD, and U1TXD for SSI_TXD
I
2
C
I2C_SCL
2
PFECI2C1
--
U2TXD
I/O
--
E3
I2C_SDA
2
PFECI2C0
--
U2RXD
I/O
--
E4
DMA
DACK[1:0] and DREQ[1:0] do not have dedicated bond pads. Please refer to the following pins for muxing:
TS for DACK0, DT0IN for DREQ0, DT1IN for DACK1, and IRQ1 for DREQ1.
QSPI
QSPI_CS2
PQSPI5
U2RTS
--
O
78
N12
QSPI_CS1
PQSPI4
PWM7
USBOTG_
PU_EN
O
--
M12
QSPI_CS0
PQSPI3
PWM5
--
O
--
M11
QSPI_CLK
PQSPI2
I2C_SCL
2
--
O
77
P12
QSPI_DIN
PQSPI1
U2CTS
--
I
75
P11
QSPI_DOUT
PQSPI0
I2C_SDA
2
--
O
76
N11
UARTs
U1CTS
PUARTL7
SSI_BCLK
--
I
143
C6
U1RTS
PUARTL6
SSI_FS
--
O
142
D6
U1TXD
PUARTL5
SSI_TXD
2
--
O
141
A7
U1RXD
PUARTL4
SSI_RXD
2
--
I
140
B7
U0CTS
PUARTL3
--
--
I
85
M14
Table 3. MCF5372/3 Signal Information and Muxing (continued)
Signal Name
GPIO
Alternate 1
Alternate 2
Dir.
1
MCF5372
MCF5373
160 QFP
MCF5372L
MCF5373L
196 MAPBGA
Signal Descriptions
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
7
U0RTS
PUARTL2
--
--
O
84
M13
U0TXD
PUARTL1
--
--
O
83
N14
U0RXD
PUARTL0
--
--
I
80
P14
Note: The UART2 signals are multiplexed on the QSPI, DMA Timers, and I2C pins.
DMA Timers
DT3IN
PTIMER3
DT3OUT
U2RXD
I
8
D1
DT2IN
PTIMER2
DT2OUT
U2TXD
I
7
C1
DT1IN
PTIMER1
DT1OUT
DACK1
I
6
D2
DT0IN
PTIMER0
DT0OUT
DREQ0
2
I
5
D3
BDM/JTAG
5
JTAG_EN
6
--
--
--
I
96
G10
DSCLK
--
TRST
2
--
I
88
K11
PSTCLK
--
TCLK
2
--
O
70
N8
BKPT
--
TMS
2
--
I
87
L13
DSI
--
TDI
2
--
I
90
K12
DSO
--
TDO
--
O
74
L11
DDATA[3:0]
--
--
--
O
--
L9, M9, N9, P9
PST[3:0]
--
--
--
O
--
L10, M10, N10,
P10
ALLPST
--
--
--
O
73
--
Test
TEST
6
--
--
--
I
124
E10
Power Supplies
EVDD
--
--
--
9, 69, 71, 81, 94,
103, 139, 160
E6, E7, F5F7,
G5, H10, J8,
K8K9
IVDD
--
--
--
36, 79, 97, 125,
156
E5, J9, K5, K10
PLL_VDD
--
--
--
99
J10
SD_VDD
--
--
--
11, 39, 41, 67,
105, 121, 137
E8E9, F8F10,
J4J7, H5, K6,
K7
Table 3. MCF5372/3 Signal Information and Muxing (continued)
Signal Name
GPIO
Alternate 1
Alternate 2
Dir.
1
MCF5372
MCF5373
160 QFP
MCF5372L
MCF5373L
196 MAPBGA
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Mechanicals and Pinouts
Freescale Semiconductor
8
4
Mechanicals and Pinouts
This section contains drawings showing the pinout and the packaging and mechanical characteristics of
the MCF537x devices.
NOTE
The mechanical drawings are the latest revisions at the time of publication
of this document. The most up-to-date mechanical drawings can be found at
the product summary page located at
http://www.freescale.com/coldfire
.
USBOTG_VDD
--
--
--
--
H12
VSS
--
--
--
10, 42, 68, 82,
89, 104, 122,
138, 159
G6G9, H6H9
PLL_VSS
--
--
--
98
H11
USBHOST_VSS
--
--
--
--
J14
NOTES:
1
Refers to pin's primary function.
2
Pull-up enabled internally on this signal for this mode.
3
Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by
negating the DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins.
4
GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the
alternate functions.
5
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for
assigning these pins.
6
Pull-down enabled internally on this signal for this mode.
Table 3. MCF5372/3 Signal Information and Muxing (continued)
Signal Name
GPIO
Alternate 1
Alternate 2
Dir.
1
MCF5372
MCF5373
160 QFP
MCF5372L
MCF5373L
196 MAPBGA
Mechanicals and Pinouts
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
9
4.1
Pinout--196 MAPBGA
The pinout for the MCF5373LCVM240 and MCF5372LCVM240 packages are shown below.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
A
FEC_
MDIO
FEC_
TXER
FEC_
TXCLK
FEC_
RXD1
FEC_
RXCLK
FEC_
CRS
U1TXD
FB_CS2
A23
A19
A15
A12
A10
A9
A
B
FEC_
MDC
FEC_
TXD1
FEC_
TXEN
FEC_
RXD0
FEC_
RXDV
FEC_
COL
U1RXD
FB_CS3
A22/
A18
A14
A11
A7
A8
B
C
DT2IN
FEC_
TXD0
FEC_
TXD2
FEC_
RXER
FEC_
RXD3
U1CTS
FB_CS0 FB_CS4
A21
A17
A13
A6
A3
A4
C
D
DT3IN
DT1IN
DT0IN
FEC_
TXD3
FEC_
RXD2
U1RTS
FB_CS1 FB_CS5
A20
A16
A5
A0
A1
A2
D
E
SD_WE
TS
I2C_SCL
I2C_SDA
IVDD
EVDD
EVDD
SD_VDD SD_VDD
TEST
PWM3
PWM5
PWM7
TA
E
F
D14
D15
SD_CS0
SD_CKE
EVDD
EVDD
EVDD
SD_VDD SD_VDD SD_VDD
IRQ5
IRQ6
IRQ7
PWM1
F
G
D10
D11
D12
D13
EVDD
VSS
VSS
VSS
VSS
JTAG_
EN
IRQ1
IRQ2
IRQ3
IRQ4
G
H
SD_
DQS3
BE/
BWE1
D8
D9
SD_VDD
VSS
VSS
VSS
VSS
EVDD
PLL_
VSS
USBOTG
_VDD
USB
OTG_P
USB
OTG_M
H
J
D30
D31
BE/
BWE3
SD_VDD SD_VDD SD_VDD SD_VDD
EVDD
IVDD
PLL_
VDD
DRAM
SEL
USB
HOST_P
USB
HOST_M
USBHOST
_VSS
J
K
D26
D27
D28
D29
IVDD
SD_VDD SD_VDD
EVDD
EVDD
IVDD
TRST/
DSCLK
TDI/DSI
RESET
XTAL
K
L
SD_CLK
SD_DR_
DQS
D24
D25
D19
D7
D3
R/W
DDATA3
PST3
TDO/
DSO
RSTOUT
TMS/
BKPT
EXTAL
L
M SD_CLK SD_A10
SD_CAS
SD_RAS
BE/
BWE2
D6
D2
OE
DDATA2
PST2
QSPI_
CS0
QSPI_
CS1
U0RTS
U0CTS
M
N
FB_CLK
D23
D20
D17
SD_
DQS2
D5
D1
TCLK/
PSTCLK
DDATA1
PST1
QSPI_
DOUT
QSPI_
CS2
XTAL
32K
U0TXD
N
P
D22
D21
D18
D16
BE/
BWE0
D4
D0
RCON
DDATA0
PST0
QSPI_
DIN
QSPI_
CLK
EXTAL
32K
U0RXD
P
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Figure 1. MCF5373LCVM240 Pinout Top View (196 MAPBGA)
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Mechanicals and Pinouts
Freescale Semiconductor
10
4.2
Package Dimensions--196 MAPBGA
Figure 2
shows the MCF5373LCVM240 and MCF5372LCVM240 package dimensions.
Figure 2. 196 MAPBGA Package Dimensions (Case No. 1128A-01)
X
0.20
Laser mark for pin 1
identification in
this area
e
13X
D
E
M
S
A1
A2
A
0.15 Z
0.30 Z
Z
Rotated 90 Clockwise
Detail K
5
View M-M
e
13X
S
M
X
0.30
Y
Z
0.10 Z
3
b
196X
Metalized mark for
pin 1 identification
in this area
14 13 12 11
5
4
3
2
B
C
D
E
F
G
H
J
K
L
4
NOTES:
1. Dimensions are in millimeters.
2. Interpret dimensions and tolerances
per ASME Y14.5M, 1994.
3. Dimension B is measured at the
maximum solder ball diameter,
parallel to datum plane Z.
4. Datum Z (seating plane) is defined
by the spherical crowns of the solder
balls.
5. Parallelism measurement shall
exclude any effect of mark on top
surface of package.
DIM
Min Max
Millimeters
A 1.32 1.75
A1 0.27 0.47
A2 1.18 REF
b 0.35 0.65
D 15.00 BSC
E 15.00 BSC
e
1.00 BSC
S
0.50 BSC
Y
K
M
N
P
A
1
6
10
9
Top View
Bottom View
Mechanicals and Pinouts
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
11
4.3
Pinout--160 QFP
The pinout for the MCF5372CAB180 and MCF5373CAB180 packages is shown below.
Figure 3. MCF5372CAB180 and MCF5373CAB180 Pinout Top View (160 QFP)
EVDD
VSS
F
E
C_TXD2
F
E
C_TXD3
IVDD
FE
C_TXER
FE
C_TXEN
F
E
C_TXCLK
F
E
C_RXER
F
E
C_RXD0
F
E
C_RXD1
F
E
C_RXD2
F
E
C_RXD3
F
E
C_RXDV
F
E
C_RXCLK
F
E
C_CRS
F
E
C_COL
U1
C
T
S
U1
R
T
S
U1
TX
D
U1
R
X
D
EVDD
VSS
SD_VDD
FB
_
C
S0
FB
_
C
S1
A23/
FB_CS5
A22/
FB_CS4
A21
A20
A19
A18
A17
A16
A15
IVDD
TE
ST
A14
VSS
SD_VDD
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
FEC_TXD1
1
120
A13
FEC_TXD0
2
119
A12
FEC_MDIO
3
118
A11
FEC_MDC
4
117
A10
DT0IN
5
116
A9
DT1IN
6
115
A8
DT2IN
7
114
A7
DT3IN
8
113
A6
EVDD
9
112
A5
VSS
10
111
A4
SD_VDD
11
110
A3
TS
12
109
A2
SD_WE
13
108
A1
SD_CKE
14
107
A0
SD_CS0
15
106
TA
D15
16
105
SD_VDD
D14
17
104
VSS
D13
18
103
EVDD
D12
19
102
IRQ7
D11
20
101
IRQ4
D10
21
100
IRQ1
D9
22
99
PLL_VDD
D8
23
98
PLL_VSS
BE/BWE1
24
97
IVDD
SD_DQS1/3
25
96
JTAG_EN
BE/BWE3
26
95
RESET
D31
27
94
EVDD
D30
28
93
XTAL
D29
29
92
DRAMSEL
D28
30
91
EXTAL
D27
31
90
TDI/DSI
D26
32
89
VSS
D25
33
88
TRST/DSCLK
D24
34
87
TMS/BKPT
SD_DR_DQS
35
86
RSTOUT
IVDD
36
85
U0CTS
SD_CLK
37
84
U0RTS
SD_CLK
38
83
U0TXD
SD_VDD
39
82
VSS
FB_CLK
40
81
EVDD
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
SD_V
DD
VSS
SD
_A
1
0
SD_CAS
SD_RAS
D23
D22
D21
D20
D19
D18
D17
D16
BE
/B
W
E
2
SD
_
D
Q
S
0/
2
BE
/B
W
E
0
D7
D6
D5
D4
D3
D2
D1
D0
R/W
OE
SD_V
DD
VSS
EV
DD
TC
L
K
/
PSTCLK
EV
DD
RCON
AL
L_PS
T
TDO
/
DSO
Q
SPI
_DI
N
QSP
I
_DO
U
T
Q
SPI
_CLK
Q
SPI
_CS2
IV
DD
U0RX
D
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Mechanicals and Pinouts
Freescale Semiconductor
12
4.4
Package Dimensions--160 QFP
Figure 4
and
Figure 5
show the MCF5372CAB180 and MCF5373CAB180 package dimensions.
Figure 4. 160QFP Package Dimensions (Sheet 1 of 2)
Top View
Mechanicals and Pinouts
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
13
Figure 5. 160QFP Package Dimensions (Sheet 2 of 2)
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
14
5
Preliminary Electrical Characteristics
This document contains electrical specification tables and reference timing diagrams for the MCF5373
microcontroller unit. This section contains detailed information on power considerations, DC/AC
electrical characteristics, and AC timing specifications of MCF5373.
The electrical specifications are preliminary and are from previous designs or design simulations. These
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however
for production silicon these specifications will be met. Finalized specifications will be published after
complete characterization and device qualifications have been completed.
NOTE
The parameters specified in this MCU document supersede any values
found in the module specifications.
5.1
Maximum Ratings
Table 4. Absolute Maximum Ratings
1,
2
NOTES:
1
Functional operating conditions are given in
Section 5.4, "DC Electrical Specifications."
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is
not guaranteed. Continued operation at these levels may affect device reliability or cause
permanent damage to the device.
2
This device contains circuitry protecting against damage due to high static voltage or
electrical fields; however, it is advised that normal precautions be taken to avoid application of
any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of
operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g.,
either V
SS
or EV
DD
).
Rating
Symbol
Value
Unit
Core Supply Voltage
IV
DD
0.5 to +2.0
V
CMOS Pad Supply Voltage
EV
DD
0.3 to +4.0
V
DDR/Memory Pad Supply Voltage
SDV
DD
0.3 to +4.0
V
PLL Supply Voltage
PLLV
DD
0.3 to +2.0
V
Digital Input Voltage
3
3
Input must be current limited to the value specified. To determine the value of the required
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,
then use the larger of the two values.
V
IN
0.3 to +3.6
V
Instantaneous Maximum Current
Single pin limit (applies to all pins)
3, 4, 5
4
All functional non-supply pins are internally clamped to V
SS
and EV
DD
.
I
D
25
mA
Operating Temperature Range (Packaged)
T
A
(T
L
- T
H
)
40 to +85
C
Storage Temperature Range
T
stg
55 to +150
C
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
15
5.2
Thermal Characteristics
The average chip-junction temperature (T
J
) in
C can be obtained from:
Eqn. 1
Where:
T
A
= Ambient Temperature, C
Q
JMA
= Package Thermal Resistance, Junction-to-Ambient, C/W
P
D
= P
INT
+ P
I/O
P
INT
= I
DD
IV
DD
, Watts - Chip Internal Power
P
I/O
= Power Dissipation on Input and Output Pins -- User Determined
5
Power supply must maintain regulation within operating EV
DD
range during instantaneous
and operating maximum current conditions. If positive injection current (V
in
> EV
DD
) is greater
than I
DD
, the injection current may flow out of EV
DD
and could result in external power supply
going out of regulation. Insure external EV
DD
load will shunt current greater than maximum
injection current. This will be the greatest risk when the MCU is not consuming power (ex; no
clock). Power supply must maintain regulation within operating EV
DD
range during
instantaneous and operating maximum current conditions.
Table 5. Thermal Characteristics
Characteristic
Symbol
256MBGA
196MBGA
160QFP
Unit
Junction to ambient, natural convection
Four layer board
(2s2p)
JMA
26
1,2
NOTES:
1
JMA
and
jt
parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale
recommends the use of
JmA
and power dissipation specifications in the system design to prevent device junction
temperatures from exceeding the rated specification. System designers should be aware that device junction
temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device
junction temperature specification can be verified by physical measurement in the customer's system using the
jt
parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
2
Per JEDEC JESD51-6 with the board horizontal.
32
1,2
40
1,2
C / W
Junction to ambient (@200 ft/min)
Four layer board
(2s2p)
JMA
23
1,2
29
1,2
36
1,2
C / W
Junction to board
JB
15
3
3
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board
temperature is measured on the top surface of the board near the package.
20
3
25
3
C / W
Junction to case
JC
10
4
4
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
10
4
10
4
C / W
Junction to top of package
jt
2
1,5
5
Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is
written in conformance with Psi-JT.
2
1,5
2
1,5
C / W
Maximum operating junction temperature
T
j
105
105
105
o
C
T
J
T
A
P
D
JMA
(
)
+
=
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
16
For most applications P
I/O
< P
INT
and can be ignored. An approximate relationship between P
D
and T
J
(if
P
I/O
is neglected) is:
Eqn. 2
Solving equations 1 and 2 for K gives:
Eqn. 3
where K is a constant pertaining to the particular part. K can be determined from
Equation 3
by measuring
P
D
(at equilibrium) for a known T
A
. Using this value of K, the values of P
D
and T
J
can be obtained by
solving
Equation 1
and
Equation 2
iteratively for any value of T
A
.
5.3
ESD Protection
5.4
DC Electrical Specifications
Table 6. ESD Protection Characteristics
1,
2
NOTES:
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for
Automotive Grade Integrated Circuits.
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets
the device specification requirements. Complete DC parametric and functional testing is
performed per applicable device specification at room temperature followed by hot
temperature, unless specified otherwise in the device specification.
Characteristics
Symbol
Value
Units
ESD Target for Human Body Model
HBM
2000
V
Table 7. DC Electrical Specifications
Characteristic
Symbol
Min
Max
Unit
Core Supply Voltage
IV
DD
1.4
1.6
V
PLL Supply Voltage
PLLV
DD
1.4
1.6
V
CMOS Pad Supply Voltage
EV
DD
3.0
3.6
V
Mobile DDR/Bus Pad Supply Voltage
SDV
DD
1.65
1.95
V
DDR/Bus Pad Supply Voltage
SDV
DD
2.25
2.75
V
SDR/Bus Pad Supply Voltage
SDV
DD
3.0
3.6
V
USB Supply Voltage
USBV
DD
3.0
3.6
V
CMOS Input High Voltage
EV
IH
2
EV
DD
+ 0.05
V
CMOS Input Low Voltage
EV
IL
-0.05
0.8
V
Mobile DDR/Bus Input High Voltage
SDV
IH
TBD
SDV
DD
+ 0.05
V
Mobile DDR/Bus Input Low Voltage
SDV
IL
-0.05
TBD
V
DDR/Bus Input High Voltage
SDV
IH
2
SDV
DD
+ 0.05
V
DDR/Bus Input Low Voltage
SDV
IL
-0.05
0.8
V
P
D
K
T
J
273
C
+
(
)
---------------------------------
=
K
P
D
T
A
273
C
(
) Q
JMA
P
D
2
+
=
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
17
5.4.1
PLL Power Filtering
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V
DD
pins.
The filter shown in
Figure 6
should be connected between the board V
DD
and the PLLV
DD
pins. The
resistor and capacitors should be placed as close to the dedicated PLLV
DD
pin as possible.
Figure 6. System PLL V
DD
Power Filter
5.4.2
USB Power Filtering
To minimize noise, external filters are required for each of the USB power pins. The filter shown in
Figure 7
should be connected between the board EV
DD
or IV
DD
and each of the USBV
DD
pins. The
resistor and capacitors should be placed as close to the dedicated USBV
DD
pin as possible.
Input Leakage Current
V
in
= V
DD
or V
SS
, Input-only pins
I
in
-1.0
1.0
A
CMOS Output High Voltage
I
OH
= 5.0 mA
EV
OH
EV
DD
- 0.4
--
V
CMOS Output Low Voltage
I
OL
= 5.0 mA
EV
OL
--
0.4
V
DDR/Bus Output High Voltage
I
OH
= 5.0 mA
SDV
OH
SDV
DD
- 0.4
--
V
DDR/Bus Output Low Voltage
I
OL
= 5.0 mA
SDV
OL
--
0.4
V
Weak Internal Pull-Up Device Current, tested at V
IL
Max.
1
I
APU
-10
-130
A
Input Capacitance
2
All input-only pins
All input/output (three-state) pins
C
in
--
--
7
7
pF
NOTES:
1
Refer to the signals section for pins having weak internal pull-up devices.
2
This parameter is characterized before qualification rather than 100% tested.
Table 7. DC Electrical Specifications (continued)
Characteristic
Symbol
Min
Max
Unit
Board V
DD
10
0.1 F
PLL V
DD
Pin
10 F
GND
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
18
Figure 7. USB V
DD
Power Filter
NOTE
In addition to the above filter circuitry, a 0.01 F capacitor is also
recommended in parallel with those shown.
5.4.3
Supply Voltage Sequencing and Separation Cautions
Figure 8
shows situations in sequencing the I/O V
DD
(EV
DD
), SDRAM V
DD
(SDV
DD
), PLL V
DD
(PLLV
DD
), and Core V
DD
(IV
DD
).
Figure 8. Supply Voltage Sequencing and Separation Cautions
The relationship between SDV
DD
and EV
DD
is non-critical during power-up and power-down sequences.
Both SDV
DD
(2.5V or 3.3V) and EV
DD
are specified relative to IV
DD
.
Board EV
DD
/IV
DD
0
0.1 F
USB V
DD
Pin
10 F
GND
SDV
DD
(2.5V/1.8V)
Supplies Stable
2
1
3.3V
2.5V
1.5V
0
Time
Notes:
IVDD should not exceed EVDD, SDVDD or PLLVDD by more than
0.4 V at any time, including power-up.
Recommended that IVDD/PLLVDD should track EVDD/SDVDD up to
0.9 V, then separate for completion of ramps.
Input voltage must not be greater than the supply voltage (EVDD, SDVDD,
IVDD, or PLLVDD) by more than 0.5 V at any time, including during power-up.
Use 1 ms or slower rise time for all supplies.
1.
2.
3.
4.
DC

P
o
w
e
r Sup
p
ly V
o
ltage
IV
DD
, PLLV
DD
EV
DD
, SDV
DD
, USBV
DD
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
19
5.4.3.1
Power Up Sequence
If EV
DD
/SDV
DD
are powered up with IV
DD
at 0 V, then the sense circuits in the I/O pads will cause all
pad output drivers connected to the EV
DD
/SDV
DD
to be in a high impedance state. There is no limit on
how long after EV
DD
/SDV
DD
powers up before IV
DD
must powered up. IV
DD
should not lead the EV
DD
,
SDV
DD
or PLLV
DD
by more than 0.4 V during power ramp-up, or there will be high current in the internal
ESD protection diodes. The rise times on the power supplies should be slower than 1
s to avoid turning
on the internal ESD protection clamp diodes.
The recommended power up sequence is as follows:
1. Use 1
s or slower rise time for all supplies.
2. IV
DD
/PLLV
DD
and EV
DD
/SDV
DD
should track up to 0.9 V, then separate for the completion of
ramps with EV
DD
/SD V
DD
going to the higher external voltages. One way to accomplish this is to
use a low drop-out voltage regulator.
5.4.3.2
Power Down Sequence
If IV
DD
/PLLV
DD
are powered down first, then sense circuits in the I/O pads will cause all output drivers
to be in a high impedance state. There is no limit on how long after IV
DD
and PLLV
DD
power down before
EV
DD
or SDV
DD
must power down. IV
DD
should not lag EV
DD
, SDV
DD
, or PLLV
DD
going low by more
than 0.4 V during power down or there will be undesired high current in the ESD protection diodes. There
are no requirements for the fall times of the power supplies.
The recommended power down sequence is as follows:
1. Drop IV
DD
/PLLV
DD
to 0 V.
2. Drop EV
DD
/SDV
DD
supplies.
5.5
Power Consumption Specifications
Estimated maximum RUN mode power consumption measurements are shown in the below figure.
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
20
Figure 9. Estimated Maximum RUN Mode Power Consumption
Table 8
lists estimated maximum power and current consumption for the device in various operating
modes.
Table 8. Estimated Maximum Power Consumption Specifications
Characteristic
Symbol
Typical
Max
Unit
Run Mode - Total Power Dissipation
Static
Dynamic
--
--
--
250
5.74
244
mW
mW
mW
Core Operating Supply Current
1
Run Mode
NOTES:
1
Current measured at maximum system clock frequency, all modules active, and default drive
strength with matching load.
I
DD
--
TBD
mA
Pad Operating Supply Current
Run Mode (application dependent)
Wait Mode
Stop Mode
EI
DD
--
--
--
144
96
1
mA
mA
mA
Estimated Power Consumption vs. Core Frequency
0
50
100
150
200
250
300
0
40
80
120
160
200
240
Core Frequency (MHz)
P
o
we
r
Co
n
s
u
m
p
t
io
n
(
m
W)
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
21
5.6
Oscillator and PLL Electrical Characteristics
5.7
External Interface Timing Characteristics
Table 10
lists processor bus input timings.
NOTE
All processor bus timings are synchronous; that is, input setup/hold and
output delay with respect to the rising edge of a reference clock. The
reference clock is the FB_CLK output.
All other timing relationships can be derived from these values. Timings
listed in
Table 10
are shown in
Figure 11
and
Figure 12
.
Table 9. PLL Electrical Characteristics
Num
Characteristic
Symbol
Min.
Value
Max.
Value
Unit
1
PLL Reference Frequency Range
Crystal reference
External reference
f
ref_crystal
f
ref_ext
TBD
TBD
16
16
MHz
MHz
2
Core frequency
CLKOUT Frequency
1
NOTES:
1
All internal registers retain data at 0 Hz.
f
sys
f
sys/3
TBD
TBD
240
80
MHz
MHz
3
Crystal Start-up Time
2, 3
2
This parameter is guaranteed by characterization before qualification rather than 100% tested.
3
Proper PC board layout procedures must be followed to achieve specifications.
t
cst
--
10
ms
4
EXTAL Input High Voltage
Crystal Mode
4
All other modes (External, Limp)
4
This parameter is guaranteed by design rather than 100% tested.
V
IHEXT
V
IHEXT
TBD
TBD
TBD
TBD
V
V
5
EXTAL Input Low Voltage
Crystal Mode
4
All other modes (External, Limp)
V
ILEXT
V
ILEXT
TBD
TBD
TBD
TBD
V
V
6
XTAL Load Capacitance
2
5
30
pF
7
PLL Lock Time
2, 5
5
This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in
the synthesizer control register (SYNCR).
t
lpll
--
1
ms
8
Duty Cycle of reference
2
t
dc
40
60
%
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
22
Figure 10. General Input Timing Requirements
5.7.1
FlexBus
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to
slave-only devices up to a maximum bus frequency of 80MHz. It can be directly connected to
asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or
other simple target (slave) devices with little or no additional circuitry. For asynchronous devices a simple
chip-select based interface can be used. The FlexBus interface has six general purpose chip-selects
(FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory
interfaces. Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte
(8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is compatible with common
ROM/flash memories.
5.7.1.1
FlexBus AC Timing Characteristics
The following timing numbers indicate when data will be latched or driven onto the external bus, relative
to the system clock.
Invalid
Invalid
FB_CLK (80MHz)
TSETUP
THOLD
Input Setup And Hold
1.5V
t
rise
V
h
= V
IH
V
l
= V
IL
1.5V
1.5V
Valid
t
fall
V
h
= V
IH
V
l
= V
IL
Input Rise Time
Input Fall Time
* The timings are also valid for inputs sampled on the negative clock edge.
Inputs
FB_CLK
B4
B5
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
23
Figure 11. FlexBus Read Timing.
Table 10. FlexBus AC Timing Specifications
Num
Characteristic
Symbol
Min
Max
Unit
Notes
Frequency of Operation
--
80
Mhz
f
sys/3
FB1
Clock Period (FB_CLK)
t
FBCK
--
12.5
ns
t
cyc
FB2
Address, Data, and Control Output Valid (A[23:0], D[31:0],
FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)
t
FBCHDCV
--
7.0
ns
1
NOTES:
1
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see
Section 5.8.2, "DDR SDRAM AC Timing
Characteristics
" for SD_CS[3:0] timing.
FB3
Address, Data, and Control Output Hold (A[23:0], D[31:0],
FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)
t
FBCHDCI
1
--
ns
1
, 2
2
The FlexBus supports programming an extension of the address hold. Please consult the MCF5373 Reference
Manual
for more information.
FB4
Data Input Setup
t
DVFBCH
3.5
--
ns
FB5
Data Input Hold
t
DIFBCH
0
--
ns
FB6
Transfer Acknowledge (TA) Input Setup
t
CVFBCH
4
--
ns
FB7
Transfer Acknowledge (TA) Input Hold
t
CIFBCH
0
--
ns
FB8
Address Output Valid (A[23:0])
t
FBCHAV
--
6.0
ns
3
3
These specs are used when the A[23:0] signals are configured as 23-bit, non-muxed FlexBus address signals.
FB9
Address Output Hold (A[23:0])
t
FBCHAI
1
--
ns
FB_CLK
A[23:0]
D[31:0]
R/W
TS
FB_CSn
OE
TA
FB1
A[23:0]
FB2
FB3
FB4
FB5
FB6
FB7
DATA
BE/BWEn
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
24
Figure 12. Flexbus Write Timing
5.8
SDRAM Bus
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports
either standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time.
5.8.1
SDR SDRAM AC Timing Characteristics
The following timing numbers indicate when data will be latched or driven onto the external bus, relative
to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read
cycles. The device's SDRAM controller is a DDR controller that has an SDR mode. Because it is designed
to support DDR, a DQS pulse must still be supplied to device for each data beat of an SDR read. Te
processor accomplishes this by asserting a signal named SD_DQS during read cycles. Care must be taken
during board design to adhere to the following guidelines and specs with regard to the SDR_DQS signal
and its usage.
Table 11. SDR Timing Specifications
Symbol
Characteristic
Symbol
Min
Max
Unit
Notes
Frequency of Operation
TBD
80
Mhz
1
SD1
Clock Period
t
SDCK
12.5
TBD
ns
2
SD2
Clock Skew
t
SDSK
--
TBD
SD3
Pulse Width High
t
SDCKH
0.45
0.55
SD_CLK
3
FB_CLK
A[23:0]
D[31:0]
R/W
TS
FB_CSn
TA
FB1
FB2
FB3
FB3
FB6
FB7
OE
BE/BWEn
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
25
SD4
Pulse Width Low
t
SDCKH
0.45
0.55
SD_CLK
4
SD5
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,
SD_CS[1:0] - Output Valid
t
SDCHACV
--
0.5
SD_CLK
+ 1.0
ns
SD6
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,
SD_CS[1:0] - Output Hold
t
SDCHACI
2.0
--
ns
SD7
SD_SDR_DQS Output Valid
t
DQSOV
--
Self timed
ns
5
SD8
SD_DQS[3:0] input setup relative to SD_CLK
t
DQVSDCH
0.25
SD_CLK
0.40
SD_CLK
ns
6
SD9
SD_DQS[3:2] input hold relative to SD_CLK
t
DQISDCH
Does not apply. 0.5
SD_CLK fixed
width.
7
SD10
Data (D[31:0]) Input Setup relative to SD_CLK (reference
only)
t
DVSDCH
0.25
SD_CLK
--
ns
8
SD11
Data Input Hold relative to SD_CLK (reference only)
t
DISDCH
1.0
--
ns
SD12
Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid
t
SDCHDMV
--
0.75
SD_CLK
+ 0.5
ns
SD13
Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold
t
SDCHDMI
1.5
--
ns
NOTES:
1
The device supports same frequency of operation for both FlexBus and SDRAM clock operates as that of the internal bus clock.
Please see the PLL chapter of the MCF5373 Reference Manual for more information on setting the SDRAM clock rate.
2
SD_CLK is one SDRAM clock in (ns).
3
Pulse width high plus pulse width low cannot exceed min and max clock period.
4
Pulse width high plus pulse width low cannot exceed min and max clock period.
5
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation
from this guideline is expected. SD_DQS will only pulse during a read cycle and one pulse will occur for each data beat.
6
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle
variation from this guideline is expected. SDR_DQS will only pulse during a read cycle and one pulse will occur for each data
beat.
7
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does
not affect the memory controller.
8
Since a read cycle in SDR mode still uses the DQS circuit within the device, it is most critical that the data valid window be
centered 1/4 clk after the rising edge of DQS. Ensuring that this happens will result in successful SDR reads. The input setup
spec is just provided as guidance.
Table 11. SDR Timing Specifications (continued)
Symbol
Characteristic
Symbol
Min
Max
Unit
Notes
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
26
Figure 13. SDR Write Timing
Figure 14. SDR Read Timing
SD_CLK0
SD_CLK1
SDDM
D[31:0]
A[23:0]
SD_BA[1:0]
SD2
CMD
ROW
SD2
SD1
SD5
COL
SD6
WD1
WD2
WD3
WD4
SD13
SD12
SD3
SD4
SD_CSn
SD_RAS
SD_WE
SD_CAS
SD_CLK0
SD_CLK1
SD_CSn,
SDDM
D[31:0]
A[23:0],
SD_RAS,
SD_BA[1:0]
SD2
CMD
ROW
SD2
SD1
SD5
COL
WD1
WD2
WD3
WD4
SD10
3/4 MCLK
SD_DQS
SD_DDQS
Delayed
SD11
SD8
Board Delay
SD9
Board Delay
SD7
tDQS
Reference
SD_CLK
from
Memories
(Measured at Output Pin)
(Measured at Input Pin)
SD6
NOTE: Data driven from memories relative
to delayed memory clock.
SD_WE
SD_CAS,
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
27
5.8.2
DDR SDRAM AC Timing Characteristics
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to
properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte
lanes. The following timing numbers are subject to change at anytime, and are only provided to aid in early
board design. Please contact your local Freescale representative if questions develop.
Table 12. DDR Timing Specifications
Num
Characteristic
Symbol
Min
Max
Unit
Notes
Frequency of Operation
t
DDCK
80
TBD
Mhz
1
NOTES:
1
The frequency of operation is either 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the
same frequency as the internal bus clock.
DD1
Clock Period
t
DDSK
TBD
12.5
ns
2
2
SD_CLK is one SDRAM clock in (ns).
DD2
Pulse Width High
t
DDCKH
0.45
0.55
SD_CLK
3
3
Pulse width high plus pulse width low cannot exceed min and max clock period.
DD3
Pulse Width Low
t
DDCKL
0.45
0.55
SD_CLK
3
DD4
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] - Output Valid
t
SDCHACV
--
0.5
SD_CLK
+ 1.0
ns
4
4
Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process,
temperature, and voltage variations.
DD5
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] - Output Hold
t
SDCHACI
2.0
--
ns
DD6
Write Command to first DQS Latching Transition
t
CMDVDQ
--
1.25
SD_CLK
DD7
Data and Data Mask Output Setup (DQ-->DQS)
Relative to DQS (DDR Write Mode)
t
DQDMV
1.5
--
ns
5
6
5
This specification relates to the required input setup time of today's DDR memories. Rigoletto's output setup should be larger
than the input setup of the DDR memories. If it is not larger, then the input setup on the memory will be in violation.
MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to
MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
6
The first data beat will be valid before the first rising edge of DQS and after the DQS write preamble. The remaining data
beats will be valid for each subsequent DQS edge.
DD8
Data and Data Mask Output Hold (DQS-->DQ)
Relative to DQS (DDR Write Mode)
t
DQDMI
1.0
--
ns
7
7
This specification relates to the required hold time of today's DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3],
MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative
MEM_DQS[0].
DD9
Input Data Skew Relative to DQS (Input Setup)
t
DVDQ
--
1
ns
8
DD10 Input Data Hold Relative to DQS.
t
DIDQ
0.25
SD_CLK
+ 0.5ns
--
ns
9
DD11 DQS falling edge from SDCLK rising (output hold time) t
DQLSDCH
0.5
--
ns
DD12 DQS input read preamble width
t
DQRPRE
0.9
1.1
SD_CLK
DD13 DQS input read postamble width
t
DQRPST
0.4
0.6
SD_CLK
DD14 DQS output write preamble width
t
DQWPRE
0.25
SD_CLK
DD15 DQS output write postamble width
t
DQWPST
0.4
0.6
SD_CLK
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
28
Figure 15. SD_CLK and SD_CLK crossover timing
Figure 16. DDR Write Timing
8
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line
becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other
factors).
9
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line
becomes invalid.
SD_CLK
SD_CLK
V
IX
V
MP
V
IX
V
ID
SD_CLK
SD_CSn,SD_WE,
DM3/DM2
D[31:24]/D[23:16]
A[13:0]
SD_RAS, SD_CAS
CMD
ROW
DD1
DD5
DD4
COL
WD1 WD2 WD3 WD4
DD7
SD_DQS3/SD_DQS2
DD8
DD8
DD7
SD_CLK
DD3
DD2
DD6
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
29
Figure 17. DDR Read Timing
5.9
General Purpose I/O Timing
Table 13. GPIO Timing
1
NOTES:
1
GPIO pins include: IRQn, PWM, UART, and Timer pins.
Num
Characteristic
Symbol
Min
Max
Unit
G1
FB_CLK High to GPIO Output Valid
t
CHPOV
--
10
ns
G2
FB_CLK High to GPIO Output Invalid
t
CHPOI
1.5
--
ns
G3
GPIO Input Valid to FB_CLK High
t
PVCH
9
--
ns
G4
FB_CLK High to GPIO Input Invalid
t
CHPI
1.5
--
ns
SD_CLK
SD_CSn,SD_WE,
SD_DQS3/SD_DQS2
D[31:24]/D[23:16]
A[13:0]
SD_RAS, SD_CAS
CMD
ROW
DD1
DD5
DD4
WD1 WD2 WD3 WD4
SD_DQS3/SD_DQS2
DD9
SD_CLK
DD3
DD2
D[31:24]/D[23:16]
WD1 WD2 WD3 WD4
DD10
CL=2
CL=2.5
COL
DQS Read
Preamble
DQS Read
Postamble
DQS Read
Preamble
DQS Read
Postamble
CL
= 2
.
5
CL
= 2
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
30
Figure 18. GPIO Timing
5.10 Reset and Configuration Override Timing
Figure 19. RESET and Configuration Override Timing
Table 14. Reset and Configuration Override Timing
Num
Characteristic
Symbol
Min
Max
Unit
R1
RESET Input valid to FB_CLK High
t
RVCH
9
--
ns
R2
FB_CLK High to RESET Input invalid
t
CHRI
1.5
--
ns
R3
RESET Input valid Time
1
NOTES:
1
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to
the system. Thus, RESET must be held a minimum of 100 ns.
t
RIVT
5
--
t
CYC
R4
FB_CLK High to RSTOUT Valid
t
CHROV
--
10
ns
R5
RSTOUT valid to Config. Overrides valid
t
ROVCV
0
--
ns
R6
Configuration Override Setup Time to RSTOUT invalid
t
COS
20
--
t
CYC
R7
Configuration Override Hold Time after RSTOUT invalid
t
COH
0
--
ns
R8
RSTOUT invalid to Configuration Override High Impedance
t
ROICZ
--
1
t
CYC
G1
FB_CLK
GPIO Outputs
G2
G3
G4
GPIO Inputs
R1
R2
FB_CLK
RESET
RSTOUT
R3
R4
R8
R7
R6
R5
Configuration Overrides*:
R4
(RCON, Override pins])
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
31
NOTE
Refer to the CCM chapter of the MCF5373 Reference Manual for more
information.
5.11 USB On-The-Go
The MCF5373 device is compliant with industry standard USB 2.0 specification.
5.12 SSI Timing Specifications
The following figure and table lists the specifications for the SSI module.
Figure 20. SSI External Continous Clock Timing Diagram
Table 15. SSI Timing
Num
Description
1.8 +/- 0.10V
Unit
Minimum
Maximum
S1
SSI_BCLK clock period
1/(64f
s
)
1
49
ns
S2
SSI_BCK high-level time
35
--
ns
S3
SSI_BCK low-level time
35
--
ns
SSI_BCLK
S2
STFS
STFS
S3
SSI_TXD (Output)
SSI_RXD (Input)
S1
S4
S5
Note: SSI External. Continous clock Synchronous mode only
SSI_MCLK
S6
S7
S6
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
32
5.13 I
2
C Input/Output Timing Specifications
Table 16
lists specifications for the I
2
C input timing parameters shown in
Figure 21
.
Table 17
lists specifications for the I
2
C output timing parameters shown in
Figure 21
.
S4
SSI_BCK rising edge to SSI_MCLK edge
10
--
ns
S5
SSI_MCLK edge to SSI_BCLK rising edge
10
--
ns
S6
SSI_TXD/SSI_RXD data set-up time
10
--
ns
S7
SSI_TXD/SSI_RXD data hold time
10
--
ns
NOTES:
1
f
s is the sampling frequency. SSI_BCLK can be operated upto 512 times the sampling frequency to a max frequency of 49.152MHz
Table 16. I
2
C Input Timing Specifications between SCL and SDA
Num
Characteristic
Min
Max
Units
I1
Start condition hold time
2
--
t
cyc
I2
Clock low period
8
--
t
cyc
I3
I2C_SCL/I2C_SDA rise time (V
IL
= 0.5 V to V
IH
= 2.4 V)
--
1
ms
I4
Data hold time
0
--
ns
I5
I2C_SCL/I2C_SDA fall time (V
IH
= 2.4 V to V
IL
= 0.5 V)
--
1
ms
I6
Clock high time
4
--
t
cyc
I7
Data setup time
0
--
ns
I8
Start condition setup time (for repeated start condition only)
2
--
t
cyc
I9
Stop condition setup time
2
--
t
cyc
Table 17. I
2
C Output Timing Specifications between SCL and SDA
Num
Characteristic
Min
Max
Units
I1
1
Start condition hold time
6
--
t
cyc
I2
1
Clock low period
10
--
t
cyc
I3
2
I2C_SCL/I2C_SDA rise time (V
IL
= 0.5 V to V
IH
= 2.4 V)
--
--
s
I4
1
Data hold time
7
--
t
cyc
I5
3
I2C_SCL/I2C_SDA fall time (V
IH
= 2.4 V to V
IL
= 0.5 V)
--
3
ns
I6
1
Clock high time
10
--
t
cyc
I7
1
Data setup time
2
--
t
cyc
I8
1
Start condition setup time (for repeated start condition only)
20
--
t
cyc
I9
1
Stop condition setup time
10
--
t
cyc
Table 15. SSI Timing (continued)
Num
Description
1.8 +/- 0.10V
Unit
Minimum
Maximum
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
33
Figure 21
shows timing for the values in
Table 17
and
Table 16
.
Figure 21. I
2
C Input/Output Timings
5.14 Fast Ethernet AC Timing Specifications
MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.
5.14.1 MII Receive Signal Timing (FEC_RXD[3:0], FEC_RXDV,
FEC_RXER, and FEC_RXCLK)
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. There is no
minimum frequency requirement. In addition, the processor clock frequency must exceed twice the
FEC_RXCLK frequency.
Table 18
lists MII receive channel timings.
Figure 22
shows MII receive signal timings listed in
Table 18
.
NOTES:
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum
frequency (IFDR = 0x20) results in minimum output timings as shown in
Table 17
. The I
2
C interface is
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual
position is affected by the prescale and division values programmed into the IFDR; however, the numbers
given in
Table 17
are minimum values.
2
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively
drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance
and pull-up resistor values.
3
Specified at a nominal 50-pF load.
Table 18. MII Receive Signal Timing
Num
Characteristic
Min
Max
Unit
M1
FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK setup
5
--
ns
M2
FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold
5
--
ns
M3
FEC_RXCLK pulse width high
35%
65%
FEC_RXCLK period
M4
FEC_RXCLK pulse width low
35%
65%
FEC_RXCLK period
I2
I6
I1
I4
I7
I8
I9
I5
I3
I2C_SCL
I2C_SDA
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
34
Figure 22. MII Receive Signal Timing Diagram
5.14.2 MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TXEN,
FEC_TXER, FEC_TXCLK)
Table 19
lists MII transmit channel timings.
The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. There is
no minimum frequency requirement. In addition, the processor clock frequency must exceed twice the
FEC_TXCLK frequency.
The transmit outputs (FEC_TXD[3:0], FEC_TXEN, FEC_TXER) can be programmed to transition from
either the rising or falling edge of FEC_TXCLK, and the timing is the same in either case. This options
allows the use of non-compliant MII PHYs.
Refer to the Ethernet chapter for details of this option and how to enable it.
Table 19. MII Transmit Signal Timing
Num
Characteristic
Min
Max
Unit
M5
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER invalid
5
--
ns
M6
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid
--
25
ns
M7
FEC_TXCLK pulse width high
35%
65%
FEC_TXCLK period
M8
FEC_TXCLK pulse width low
35%
65%
FEC_TXCLK period
M1
M2
FEC_RXCLK (input)
FEC_RXD[3:0] (inputs)
FEC_RXDV
FEC_RXER
M3
M4
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
35
Figure 23
shows MII transmit signal timings listed in
Table 19
.
Figure 23. MII Transmit Signal Timing Diagram
5.14.3 MII Async Inputs Signal Timing (FEC_CRS and FEC_COL)
Table 20
lists MII asynchronous inputs signal timing.
Figure 24
shows MII asynchronous input timings listed in
Table 20
.
Figure 24. MII Async Inputs Timing Diagram
5.14.4 MII Serial Management Channel Timing (FEC_MDIO and
FEC_MDC)
Table 21
lists MII serial management channel timings. The FEC functions correctly with a maximum
MDC frequency of 2.5 MHz.
Table 20. MII Async Inputs Signal Timing
Num
Characteristic
Min
Max
Unit
M9
FEC_CRS, FEC_COL minimum pulse width
1.5
--
FEC_TXCLK period
Table 21. MII Serial Management Channel Timing
Num
Characteristic
Min
Max
Unit
M10
FEC_MDC falling edge to FEC_MDIO output invalid (minimum
propagation delay)
0
--
ns
M11
FEC_MDC falling edge to FEC_MDIO output valid (max prop delay)
--
25
ns
M12
FEC_MDIO (input) to FEC_MDC rising edge setup
10
--
ns
M13
FEC_MDIO (input) to FEC_MDC rising edge hold
0
--
ns
M6
FEC_TXCLK (input)
FEC_TXD[3:0] (outputs)
FEC_TXEN
FEC_TXER
M5
M7
M8
FEC_CRS
M9
FEC_COL
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
36
Figure 25
shows MII serial management channel timings listed in
Table 21
.
Figure 25. MII Serial Management Channel Timing Diagram
5.15 32-Bit Timer Module Timing Specifications
Table 22
lists timer module AC timings.
5.16 QSPI Electrical Specifications
Table 23
lists QSPI timings.
M14
FEC_MDC pulse width high
40%
60%
FEC_MDC period
M15
FEC_MDC pulse width low
40%
60%
FEC_MDC period
Table 22. Timer Module AC Timing Specifications
Name
Characteristic Unit
Min
Max
T1
DT0IN / DT1IN / DT2IN / DT3IN cycle time
3
--
t
CYC
T2
DT0IN / DT1IN / DT2IN / DT3IN pulse width
1
--
t
CYC
Table 21. MII Serial Management Channel Timing (continued)
Num
Characteristic
Min
Max
Unit
M11
FEC_MDC (output)
FEC_MDIO (output)
M12
M13
FEC_MDIO (input)
M10
M14
M15
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
37
The values in
Table 23
correspond to
Figure 26
.
Figure 26. QSPI Timing
5.17 JTAG and Boundary Scan Timing
Table 23. QSPI Modules AC Timing Specifications
Name
Characteristic Min
Max
Unit
QS1
QSPI_CS[3:0] to QSPI_CLK
1
510
t
CYC
QS2
QSPI_CLK high to QSPI_DOUT valid.
--
10
ns
QS3
QSPI_CLK high to QSPI_DOUT invalid. (Output hold)
2
--
ns
QS4
QSPI_DIN to QSPI_CLK (Input setup)
9
--
ns
QS5
QSPI_DIN to QSPI_CLK (Input hold)
9
--
ns
Table 24. JTAG and Boundary Scan Timing
Num
Characteristics
1
Symbol
Min
Max
Unit
J1
TCLK Frequency of Operation
f
JCYC
DC
1/4
f
sys/3
J2
TCLK Cycle Period
t
JCYC
4
--
t
CYC
J3
TCLK Clock Pulse Width
t
JCW
26
--
ns
J4
TCLK Rise and Fall Times
t
JCRF
0
3
ns
J5
Boundary Scan Input Data Setup Time to TCLK Rise
t
BSDST
4
--
ns
J6
Boundary Scan Input Data Hold Time after TCLK Rise
t
BSDHT
26
--
ns
J7
TCLK Low to Boundary Scan Output Data Valid
t
BSDV
0
33
ns
J8
TCLK Low to Boundary Scan Output High Z
t
BSDZ
0
33
ns
J9
TMS, TDI Input Data Setup Time to TCLK Rise
t
TAPBST
4
--
ns
J10
TMS, TDI Input Data Hold Time after TCLK Rise
t
TAPBHT
10
--
ns
QSPI_CS[3:0]
QSPI_CLK
QSPI_DOUT
QS5
QS1
QSPI_DIN
QS3
QS4
QS2
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Preliminary Electrical Characteristics
Freescale Semiconductor
38
Figure 27. Test Clock Input Timing
Figure 28. Boundary Scan (JTAG) Timing
J11
TCLK Low to TDO Data Valid
t
TDODV
0
26
ns
J12
TCLK Low to TDO High Z
t
TDODZ
0
8
ns
J13
TRST Assert Time
t
TRSTAT
100
--
ns
J14
TRST Setup Time (Negation) to TCLK High
t
TRSTST
10
--
ns
NOTES:
1
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.
Table 24. JTAG and Boundary Scan Timing (continued)
Num
Characteristics
1
Symbol
Min
Max
Unit
TCLK
V
IL
V
IH
J4
J4
(input)
J2
J3
J3
Input Data Valid
Output Data Valid
Output Data Valid
TCLK
Data Inputs
Data Outputs
Data Outputs
Data Outputs
V
IL
V
IH
J7
J8
J7
J6
J5
Preliminary Electrical Characteristics
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
39
Figure 29. Test Access Port Timing
Figure 30. TRST Timing
5.18 Debug AC Timing Specifications
Table 25
lists specifications for the debug AC timing parameters shown in
Figure 32
.
Table 25. Debug AC Timing Specification
Num
Characteristic
Units
Min
Max
DE0
PSTCLK cycle time
--
0.3
t
cyc
DE1
PST valid to PSTCLK high
4
--
ns
DE2
PSTCLK high to PST invalid
1.5
--
ns
DE3
DSCLK cycle time
5
--
t
cyc
DE4
DSI valid to DSCLK high
1
--
t
cyc
DE5
1
NOTES:
1
DSCLK and DSI are synchronized internally. DE4 is measured from the synchronized DSCLK input
relative to the rising edge of FB_CLK.
DSCLK high to DSO invalid
4
--
t
cyc
DE6
BKPT input data setup time to FB_CLK high
4
--
ns
DE7
FB_CLK high to BKPT invalid
0 --
ns
Input Data Valid
Output Data Valid
Output Data Valid
TCLK
TDI
TDO
TDO
TDO
TMS
V
IL
V
IH
J9
J10
J11
J12
J11
TCLK
TRST
J13
J14
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Revision History
Freescale Semiconductor
40
Figure 31
shows real-time trace timing for the values in
Table 25
.
Figure 31. Real-Time Trace AC Timing
Figure 32
shows BDM serial port AC timing and BKPT pin timing for the values in
Table 25
.
Figure 32. BDM Serial Port AC Timing
6
Revision History
Table 26. MCF5373DS Document Revision History
Rev. No.
Substantive Changes
Date of Release
0
Initial release.
11/2005
0.1
Swapped pin locations PLL_VSS (J11->H11) and DRAMSEL
(H11->J11) in
Table 3
.
Figure 1
is correct.
12/2005
0.2
Added not to
Section 4, "Mechanicals and Pinouts."
Added "top view" and "bottom view" where appropriate in mechanical
drawings and pinout figures.
Figure 10
: Corrected "FB_CLK (75MHz)" label to "FB_CLK (80MHz)"
3/2006
0.3
Changed 160QFP pinouts in
Figure 3
and
Table 3
: Removed IRQ3
pin, shifted pins 8999 up one pin to 90100. Pin 89 is now VSS.
Table 3
: Rearranged GPIO signal names for FEC pins.
Removed ULPI specifications as the device does not support ULPI.
4/2006
PSTCLK
PST[3:0]
DE2
DE1
DDATA[3:0]
DE0
DSI
DSO
Current
Next
FB_CLK
Past
Current
DSCLK
DE3
DE4
DE5
BKPT
DE6
DE7
THIS PAGE INTENTIONALLY LEFT BLANK
MCF5373 ColdFire
Microprocessor Data Sheet, Rev. 0.3
Preliminary
Freescale Semiconductor
41
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
support@freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.
Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. "Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including "Typicals", must be validated for each customer
application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.
FreescaleTM and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners. Freescale Semiconductor, Inc. 2006. All rights
reserved.
MCF5373DS
Rev. 0.3
04/2006