ChipFind - документация

Электронный компонент: GS832436C-250

Скачать:  PDF   ZIP
Rev: 1.00 10/2001
1/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
ByteSafe is a Trademark of Giga Semiconductor, Inc. (GSI Technology).
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
2M x 18, 1M x 36, 512K x 72
36Mb S/DCD Sync Burst SRAMs
250 MHz
133MHz
2.5 V or 3.3 V V
DD
2.5 V or 3.3 V I/O
119- and 209-Pin BGA
Commercial Temp
Industrial Temp
Features
FT pin for user-configurable flow through or pipeline operation
Single/Dual Cycle Deselect selectable (x36 and x72)
Dual Cycle Deselect only (x18)
IEEE 1149.1 JTAG-compatible Boundary Scan
ZQ mode pin for user-selectable high/low output drive
2.5 V or 3.3 V +10%/5% core power supply
2.5 V or 3.3 V I/O supply
LBO pin for Linear or Interleaved Burst mode
Internal input resistors on mode pins allow floating mode pins
Default to SCD x36/x72 Interleaved Pipeline mode
Byte Write (BW) and/or Global Write (GW) operation
Internal self-timed write cycle
Automatic power-down for portable applications
JEDEC-standard 119- and 209-bump BGA package
Functional Description
Applications
The GS832418/36/72 is a 37,748,736-bit high performance 2-die
synchronous SRAM module with a 2-bit burst address counter.
Although of a type originally developed for Level 2 Cache
applications supporting high performance CPUs, the device now
finds application in synchronous SRAM applications, ranging
from DSP main store to networking chip set support.
Controls
Addresses, data I/Os, chip enable (E1), address burst control
inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW,
GW) are synchronous and are controlled by a positive-edge-
triggered clock input (CK). Output enable (G) and power down
control (ZZ) are asynchronous inputs. Burst cycles can be initiated
with either ADSP or ADSC inputs. In Burst mode, subsequent
burst addresses are generated internally and are controlled by
ADV. The burst address counter may be configured to count in
either linear or interleave order with the Linear Burst Order (LBO)
input. The Burst function need not be used. New addresses can be
loaded on every cycle with no degradation of chip performance.
Flow Through/Pipeline Reads
The function of the Data Output register can be controlled by the
user via the FT mode . Holding the FT mode pin low places the
RAM in Flow Through mode, causing output data to bypass the
Data Output Register. Holding FT high places the RAM in
Pipeline mode, activating the rising-edge-triggered Data Output
Register.
SCD and DCD Pipelined Reads
The GS832436(B/C) and the GS832472(C) are SCD (Single
Cycle Deselect) and DCD (Dual Cycle Deselect) pipelined
synchronous SRAMs. The GS832418(B/C) is a DCD-only
SRAM. DCD SRAMs pipeline disable commands to the same
degree as read commands. SCD SRAMs pipeline deselect
commands one stage less than read commands. SCD RAMs begin
turning off their outputs immediately after the deselect command
has been captured in the input registers. DCD RAMs hold the
deselect command for one full cycle and then begin turning off
their outputs just after the second rising edge of clock. The user
may configure the x36 or x72 versions of this SRAM for either
mode of operation using the SCD mode input.
Byte Write and Global Write
Byte write operation is performed by using Byte Write enable
(BW) input combined with one or more individual byte write
signals (Bx). In addition, Global Write (GW) is available for
writing all bytes at one time, regardless of the Byte Write control
inputs.
FLXDriveTM
The ZQ pin allows selection between high drive strength (ZQ low)
for multi-drop bus applications and normal drive strength (ZQ
floating or high) point-to-point applications. See the Output Driver
Characteristics chart for details.
Sleep Mode
Low power (Sleep mode) is attained through the assertion (High)
of the ZZ signal, or by stopping the clock (CK). Memory data is
retained during Sleep mode.
Core and Interface Voltages
The GS832418/36/72 operates on a 2.5 V or 3.3 V power supply.
All input are 3.3 V and 2.5 V compatible. Separate output power
(V
DDQ
) pins are used to decouple output noise from the internal
circuits and are 3.3 V and 2.5 V compatible.
-250 -225 -200 -166 -150 -133 Unit
Pipeline
3-1-1-1
t
KQ
tCycle
2.3
4.0
2.5
4.4
3.0
5.0
3.5
6.0
3.8
6.6
4.0
7.5
ns
ns
3.3 V
Curr (x18)
Curr (x36)
Curr (x72)
365
560
660
335
510
600
305
460
540
265
400
460
245
370
430
215
330
380
mA
mA
mA
2.5 V
Curr (x18)
Curr (x36)
Curr (x72)
360
550
640
330
500
590
305
460
530
260
390
450
240
360
420
215
330
370
mA
mA
mA
Flow
Through
2-1-1-1
t
KQ
tCycle
6.0
7.0
6.5
7.5
7.5
8.5
8.5
10
10
10
11
15
ns
ns
3.3 V
Curr (x18)
Curr (x36)
Curr (x72)
235
300
350
230
300
350
210
270
300
200
270
300
195
270
300
150
200
220
mA
mA
mA
2.5 V
Curr (x18)
Curr (x36)
Curr (x72)
235
300
340
230
300
340
210
270
300
200
270
300
195
270
300
145
190
220
mA
mA
mA
Rev: 1.00 10/2001
2/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
GS832472B Pad Out
209-Bump BGA--Top View
1
2
3
4
5
6
7
8
9
10
11
A
DQ
G5
DQ
G1
A15
E2
ADSP
ADSC
ADV
E3
A17
DQ
B1
DQ
B5
A
B
DQ
G6
DQ
G2
B
C
B
G
NC
BW
A16
B
B
B
F
DQ
B2
DQ
B6
B
C
DQ
G7
DQ
G3
B
H
B
D
NC
E1
NC
B
E
B
A
DQ
B3
DQ
B7
C
D
DQ
G8
DQ
G4
V
SS
NC
NC
G
GW
NC
V
SS
DQ
B4
DQ
B8
D
E
DQP
G9
DQP
C9
V
DDQ
V
DDQ
V
DD
V
DD
V
DD
V
DDQ
V
DDQ
DQP
F9
DQP
B9
E
F
DQ
C4
DQ
C8
V
SS
V
SS
V
SS
ZQ
V
SS
V
SS
V
SS
DQ
F8
DQ
F4
F
G
DQ
C3
DQ
C7
V
DDQ
V
DDQ
V
DD
MCH
V
DD
V
DDQ
V
DDQ
DQ
F7
DQ
F3
G
H
DQ
C2
DQ
C6
V
SS
V
SS
V
SS
MCL
V
SS
V
SS
V
SS
DQ
F6
DQ
F2
H
J
DQ
C1
DQ
C5
V
DDQ
V
DDQ
V
DD
MCL
V
DD
V
DDQ
V
DDQ
DQ
F5
DQ
F1
J
K
NC
NC
CK
NC
V
SS
MCL
V
SS
NC
NC
NC
NC
K
L
DQ
H1
DQ
H5
V
DDQ
V
DDQ
V
DD
FT
V
DD
V
DDQ
V
DDQ
DQ
A5
DQ
A1
L
M
DQ
H2
DQ
H6
V
SS
V
SS
V
SS
MCL
V
SS
V
SS
V
SS
DQ
A6
DQ
A2
M
N
DQ
H3
DQ
H7
V
DDQ
V
DDQ
V
DD
SCD
V
DD
V
DDQ
V
DDQ
DQ
A7
DQ
A3
N
P
DQ
H4
DQ
H8
V
SS
V
SS
V
SS
ZZ
V
SS
V
SS
V
SS
DQ
A8
DQ
A4
P
R
DQP
D9
DQP
H9
V
DDQ
V
DDQ
V
DD
V
DD
V
DD
V
DDQ
V
DDQ
DQP
A9
DQP
E9
R
T
DQ
D8
DQ
D4
V
SS
NC
NC
LBO
NC
NC
V
SS
DQ
E4
DQ
E8
T
U
DQ
D7
DQ
D3
NC
A14
A13
A12
A11
A10
A18
DQ
E3
DQ
E7
U
V
DQ
D6
DQ
D2
A9
A8
A7
A1
A6
A5
A4
DQ
E2
DQ
E6
V
W
DQ
D5
DQ
D1
TMS
TDI
A3
A0
A2
TDO
TCK
DQ
E1
DQ
E5
W
11 x 19 Bump BGA--14 x 22 mm
2
Body--1 mm Bump Pitch
Rev: 1.00 10/2001
3/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
GS832436C Pad Out
209-Bump BGA--Top View
1
2
3
4
5
6
7
8
9
10
11
A
NC
NC
A15
E2
ADSP
ADSC
ADV
E3
A17
DQ
B1
DQ
B5
A
B
NC
NC
B
C
NC
A19
BW
A16
B
B
NC
DQ
B2
DQ
B6
B
C
NC
NC
NC
B
D
NC
E1
NC
NC
B
A
DQ
B3
DQ
B7
C
D
NC
NC
V
SS
NC
NC
G
GW
NC
V
SS
DQ
B4
DQ
B8
D
E
NC
DQP
C9
V
DDQ
V
DDQ
V
DD
V
DD
V
DD
V
DDQ
V
DDQ
NC
DQP
B9
E
F
DQ
C4
DQ
C8
V
SS
V
SS
V
SS
ZQ
V
SS
V
SS
V
SS
NC
NC
F
G
DQ
C3
DQ
C7
V
DDQ
V
DDQ
V
DD
MCH
V
DD
V
DDQ
V
DDQ
NC
NC
G
H
DQ
C2
DQ
C6
V
SS
V
SS
V
SS
MCL
V
SS
V
SS
V
SS
NC
NC
H
J
DQ
C1
DQ
C5
V
DDQ
V
DDQ
V
DD
MCL
V
DD
V
DDQ
V
DDQ
NC
NC
J
K
NC
NC
CK
NC
V
SS
MCL
V
SS
NC
NC
NC
NC
K
L
NC
NC
V
DDQ
V
DDQ
V
DD
FT
V
DD
V
DDQ
V
DDQ
DQ
A5
DQ
A1
L
M
NC
NC
V
SS
V
SS
V
SS
MCL
V
SS
V
SS
V
SS
DQ
A6
DQ
A2
M
N
NC
NC
V
DDQ
V
DDQ
V
DD
SCD
V
DD
V
DDQ
V
DDQ
DQ
A7
DQ
A3
N
P
NC
NC
V
SS
V
SS
V
SS
ZZ
V
SS
V
SS
V
SS
DQ
A8
DQ
A4
P
R
DQP
D9
NC
V
DDQ
V
DDQ
V
DD
V
DD
V
DD
V
DDQ
V
DDQ
DQP
A9
NC
R
T
DQ
D8
DQ
D4
V
SS
NC
NC
LBO
NC
NC
V
SS
NC
NC
T
U
DQ
D7
DQ
D3
NC
A14
A13
A12
A11
A10
A18
NC
NC
U
V
DQ
D6
DQ
D2
A9
A8
A7
A1
A6
A5
A4
NC
NC
V
W
DQ
D5
DQ
D1
TMS
TDI
A3
A0
A2
TDO
TCK
NC
NC
W
11 x 19 Bump BGA--14 x 22 mm
2
Body--1 mm Bump Pitch
Rev: 1.00 10/2001
4/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
GS832418C Pad Out
209-Bump BGA--Top View
1
2
3
4
5
6
7
8
9
10
11
A
NC
NC
A15
MCH
ADSP
ADSC
ADV
MCL
A17
NC
NC
A
B
NC
NC
B
B
NC
A19
BW
A16
NC
NC
NC
NC
B
C
NC
NC
NC
NC
NC
E1
A20
NC
B
A
NC
NC
C
D
NC
NC
V
SS
NC
NC
G
GW
NC
V
SS
NC
NC
D
E
NC
DQP
B9
V
DDQ
V
DDQ
V
DD
V
DD
V
DD
V
DDQ
V
DDQ
NC
NC
E
F
DQ
B4
DQ
B8
V
SS
V
SS
V
SS
ZQ
V
SS
V
SS
V
SS
NC
NC
F
G
DQ
B3
DQ
B7
V
DDQ
V
DDQ
V
DD
MCH
V
DD
V
DDQ
V
DDQ
NC
NC
G
H
DQ
B2
DQ
B6
V
SS
V
SS
V
SS
MCL
V
SS
V
SS
V
SS
NC
NC
H
J
DQ
B1
DQ
B5
V
DDQ
V
DDQ
V
DD
MCL
V
DD
V
DDQ
V
DDQ
NC
NC
J
K
NC
NC
CK
NC
V
SS
MCL
V
SS
NC
NC
NC
NC
K
L
NC
NC
V
DDQ
V
DDQ
V
DD
FT
V
DD
V
DDQ
V
DDQ
DQ
A5
DQ
A1
L
M
NC
NC
V
SS
V
SS
V
SS
MCL
V
SS
V
SS
V
SS
DQ
A6
DQ
A2
M
N
NC
NC
V
DDQ
V
DDQ
V
DD
MCL
V
DD
V
DDQ
V
DDQ
DQ
A7
DQ
A3
N
P
NC
NC
V
SS
V
SS
V
SS
ZZ
V
SS
V
SS
V
SS
DQ
A8
DQ
A4
P
R
NC
NC
V
DDQ
V
DDQ
V
DD
V
DD
V
DD
V
DDQ
V
DDQ
DQP
A9
NC
R
T
NC
NC
V
SS
NC
NC
LBO
NC
NC
V
SS
NC
NC
T
U
NC
NC
NC
A14
A13
A12
A11
A10
A18
NC
NC
U
V
NC
NC
A9
A8
A7
A1
A6
A5
A4
NC
NC
V
W
NC
NC
TMS
TDI
A3
A0
A2
TDO
TCK
NC
NC
W
11 x 19 Bump BGA--14 x 22 mm
2
Body--1 mm Bump Pitch
Rev: 1.00 10/2001
5/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
GS832418/36/72 209-Bump BGA Pin Description
Pin Location
Symbol
Type
Description
W6, V6
A
0
, A
1
I
Address field LSBs and Address Counter Preset Inputs.
W7, W5, V9, V8, V7, V5, V4, V3, U8, U7, U6,
U5, U4, A3, B7, A9, U9
An
I
Address Inputs
B5
A
19
I
Address Inputs (x36/x18 Versions)
C7
A
20
I
Address Inputs (x18 Version)
L11, M11, N11, P11, L10, M10, N10, P10, R10
A10, B10, C10, D10, A11, B11, C11, D11, E11
J1, H1, G1, F1, J2, H2, G2, F2, E2
W2, V2, U2, T2, W1, V1, U1, T1, R1
W10, V10, U10, T10, W11, V11, U11, T11, R11
J11, H11, G11, F11, J10, H10, G10, F10, E10
A2, B2, C2, D2, A1, B1, C1, D1, E1
L1, M1, N1, P1, L2, M2, N2, P2, R2
DQ
A1
DQ
A9
DQ
B1
DQ
B9
DQ
C1
DQ
C9
DQ
D1
DQ
D9
DQ
E1
DQ
E9
DQ
F1
DQ
F9
DQ
G1
DQ
G9
DQ
H1
DQ
H9
I/O
Data Input and Output pins (x72 Version)
L11, M11, N11, P11, L10, M10, N10, P10, R10
A10, B10, C10, D10, A11, B11, C11, D11, E11
J1, H1, G1, F1, J2, H2, G2, F2, E2
W2, V2, U2, T2, W1, V1, U1, T1, R1
DQ
A1
DQ
A9
DQ
B1
DQ
B9
DQ
C1
DQ
C9
DQ
D1
DQ
D9
I/O
Data Input and Output pins (x36 Version)
L11, M11, N11, P11, L10, M10, N10, P10, R10
J1, H1, G1, F1, J2, H2, G2, F2, E2
DQ
A1
DQ
A9
DQ
B1
DQ
B9
I/O
Data Input and Output pins (x18 Version)
C9, B8
B
A
, B
B
I
Byte Write Enable for DQ
A
, DQ
B
I/Os; active low
B3, C4
B
C
,B
D
I
Byte Write Enable for DQ
C
, DQ
D
I/Os; active low
(x72/x36 Versions)
C8, B9, B4, C3
B
E
, B
F
, B
G
,B
H
I
Byte Write Enable for DQ
E
, DQ
F
, DQ
G
, DQ
H
I/Os; active low
(x72 Version)
B5
NC
--
No Connect (x72 Version)
C7
NC
--
No Connect (x72/x36 Versions)
W10, V10, U10, T10, W11, V11, U11, T11, R11
J11, H11, G11, F11, J10, H10, G10, F10, E10
A2, B2, C2, D2, A1, B1, C1, D1, E1
L1, M1, N1, P1, L2, M2, N2, P2, R2, C8, B9,
B4, C3
NC
--
No Connect (x36/x18 Versions)
B3, C4
NC
--
No Connect (x18 Version)
C5, D4, D5, D8, K1, K2, K4, K8, K9, K10, K11,
T4, T5, T7, T8, U3
NC
--
No Connect
K3
CK
I
Clock Input Signal; active high
D7
GW
I
Global Write Enable--Writes all bytes; active low
C6
E
1
I
Chip Enable; active low
A8
E
3
I
Chip Enable; active low (x72/x36 Versions)
A4
E
2
I
Chip Enable; active high (x72/x36 Versions)
Rev: 1.00 10/2001
6/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
D6
G
I
Output Enable; active low
A7
ADV
I
Burst address counter advance enable; active low
A5, A6
ADSP, ADSC
I
Address Strobe (Processor, Cache Controller); active low
P6
ZZ
I
Sleep Mode control; active high
L6
FT
I
Flow Through or Pipeline mode; active low
T6
LBO
I
Linear Burst Order mode; active low
N6
SCD
I
Single Cycle Deselect/Dual Cycle Deselect Mode Control (
x72/x36 Versions)
G6
MCH
I
Must Connect High
A4
MCH
I
Must Connect High (x18 version)
H6, J6, K6, M6
MCL
Must Connect Low
A8, N6
MCL
Must Connect Low (x18 version)
B6
BW
I
Byte Enable; active low
F6
ZQ
I
FLXDrive Output Impedance Control
(Low = Low Impedance [High Drive], High = High Impedance [Low
Drive])
W3
TMS
I
Scan Test Mode Select
W4
TDI
I
Scan Test Data In
W8
TDO
O
Scan Test Data Out
W9
TCK
I
Scan Test Clock
E5, E6, E7, G5, G7, J5, J7, L5, L7, N5, N7, R5,
R6, R7
V
DD
I
Core power supply
D3, D9, F3, F4, F5, F7, F8, F9, H3, H4, H5, H7,
H8, H9, K5, K7, M3, M4, M5, M7, M8, M9, P3,
P4, P5, P7, P8, P9, T3, T9
V
SS
I
I/O and Core Ground
E3, E4, E8, E9, G3, G4, G8, G9, J3, J4, J8, J9,
L3, L4, L8, L9, N3, N4, N8, N9, R3, R4, R8, R9
V
DDQ
I
Output driver power supply
GS832418/36/72 209-Bump BGA Pin Description
Pin Location
Symbol
Type
Description
Rev: 1.00 10/2001
7/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
GS832436B Pad Out
119-Bump BGA--Top View
1
2
3
4
5
6
7
A
V
DDQ
A6
A7
ADSP
A8
A9
V
DDQ
A
B
NC
A18
A4
ADSC
A15
A17
NC
B
C
NC
A5
A3
V
DD
A14
A16
NC
C
D
DQ
C4
DQP
C9
V
SS
ZQ
V
SS
DQP
B9
DQ
B4
D
E
DQ
C3
DQ
C8
V
SS
E1
V
SS
DQ
B8
DQ
B3
E
F
V
DDQ
DQ
C7
V
SS
G
V
SS
DQ
B7
V
DDQ
F
G
DQ
C2
DQ
C6
B
C
ADV
B
B
DQ
B6
DQ
B2
G
H
DQ
C1
DQ
C5
V
SS
GW
V
SS
DQ
B5
DQ
B1
H
J
V
DDQ
V
DD
NC
V
DD
NC
V
DD
V
DDQ
J
K
DQ
D1
DQ
D5
V
SS
CK
V
SS
DQ
A5
DQ
A4
K
L
DQ
D2
DQ
D6
B
D
SCD
B
A
DQ
A6
DQ
A3
L
M
V
DDQ
DQ
D7
V
SS
BW
V
SS
DQ
A7
V
DDQ
M
N
DQ
D3
DQ
D8
V
SS
A1
V
SS
DQ
A8
DQ
A2
N
P
DQ
D4
DQP
D9
V
SS
A0
V
SS
DQP
A9
DQ
A1
P
R
NC
A2
LBO
V
DD
FT
A13
NC
R
T
NC
NC
A10
A11
A12
A19
ZZ
T
U
V
DDQ
TMS
TDI
TCK
TDO
NC
V
DDQ
U
7 x 17 Bump BGA--14 x 22 mm
2
Body--1.27 mm Bump Pitch
Rev: 1.00 10/2001
8/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
GS832418B Pad Out
119-Bump BGA--Top View
1
2
3
4
5
6
7
A
V
DDQ
A6
A7
ADSP
A8
A9
V
DDQ
A
B
NC
A18
A4
ADSC
A15
A17
NC
B
C
NC
A5
A3
V
DD
A14
A16
NC
C
D
DQ
B1
NC
V
SS
ZQ
V
SS
DQP
A9
NC
D
E
NC
DQ
B2
V
SS
E1
V
SS
NC
DQ
A8
E
F
V
DDQ
NC
V
SS
G
V
SS
DQ
A7
V
DDQ
F
G
NC
DQ
B3
B
B
ADV
NC
NC
DQ
A6
G
H
DQ
B4
NC
V
SS
GW
V
SS
DQ
A5
NC
H
J
V
DDQ
V
DD
NC
V
DD
NC
V
DD
V
DDQ
J
K
NC
DQ
B5
V
SS
CK
V
SS
NC
DQ
A4
K
L
DQ
B6
NC
NC
V
SS
B
A
DQ
A3
NC
L
M
V
DDQ
DQ
B7
V
SS
BW
V
SS
NC
V
DDQ
M
N
DQ
B8
NC
V
SS
A1
V
SS
DQ
A2
NC
N
P
NC
DQP
B9
V
SS
A0
V
SS
NC
DQ
A1
P
R
NC
A2
LBO
V
DD
FT
A13
NC
R
T
NC
A10
A11
A20
A12
A19
ZZ
T
U
V
DDQ
TMS
TDI
TCK
TDO
NC
V
DDQ
U
7 x 17 Bump BGA--14 x 22 mm
2
Body--1.27 mm Bump Pitch
Rev: 1.00 10/2001
9/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
GS832418/36 119-Bump BGA Pin Description
Pin Location
Symbol
Type
Description
P4, N4
A
0
, A
1
I
Address field LSBs and Address Counter Preset Inputs
R2, C3, B3, C2, A2, A3, A5, A6, T3,
T5, R6, C5, B5, C6, B6, B2
An
I
Address Inputs
T4, T6
An
Address Input (x36 Version)
T2
NC
--
No Connect (x36 Version)
T2, T6, T4
An
I
Address Input (x18 Version)
K7, L7, N7, P7, K6, L6, M6, N6
H7, G7, E7, D7, H6, G6, F6, E6
H1, G1, E1, D1, H2, G2, F2, E2
K1, L1, N1, P1, K2, L2, M2, N2
DQ
A1
DQ
A8
DQ
B1
DQ
B8
DQ
C1
DQ
C8
DQ
D1
DQ
D8
I/O
Data Input and Output pins. (x36 Version)
P6, D6, D2, P2
DQ
A9
, DQ
B9
,
DQ
C9
, DQ
D9
I/O
Data Input and Output pins. (x36 Version)
L5, G5, G3, L3
B
A
, B
B
, B
C
, B
D
I
Byte Write Enable for DQ
A
, DQ
B
, DQ
C
, DQ
D
I/Os; active low (x36 Version)
P7, N6, L6, K7, H6, G7, F6, E7, D6
D1, E2, G2, H1, K2, L1, M2, N1, P2
DQ
A1
DQ
A9
DQ
B1
DQ
B9
I/O
Data Input and Output pins (x18 Version)
L5, G3
B
A
, B
B
I
Byte Write Enable for DQ
A
, DQ
B
I/Os; active low (x18 Version)
B1, C1, R1, T1, U6, B7, C7, J3, J5,
R7
NC
--
No Connect
P6, N7, M6, L7, K6, H7, G6, E6, D7,
D2, E1, F2, G1, H2, K1, L2, N2, P1,
G5, L3
NC
--
No Connect (x18 Version)
K4
CK
I
Clock Input Signal; active high
M4
BW
I
Byte Write--Writes all enabled bytes; active low
H4
GW
I
Global Write Enable--Writes all bytes; active low
E4
E
1
I
Chip Enable; active low
F4
G
I
Output Enable; active low
G4
ADV
I
Burst address counter advance enable; active low
A4, B4
ADSP, ADSC
I
Address Strobe (Processor, Cache Controller); active low
T7
ZZ
I
Sleep mode control; active high
R5
FT
I
Flow Through or Pipeline mode; active low
R3
LBO
I
Linear Burst Order mode; active low
D4
ZQ
I
FLXDrive Output Impedance Control (Low = Low Impedance [High Drive],
High = High Impedance [Low Drive])
L4
SCD
I
Single Cycle Deselect/Dual Cyle Deselect Mode Control (x36 version)
U2
TMS
I
Scan Test Mode Select
Rev: 1.00 10/2001
10/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
U3
TDI
I
Scan Test Data In
U5
TDO
O
Scan Test Data Out
U4
TCK
I
Scan Test Clock
J2, C4, J4, R4, J6
V
DD
I
Core power supply
D3, E3, F3, H3, K3, M3, N3, P3, D5,
E5, F5, H5, K5, M5, N5, P5
V
SS
I
I/O and Core Ground
L4
V
SS
I
I/O and Core Ground
A1, F1, J1, M1, U1, A7, F7, J7, M7,
U7
V
DDQ
I
Output driver power supply
GS832418/36 119-Bump BGA Pin Description
Pin Location
Symbol
Type
Description
Rev: 1.00 10/2001
11/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
GS832418/36/72 Block Diagram
A1
A0
A0
A1
D0
D1
Q1
Q0
Counter
Load
D
Q
D
Q
Register
Register
D
Q
Register
D
Q
Register
D
Q
Register
D
Q
Register
D
Q
Register
D
Q
Register
D
Q
R
e
g
i
s
t
e
r
D
Q
R
e
g
i
s
t
e
r
A0An
LBO
ADV
CK
ADSC
ADSP
GW
BW
E
1
FT
G
ZZ
Power Down
Control
Memory
Array
36
36
4
A
Q
D
DQx0DQx9
36
36
Note: Only x36 version shown for simplicity.
SCD
36
36
B
A
B
B
B
C
B
D
Rev: 1.00 10/2001
12/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Inputs
TDO
TDI
TDO
TDI
18 I/Os
Die A
x18
16Mb
Die B
x18
16Mb
GS832418 Die Layout
Inputs
TDO
TDI
TDO
TDI
18 I/Os
18 I/Os
Die A
x18
16Mb
Die B
x18
16Mb
GS832436 Die Layout
Inputs
TDO
TDI
TDO
TDI
36 I/Os
36 I/Os
Die A
x36
32Mb
Die B
x36
32Mb
GS832472 Die Layout
Rev: 1.00 10/2001
13/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Note:
There are pull-up devices on the ZQ, SCD and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and the
chip will operate in the default states as specified in the above tables.
Enable / Disable Parity I/O Pins
This SRAM allows the user to configure the device to operate in Parity I/O active (x18, x36, or x72) or in Parity I/O inactive (x16,
x32, or x64) mode. Holding the PE bump low or letting it float will activate the 9th I/O on each byte of the RAM. Grounding PE
deactivates the 9th I/O of each byte, although the bit in each byte of the memory array remains active to store and recall parity bits
generated and read into the ByteSafe parity circuits.
Burst Counter Sequences
BPR 1999.05.18
Mode Pin Functions
Mode Name
Pin
Name
State
Function
Burst Order Control
LBO
L
Linear Burst
H
Interleaved Burst
Output Register Control
FT
L
Flow Through
H or NC
Pipeline
Power Down Control
ZZ
L or NC
Active
H
Standby, I
DD
= I
SB
Single/Dual Cycle Deselect Control
SCD
L
Dual Cycle Deselect
H or NC
Single Cycle Deselect
FLXDrive Output Impedance Control
ZQ
L
High Drive (Low Impedance)
H or NC
Low Drive (High Impedance)
Linear Burst Sequence
Note: The burst counter wraps to initial state on the 5th clock.
I
nterleaved Burst Sequence
Note: The burst counter wraps to initial state on the 5th clock.
A[1:0] A[1:0] A[1:0] A[1:0]
1st address
00
01
10
11
2nd address
01
10
11
00
3rd address
10
11
00
01
4th address
11
00
01
10
A[1:0] A[1:0] A[1:0] A[1:0]
1st address
00
01
10
11
2nd address
01
00
11
10
3rd address
10
11
00
01
4th address
11
10
01
00
Rev: 1.00 10/2001
14/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Byte Write Truth Table
Notes:
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.
2. Byte Write Enable inputs B
A
, B
B
, B
C
, and/or B
D
may be used in any combination with BW to write single or multiple bytes.
3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.
4. Bytes "
C
" and "
D
" are only available on the x36 version.
Function
GW
BW
B
A
B
B
B
C
B
D
Notes
Read
H
H
X
X
X
X
1
Read
H
L
H
H
H
H
1
Write byte a
H
L
L
H
H
H
2, 3
Write byte b
H
L
H
L
H
H
2, 3
Write byte c
H
L
H
H
L
H
2, 3, 4
Write byte d
H
L
H
H
H
L
2, 3, 4
Write all bytes
H
L
L
L
L
L
2, 3, 4
Write all bytes
L
X
X
X
X
X
Rev: 1.00 10/2001
15/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Synchronous Truth Table (x72 and x36 209-Bump BGA)
Operation
Address Used
State
Diagram
Key
5
E
1
E
2
ADSP ADSC
ADV
W
3
DQ
4
Deselect Cycle, Power Down
None
X
H
X
X
L
X
X
High-Z
Deselect Cycle, Power Down
None
X
L
F
L
X
X
X
High-Z
Deselect Cycle, Power Down
None
X
L
F
H
L
X
X
High-Z
Read Cycle, Begin Burst
External
R
L
T
L
X
X
X
Q
Read Cycle, Begin Burst
External
R
L
T
H
L
X
F
Q
Write Cycle, Begin Burst
External
W
L
T
H
L
X
T
D
Read Cycle, Continue Burst
Next
CR
X
X
H
H
L
F
Q
Read Cycle, Continue Burst
Next
CR
H
X
X
H
L
F
Q
Write Cycle, Continue Burst
Next
CW
X
X
H
H
L
T
D
Write Cycle, Continue Burst
Next
CW
H
X
X
H
L
T
D
Read Cycle, Suspend Burst
Current
X
X
H
H
H
F
Q
Read Cycle, Suspend Burst
Current
H
X
X
H
H
F
Q
Write Cycle, Suspend Burst
Current
X
X
H
H
H
T
D
Write Cycle, Suspend Burst
Current
H
X
X
H
H
T
D
Note:
1. X = Don't Care, H = High, L = Low.
2. E = T (True) if E
2
= 1 and E
3
= 0; E = F (False) if E
2
= 0 or E
3
= 1.
3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.
4. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown
as "Q" in the Truth Table above).
5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish
basic synchronous or synchronous burst operations and may be avoided for simplicity.
6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.
7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.
Rev: 1.00 10/2001
16/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Synchronous Truth Table (x18 209-Bump BGA and x36/x18 119-Bump BGA)
Operation
Address Used
State
Diagram
Key
5
E
1
ADSP
ADSC
ADV
W
3
DQ
4
Deselect Cycle, Power Down
None
X
H
X
L
X
X
High-Z
Read Cycle, Begin Burst
External
R
L
L
X
X
X
Q
Read Cycle, Begin Burst
External
R
L
H
L
X
F
Q
Write Cycle, Begin Burst
External
W
L
H
L
X
T
D
Read Cycle, Continue Burst
Next
CR
X
H
H
L
F
Q
Read Cycle, Continue Burst
Next
CR
H
X
H
L
F
Q
Write Cycle, Continue Burst
Next
CW
X
H
H
L
T
D
Write Cycle, Continue Burst
Next
CW
H
X
H
L
T
D
Read Cycle, Suspend Burst
Current
X
H
H
H
F
Q
Read Cycle, Suspend Burst
Current
H
X
H
H
F
Q
Write Cycle, Suspend Burst
Current
X
H
H
H
T
D
Write Cycle, Suspend Burst
Current
H
X
H
H
T
D
Notes:
1. X = Don't Care, H = High, L = Low
2. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding
3. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown
as "Q" in the Truth Table above).
4. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish
basic synchronous or synchronous burst operations and may be avoided for simplicity.
5. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.
6. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.
Rev: 1.00 10/2001
17/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
First Write
First Read
Burst Write
Burst Read
Deselect
R
W
CR
CW
X
X
W
R
R
W
R
X
X
X
S
i
m
p
l
e

S
y
n
c
h
r
o
n
o
u
s

O
p
e
r
a
t
i
o
n
S
i
m
p
l
e

B
u
r
s
t

S
y
n
c
h
r
o
n
o
u
s

O
p
e
r
a
t
i
o
n
CR
R
CW
CR
CR
Simplified State Diagram
Notes:
1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.
2. The upper portion of the diagram assumes active use of only the Enable (E1) and Write (B
A
, B
B
, B
C
, B
D
, BW, and GW) control inputs, and
that ADSP is tied high and ADSC is tied low.
3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs and
assumes ADSP is tied high and ADV is tied low.
Rev: 1.00 10/2001
18/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
First Write
First Read
Burst Write
Burst Read
Deselect
R
W
CR
CW
X
X
W
R
R
W
R
X
X
X
CR
R
CW
CR
CR
W
CW
W
CW
Simplified State Diagram with G
Notes:
1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.
2. Use of "Dummy Reads" (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passing
through a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.
3. Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM's drivers off and for incoming data to meet
Data Input Set Up Time.
Rev: 1.00 10/2001
19/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Note:
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of
this component.
Absolute Maximum Ratings
(All voltages reference to V
SS
)
Symbol
Description
Value
Unit
V
DD
Voltage on V
DD
Pins
0.5 to 4.6
V
V
DDQ
Voltage in V
DDQ
Pins
0.5 to 4.6
V
V
CK
Voltage on Clock Input Pin
0.5 to 6
V
V
I/O
Voltage on I/O Pins
0.5 to V
DDQ
+0.5 (
4.6 V max.)
V
V
IN
Voltage on Other Input Pins
0.5 to V
DD
+0.5 (
4.6 V max.)
V
I
IN
Input Current on Any Pin
+/
20
mA
I
OUT
Output Current on Any I/O Pin
+/
20
mA
P
D
Package Power Dissipation
1.5
W
T
STG
Storage Temperature
55 to 125
o
C
T
BIAS
Temperature Under Bias
55 to 125
o
C
Rev: 1.00 10/2001
20/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Power Supply Voltage Ranges
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
3.3 V Supply Voltage
V
DD3
3.0
3.3
3.6
V
2.5 V Supply Voltage
V
DD2
2.3
2.5
2.7
V
3.3 V V
DDQ
I/O Supply Voltage
V
DDQ3
3.0
3.3
3.6
V
2.5 V V
DDQ
I/O Supply Voltage
V
DDQ2
2.4
2.5
2.7
V
Notes:
1.
The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are
evaluated for worst case in the temperature range marked on the device.
2.
Input Under/overshoot voltage must be
2 V > Vi < V
DDn
+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
V
DDQ3
Range Logic Levels
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
V
DD
Input High Voltage
V
IH
1.7
--
V
DD
+ 0.3
V
1
V
DD
Input Low Voltage
V
IL
0.3
--
0.8
V
1
V
DDQ
I/O Input High Voltage
V
IHQ
1.7
--
V
DDQ
+ 0.3
V
1,3
V
DDQ
I/O Input Low Voltage
V
ILQ
0.3
--
0.8
V
1,3
Notes:
1.
The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are
evaluated for worst case in the temperature range marked on the device.
2.
Input Under/overshoot voltage must be
2 V > Vi < V
DDn
+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
3.
V
IHQ
(max) is voltage on V
DDQ
pins plus 0.3 V.
V
DDQ2
Range Logic Levels
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
V
DD
Input High Voltage
V
IH
0.6*V
DD
--
V
DD
+ 0.3
V
1
V
DD
Input Low Voltage
V
IL
0.3
--
0.3*V
DD
V
1
V
DDQ
I/O Input High Voltage
V
IHQ
0.6*V
DD
--
V
DDQ
+ 0.3
V
1,3
V
DDQ
I/O Input Low Voltage
V
ILQ
0.3
--
0.3*V
DD
V
1,3
Notes:
1.
The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are
evaluated for worst case in the temperature range marked on the device.
2.
Input Under/overshoot voltage must be
2 V > Vi < V
DDn
+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
3.
V
IHQ
(max) is voltage on V
DDQ
pins plus 0.3 V.
Rev: 1.00 10/2001
21/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Note: These parameters are sample tested.
Notes:
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-
ature air flow, board density, and PCB thermal resistance.
2. SCMI G-38-87
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1
Recommended Operating Temperatures
Parameter
Symbol
Min.
Typ.
Max.
Unit
Notes
Ambient Temperature (Commercial Range Versions)
T
A
0
25
70
C
2
Ambient Temperature (Industrial Range Versions)
T
A
40
25
85
C
2
Note:
1.
The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are
evaluated for worst case in the temperature range marked on the device.
2.
Input Under/overshoot voltage must be
2 V > Vi < V
DDn
+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
Capacitance
(T
A
= 25
o
C, f = 1 MH
Z
, V
DD
= 2.5 V)
Parameter
Symbol
Test conditions
Typ.
Max.
Unit
Input Capacitance
C
IN
V
IN
= 0 V
6.5
7.5
pF
Input/Output Capacitance (x36/x72)
C
I/O
V
OUT
= 0 V
6
7
pF
Input/Output Capacitance (x18)
C
I/O
V
OUT
= 0 V
8.5
9.5
pF
Package Thermal Characteristics
Rating
Layer Board
Symbol
Max
Unit
Notes
Junction to Ambient (at 200 lfm)
single
R
JA
40
C/W
1,2
Junction to Ambient (at 200 lfm)
four
R
JA
24
C/W
1,2
Junction to Case (TOP)
--
R
JC
9
C/W
3
20% tKC
V
SS
2.0 V
50%
V
SS
V
IH
Undershoot Measurement and Timing
Overshoot Measurement and Timing
20% tKC
V
DD
+ 2.0 V
50%
V
DD
V
IL
Rev: 1.00 10/2001
22/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
AC Test Conditions
Parameter
Conditions
Input high level
2.3 V
Input low level
0.2 V
Input slew rate
1 V/ns
Input reference level
1.25 V
Output reference level
1.25 V
Output load
Fig. 1& 2
Notes:
1. Include scope and jig capacitance.
2. Test conditions as specified with output loading as shown in Fig.
1
unless otherwise noted.
3. Output Load 2 for t
LZ
, t
HZ
, t
OLZ
and t
OHZ
4. Device is deselected as defined by the Truth Table.
DC Electrical Characteristics
Parameter
Symbol
Test Conditions
Min
Max
Input Leakage Current
(except mode pins)
I
IL
V
IN
= 0 to V
DD
2 uA
2 uA
ZZ and PE Input Current
I
IN1
V
DD
V
IN
V
IH
0 V
V
IN
V
IH
1 uA
1 uA
1 uA
100 uA
FT, SCD, ZQ, DP Input Current
I
IN2
V
DD
V
IN
V
IL
0 V
V
IN
V
IL
100 uA
1 uA
1 uA
1 uA
Output Leakage Current (x36/x72)
I
OL
Output Disable, V
OUT
= 0 to V
DD
1 uA
1 uA
Output Leakage Current (x18)
I
OL
Output Disable, V
OUT
= 0 to V
DD
2 uA
2 uA
Output High Voltage
V
OH2
I
OH
=
8 mA, V
DDQ
= 2.375 V
1.7 V
--
Output High Voltage
V
OH3
I
OH
=
8 mA, V
DDQ
= 3.135 V
2.4 V
--
Output Low Voltage
V
OL
I
OL
= 8 mA
--
0.4 V
DQ
VT = 1.25 V
50
30pF
*
DQ
2.5 V
Output Load 1
Output Load 2
225
225
5pF
*
* Distributed Test Jig Capacitance
Rev: 1.00 10/2001
23/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
O
p
e
r
a
t
i
n
g

C
u
r
r
e
n
t
s
N
o
t
e
s
:

1
.
I
D
D

a
n
d

I
D
D
Q

a
p
p
l
y

t
o

a
n
y

c
o
m
b
i
n
a
t
i
o
n

o
f

V
D
D
3
,

V
D
D
2
,

V
D
D
Q
3
,

a
n
d

V
D
D
Q
2

o
p
e
r
a
t
i
o
n
.
2
.
A
l
l

p
a
r
a
m
e
t
e
r
s

l
i
s
t
e
d

a
r
e

w
o
r
s
t

c
a
s
e

s
c
e
n
a
r
i
o
.
P
a
r
a
m
e
t
e
r
T
e
s
t

C
o
n
d
i
t
i
o
n
s
M
o
d
e
S
y
m
b
o
l
-
2
5
0
-
2
2
5
-
2
0
0
-
1
6
6
-
1
5
0
-
1
3
3
U
n
i
t
0
t
o
7
0

C
4
0

t
o
8
5

C
0
t
o
7
0

C
4
0

t
o
8
5

C
0
t
o
7
0

C
4
0
t
o
8
5

C
0
t
o
7
0

C
4
0
t
o
8
5

C
0
t
o
7
0

C
4
0
t
o
8
5

C
0
t
o
7
0

C
4
0
t
o
8
5

C
O
p
e
r
a
t
i
n
g
C
u
r
r
e
n
t
3
.
3

V
D
e
v
i
c
e

S
e
l
e
c
t
e
d
;
A
l
l

o
t
h
e
r

i
n
p
u
t
s
V
I
H
o
r

V
I
L
O
u
t
p
u
t
o
p
e
n
(
x
7
2
)
P
i
p
e
l
i
n
e
I
D
D
I
D
D
Q
5
8
0
8
0
5
6
0
8
0
5
3
0
7
0
5
5
0
7
0
4
8
0
6
0
5
0
0
6
0
4
1
0
5
0
4
3
0
5
0
3
8
0
5
0
4
0
0
5
0
3
4
0
4
0
3
6
0
4
0
m
A
F
l
o
w
T
h
r
o
u
g
h
I
D
D
I
D
D
Q
3
1
0
4
0
3
3
0
4
0
3
4
0
4
0
3
3
0
4
0
2
7
0
3
0
2
9
0
3
0
2
7
0
3
0
2
9
0
3
0
2
7
0
3
0
2
9
0
3
0
2
0
0
2
0
2
2
0
2
0
m
A
(
x
3
6
)
P
i
p
e
l
i
n
e
I
D
D
I
D
D
Q
5
2
0
4
0
5
4
0
4
0
4
7
0
4
0
4
9
0
4
0
4
3
0
3
0
4
5
0
3
0
3
7
0
3
0
3
9
0
3
0
3
4
0
3
0
3
6
0
3
0
3
1
0
2
0
3
3
0
2
0
m
A
F
l
o
w
T
h
r
o
u
g
h
I
D
D
I
D
D
Q
2
8
0
2
0
3
0
0
2
0
2
8
0
2
0
3
0
0
2
0
2
5
0
2
0
2
7
0
2
0
3
5
0
2
0
2
7
0
2
0
2
5
0
2
0
2
7
0
2
0
1
8
0
2
0
2
0
0
2
0
m
A
(
x
1
8
)
P
i
p
e
l
i
n
e
I
D
D
I
D
D
Q
3
4
5
2
0
3
6
0
2
0
3
1
5
2
0
3
3
0
2
0
2
9
0
1
5
3
0
5
1
5
2
5
0
1
5
2
6
5
1
5
2
3
0
1
5
2
4
5
1
5
2
0
5
1
0
2
2
0
1
0
m
A
F
l
o
w
T
h
r
o
u
g
h
I
D
D
I
D
D
Q
2
0
0
1
0
2
1
5
1
0
2
0
0
1
0
2
1
5
1
0
1
7
5
1
0
1
9
0
1
0
1
7
5
1
0
1
9
0
1
0
1
7
5
1
0
1
9
0
1
0
1
3
5
1
0
1
5
0
1
0
m
A
O
p
e
r
a
t
i
n
g
C
u
r
r
e
n
t
2
.
5

V
D
e
v
i
c
e

S
e
l
e
c
t
e
d
;
A
l
l

o
t
h
e
r

i
n
p
u
t
s
V
I
H
o
r

V
I
L
O
u
t
p
u
t
o
p
e
n
(
x
7
2
)
P
i
p
e
l
i
n
e
I
D
D
I
D
D
Q
5
8
0
6
0
6
0
0
6
0
5
3
0
6
0
5
5
0
6
0
4
8
0
5
0
5
0
0
5
0
4
1
0
4
0
4
3
0
4
0
3
8
0
4
0
4
0
0
4
0
3
4
0
3
0
3
6
0
3
0
m
A
F
l
o
w
T
h
r
o
u
g
h
I
D
D
I
D
D
Q
3
1
0
3
0
3
3
0
3
0
3
1
0
3
0
3
3
0
3
0
2
7
0
3
0
2
9
0
3
0
2
7
0
3
0
2
9
0
3
0
2
7
0
3
0
2
9
0
3
0
2
0
0
2
0
2
2
0
2
0
m
A
(
x
3
6
)
P
i
p
e
l
i
n
e
I
D
D
I
D
D
Q
5
2
0
3
0
5
4
0
3
0
4
7
0
3
0
4
9
0
3
0
4
3
0
3
0
4
5
0
3
0
3
7
0
2
0
3
9
0
2
0
3
4
0
2
0
3
6
0
2
0
3
1
0
2
0
3
3
0
2
0
m
A
F
l
o
w
T
h
r
o
u
g
h
I
D
D
I
D
D
Q
2
8
0
2
0
3
0
0
2
0
2
8
0
2
0
3
0
0
2
0
2
5
0
2
0
2
7
0
2
0
2
5
0
2
0
2
7
0
2
0
2
5
0
2
0
2
7
0
2
0
1
8
0
1
0
2
0
0
1
0
m
A
(
x
1
8
)
P
i
p
e
l
i
n
e
I
D
D
I
D
D
Q
3
4
5
1
5
3
6
0
1
5
3
1
5
1
5
3
3
0
1
5
2
9
0
1
5
3
0
5
1
5
2
5
0
1
0
2
6
5
1
0
2
3
0
1
0
2
4
5
1
0
2
0
5
1
0
2
2
0
1
0
m
A
F
l
o
w
T
h
r
o
u
g
h
I
D
D
I
D
D
Q
2
0
0
1
0
2
1
5
1
0
2
0
0
1
0
2
1
5
1
0
1
7
5
1
0
1
9
0
1
0
1
7
5
1
0
1
9
0
1
0
1
7
5
1
0
1
9
0
1
0
1
3
5
5
1
5
0
5
m
A
S
t
a
n
d
b
y
C
u
r
r
e
n
t
Z
Z

V
D
D

0
.
2

V
--
P
i
p
e
l
i
n
e
I
S
B
4
0
6
0
4
0
6
0
4
0
6
0
4
0
6
0
4
0
6
0
4
0
6
0
m
A
F
l
o
w
T
h
r
o
u
g
h
I
S
B
4
0
6
0
4
0
6
0
4
0
6
0
4
0
6
0
4
0
6
0
4
0
6
0
m
A
D
e
s
e
l
e
c
t
C
u
r
r
e
n
t
D
e
v
i
c
e

D
e
s
e
l
e
c
t
e
d
;
A
l
l

o
t
h
e
r

i
n
p
u
t
s

V
I
H
o
r

V
I
L
--
P
i
p
e
l
i
n
e
I
D
D
1
7
0
1
8
0
1
6
0
1
7
0
1
5
0
1
6
0
1
3
0
1
4
0
1
2
0
1
3
0
1
0
0
1
1
0
m
A
F
l
o
w
T
h
r
o
u
g
h
I
D
D
1
2
0
1
3
0
1
2
0
1
3
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
9
0
1
0
0
m
A
Rev: 1.00 10/2001
24/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
AC Electrical Characteristics
Notes:
1. These parameters are sampled and are not 100% tested.
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold
times as specified above.
Parameter
Symbol
-250
-225
-200
-166
-150
-133
Unit
Min
Max
Min
Max
Min
Max
Min
Max Min Max Min Max
Pipeline
Clock Cycle Time
tKC
4.0
--
4.4
--
5.0
--
6.0
--
6.7
--
7.5
--
ns
Clock to Output Valid
tKQ
--
2.3
--
2.5
--
3.0
--
3.4
--
3.8
--
4.0
ns
Clock to Output Invalid
tKQX
1.5
--
1.5
--
1.5
--
1.5
--
1.5
--
1.5
--
ns
Clock to Output in Low-Z
tLZ
1
1.5
--
1.5
--
1.5
--
1.5
--
1.5
--
1.5
--
ns
Flow
Through
Clock Cycle Time
tKC
7.0
--
7.5
--
8.5
--
10.0
--
10.0
--
15.0
--
ns
Clock to Output Valid
tKQ
--
6.0
--
6.0
--
7.5
--
8.5
--
10.0
--
10.0
ns
Clock to Output Invalid
tKQX
3.0
--
3.0
--
3.0
--
3.0
--
3.0
--
3.0
--
ns
Clock to Output in Low-Z
tLZ
1
3.0
--
3.0
--
3.0
--
3.0
--
3.0
--
3.0
--
ns
Clock HIGH Time
tKH
1.3
--
1.3
--
1.3
--
1.3
--
1.5
--
1.7
--
ns
Clock LOW Time
tKL
1.5
--
1.5
--
1.5
--
1.5
--
1.7
--
2
--
ns
Clock to Output in
High-Z
tHZ
1
1.5
2.3
1.5
2.5
1.5
3.0
1.5
3.5
1.5
3.8
1.5 4.0
ns
G to Output Valid
tOE
--
2.3
--
2.5
--
3.2
--
3.5
--
3.8
--
4.0
ns
G to output in Low-Z
tOLZ
1
0
--
0
--
0
--
0
--
0
--
0
--
ns
G to output in High-Z
tOHZ
1
--
2.3
--
2.5
--
3.0
--
3.5
--
3.8
--
4.0
ns
Setup time
tS
1.5
--
1.5
--
1.5
--
1.5
--
1.5
--
1.5
--
ns
Hold time
tH
0.5
--
0.5
--
0.5
--
0.5
--
0.5
--
0.5
--
ns
ZZ setup time
tZZS
2
5
--
5
--
5
--
5
--
5
--
5
--
ns
ZZ hold time
tZZH
2
1
--
1
--
1
--
1
--
1
--
1
--
ns
ZZ recovery
tZZR
100
--
100
--
100
--
100
--
100
--
100
--
ns
Rev: 1.00 10/2001
25/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
CK
ADSP
ADSC
ADV
GW
BW
WR2
WR3
WR1
WR1
WR2
WR3
tKC
Single Write
Burst Write
t
KL
t
KH
tS tH
tS tH
tS tH
tS tH
tS tH
tS
tH
tS tH
Write specified byte for 2
A
and all bytes for 2
B
, 2
C
& 2
D
ADV must be inactive for ADSP Write
ADSC initiated write
ADSP is blocked by E inactive
A
0
An
B
A
B
D
DQ
A
DQ
D
Write
Deselected
WR1
WR2
WR3
Write Cycle Timing
E
1
tS tH
E
1
only sampled with ADSP or ADSC
E
1
masks ADSP
G
D2
A
D2
B
D2
C
D2
D
D3
A
D1
A
Hi-Z
tS tH
Rev: 1.00 10/2001
26/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Q1
A
Q3
A
Q2
D
Q2c
Q2
B
Q2
A
tKQ
tLZ
tOE
tOHZ
tOLZ
tKQX
tHZ
tKQX
CK
ADSP
ADSC
BW
G
GW
ADV
Burst Read
RD2
RD3
tKL
tS
tH
tH
tS tH
tS tH
ADSC initiated read
Suspend Burst
Single Read
ADSP is blocked by E inactive
A
0
An
B
A
B
D
tKH
tKC
tS tH
tS
tS
tH
DQ
A
DQ
D
RD1
Hi-Z
Suspend Burst
Flow Through Read Cycle Timing
tH
E
1
masks ADSP
E
1
tS
Rev: 1.00 10/2001
27/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Flow Through Read-Write Cycle Timing
CK
ADSP
ADV
GW
BW
G
Q1
A
D1
A
Q2
A
Q2
B
Q2c
Q2
D
Single Read
Burst Read
tOE
tOHZ
tS tH
tS
tH
tH
tS tH
tS
tH
tKH
DQ
A
DQ
D
B
A
B
D
tKL
tKC
tS
Single Write
ADSP is blocked by E inactive
tKQ
tS
tH
Hi-Z
Q2
A
Burst wrap around to it's initial state
WR1
E
1
tS
E
1
masks ADSP
tH
RD1
WR1
RD2
tS tH
A
0
An
ADSC
tS tH
ADSC initiated read
Rev: 1.00 10/2001
28/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Pipelined SCD Read Cycle Timing
Q1
A
Q3
A
Q2
D
Q2c
Q2
B
Q2
A
tKQ
tLZ
tOE
tOHZ
tOLZ
tKQX
tHZ
tKQX
CK
ADSP
ADSC
BW
G
GW
ADV
Burst Read
RD2
RD3
tKL
tS
tH
tH
tS tH
tS tH
ADSC initiated read
Suspend Burst
Single Read
ADSP is blocked by E inactive
A
0
An
BW
A
BW
D
tKH
tKC
tS
tH
tS
tS
tH
DQ
A
DQ
D
RD1
Hi-Z
tH
E
1
masks ADSP
E
1
tS
Rev: 1.00 10/2001
29/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
CK
ADSP
ADV
GW
BW
G
Q1
A
D1
A
Q2
A
Q2
B
Q2c
Q2
D
Single Read
Burst Read
tOE
tOHZ
tS tH
tS
tH
tH
tS tH
tS tH
tKH
DQ
A
DQ
D
BW
A
BW
D
tKL
tKC
tS
Single Write
ADSP is blocked by E inactive
tKQ
tS tH
Hi-Z
Pipelined SCD Read-Write Cycle Timing
WR1
E
1
tS
E
1
masks ADSP
tH
RD1
WR1
RD2
tS tH
A
0
An
ADSC
tS tH
ADSC initiated read
Rev: 1.00 10/2001
30/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Pipelined DCD Read Cycle Timing
Q1
A
Q3
A
Q2
D
Q2c
Q2
B
Q2
A
tKQ
tLZ
tOE
tOHZ
tOLZ
tKQX
tHZ
tKQX
CK
ADSP
BW
G
GW
ADV
Burst Read
RD2
RD3
tKL
tH
tS
tH
tH
tS tH
tS tH
Suspend Burst
E
1
masks ADSP
Single Read
ADSP is blocked by E1 inactive
A
0
An
B
A
B
D
E
1
tKH
tKC
tS
tS
tH
DQ
A
DQ
D
tS
RD1
Hi-Z
ADSC
tS tH
ADSC initiated read
Rev: 1.00 10/2001
31/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Pipelined DCD Read-Write Cycle Timing
CK
ADSP
ADSC
ADV
GW
BW
E
1
G
WR1
Q1
A
D1
A
Q2
A
Q2
B
Q2c
Q2
D
Single Read
Burst Read
tOE
tOHZ
tS
tS tH
tS
tH
tH
tS tH
tS tH
tS tH
tKH
ADSC initiated read
E
1
masks ADSP
DQ
A
DQ
D
tKL
tKC
tS
tH
Single Write
ADSP is blocked by E1 inactive
tKQ
tS tH
Hi-Z
B
A
B
D
RD1
RD2
tS tH
A
0
An
WR1
Rev: 1.00 10/2001
32/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Sleep Mode
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to
low, the SRAM operates normally after 2 cycles of wake up time.
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I
SB
2. The duration of
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.
When the ZZ pin is driven high, I
SB
2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands
may be applied while the SRAM is recovering from Sleep mode.
Application Tips
Single and Dual Cycle Deselect
SCD devices (like this one) force the use of "dummy read cycles" (read cycles that are launched normally, but that are ended with
the output drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance, but their use usually
assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste
bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at
bank address boundary crossings), but greater care must be exercised to avoid excessive bus contention.
JTAG Port Operation
Due to the fact that this device is built from two die, the two JTAG parts are chained together internally. The following describes
the behavior of each die.
Overview
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V
DD
. The JTAG output
drivers are powered by V
DDQ
.
CK
ADSP
ADSC
tH
tKH tKL
tKC
tS
ZZ
tZZR
tZZH
tZZS
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
Snooze
Sleep Mode Timing Diagram
Rev: 1.00 10/2001
33/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Disabling the JTAG Port
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG
Port unused, TCK, TDI, and TMS may be left floating or tied to either V
DD
or V
SS
. TDO should be left unconnected.
JTAG Port Registers
Overview
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s
and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the
rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the
TDI and TDO pins.
Instruction Register
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the
controller is placed in Test-Logic-Reset state.
Bypass Register
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through
the RAM's JTAG Port to another device in the scan chain with as little delay as possible.
Boundary Scan Register
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM's input or I/O pins.
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port's TDO pin. The
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in
JTAG Pin Descriptions
Pin
Pin Name
I/O
Description
TCK
Test Clock
In
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate
from the falling edge of TCK.
TMS
Test Mode Select
In
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP
controller state machine. An undriven TMS input will produce the same result as a logic one input
level.
TDI
Test Data In
In
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers
placed between TDI and TDO. The register placed between TDI and TDO is determined by the
state of the TAP Controller state machine and the instruction that is currently loaded in the TAP
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce
the same result as a logic one input level.
TDO
Test Data Out
Out
Output that is active depending on the state of the TAP state machine. Output changes in
response to the falling edge of TCK. This is the output side of the serial registers placed between
TDI and TDO.
Note:
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.
Rev: 1.00 10/2001
34/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.
JTAG TAP Block Diagram
Identification (ID) Register
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.
Tap Controller Instruction Set
Overview
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be
ID Register Contents
Die
Revision
Code
Not Used
I/O
Configuration
GSI Technology
JEDEC Vendor
ID Code
P
r
e
s
e
n
c
e

R
e
g
i
s
t
e
r
Bit #
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0
x72
X X X X 0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1 0 0 0 1 1 0 1 1 0 0 1
1
x36
X X X X 0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0 0 0 0 1 1 0 1 1 0 0 1
1
x32
X X X X 0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0 0 0 0 1 1 0 1 1 0 0 1
1
x18
X X X X 0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0 0 0 0 1 1 0 1 1 0 0 1
1
x16
X X X X 0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0 0 0 0 1 1 0 1 1 0 0 1
1
Instruction Register
ID Code Register
Boundary Scan Register
0
1
2
0
1
2
31 30 29
0
1
2
n
0
Bypass Register
TDI
TDO
TMS
TCK
Test Access Port (TAP) Controller
Rev: 1.00 10/2001
35/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load
address, data or control signals into the RAM or to preload the I/O buffers.
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this
device is listed in the following table.
JTAG Tap Controller State Diagram
Instruction Descriptions
BYPASS
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices
in the scan path.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruc-
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan
Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the
Select DR
Capture DR
Shift DR
Exit1 DR
Pause DR
Exit2 DR
Update DR
Select IR
Capture IR
Shift IR
Exit1 IR
Pause IR
Exit2 IR
Update IR
Test Logic Reset
Run Test Idle
0
0
1
0
1
1
0
0
1
1
1
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
1
1
1
Rev: 1.00 10/2001
36/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it
is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although
allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be
stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be
paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-
DR state then places the boundary scan register between the TDI and TDO pins.
EXTEST
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s.
The EXTEST command does not block or override the RAM's input pins; therefore, the RAM's internal state is still determined by its input
pins.
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST
command is used to output the Boundary Scan Register's contents, in parallel, on the RAM's data output drivers on the falling edge of TCK
when the controller is in the Update-IR state.
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected,
the sate of all the RAM's input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are trans-
ferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM's output pins drive out the
value of the Boundary Scan Register location with which each output pin is associated.
IDCODE
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any
time the controller is placed in the Test-Logic-Reset state.
SAMPLE-Z
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the
Boundary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.
RFU
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.
Rev: 1.00 10/2001
37/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
JTAG TAP Instruction Set Summary
Instruction
Code
Description
Notes
EXTEST
000
Places the Boundary Scan Register between TDI and TDO.
1
IDCODE
001
Preloads ID Register and places it between TDI and TDO.
1, 2
SAMPLE-Z
010
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
Forces all RAM output drivers to High-Z.
1
RFU
011
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
1
SAMPLE/
PRELOAD
100
Captures I/O ring contents. Places the Boundary Scan Register between TDI and
TDO.
1
GSI
101
GSI private instruction.
1
RFU
110
Do not use this instruction; Reserved for Future Use.
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.
1
BYPASS
111
Places Bypass Register between TDI and TDO.
1
Notes:
1. Instruction codes expressed in binary, MSB on left, LSB on right.
2. Default instruction automatically loaded at power-up and in test-logic-reset state.
Rev: 1.00 10/2001
38/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
JTAG Port Recommended Operating Conditions and DC Characteristics
Parameter
Symbol
Min.
Max.
Unit Notes
3.3 V Test Port Input High Voltage
V
IHJ3
2.0
V
DD3
+0.3
V
1
3.3 V Test Port Input Low Voltage
V
ILJ3
0.3
0.8
V
1
2.5 V Test Port Input High Voltage
V
IHJ2
0.6 * V
DD2
V
DD2
+0.3
V
1
2.5 V Test Port Input Low Voltage
V
ILJ2
0.3
0.3 * V
DD2
V
1
TMS, TCK and TDI Input Leakage Current
I
INHJ
300
1
uA
2
TMS, TCK and TDI Input Leakage Current
I
INLJ
1
100
uA
3
TDO Output Leakage Current
I
OLJ
1
1
uA
4
Test Port Output High Voltage
V
OHJ
1.7
--
V
5, 6
Test Port Output Low Voltage
V
OLJ
--
0.4
V
5, 7
Test Port Output CMOS High
V
OHJC
V
DDQ
100 mV
--
V
5, 8
Test Port Output CMOS Low
V
OLJC
--
100 mV
V
5, 9
Notes:
1. Input Under/overshoot voltage must be
2 V > Vi < V
DDn
+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.
2.
V
ILJ
V
IN
V
DDn
3.
0 V
V
IN
V
ILJn
4. Output Disable, V
OUT
= 0 to V
DDn
5. The TDO output driver is served by the V
DDQ
supply.
6. I
OHJ
=
4 mA
7. I
OLJ
= + 4 mA
8. I
OHJC
= 100 uA
9. I
OHJC
= +100 uA
Notes:
1. Include scope and jig capacitance.
2. Test conditions as as shown unless otherwise noted.
JTAG Port AC Test Conditions
Parameter
Conditions
Input high level
2.3 V
Input low level
0.2 V
Input slew rate
1 V/ns
Input reference level
1.25 V
Output reference level
1.25 V
DQ
V
T
= 1.25 V
50
30pF
*
JTAG Port AC Test Load
* Distributed Test Jig Capacitance
Rev: 1.00 10/2001
39/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
JTAG Port Timing Diagram
JTAG Port AC Electrical Characteristics
Parameter
Symbol
Min
Max
Unit
TCK Cycle Time
tTKC
50
--
ns
TCK Low to TDO Valid
tTKQ
--
20
ns
TCK High Pulse Width
tTKH
20
--
ns
TCK Low Pulse Width
tTKL
20
--
ns
TDI & TMS Set Up Time
tTS
10
--
ns
TDI & TMS Hold Time
tTH
10
--
ns
tTKQ
tTS
tTH
tTKH
tTKL
TCK
TMS
TDI
TDO
tTKC
Rev: 1.00 10/2001
40/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Notes:
1. Depending on the package, some input pads of the scan chain may not be connected to any external pin. In such case: LBO = 1, ZQ = 1,
PE = 0, SD = 0, ZZ = 0, FT = 1, DP = 1, and SCD = 1.
2. Every DQ pad consists of two scan registers--D is for input capture, and Q is for output capture.
3. A single register (#194) for controlling tristate of all the DQ pins is at the end of the scan chain (i.e., the last bit shifted in this tristate control
is effective after JTAG EXTEST instruction is executed.
4. 1 = no connect, internally set to logic value 1
5. 0 = no connect, internally set to logic value 0
6. X = no connect, value is undefined
GS832418/36/72 Boundary Scan Chain Order
Order
x72
x36
x18
Bump
x72
x36 x18
1(TBD)
Rev: 1.00 10/2001
41/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
209 BGA Package Drawing
14 mm x 22 mm Body, 1.0 mm Bump Pitch, 11 x 19 Bump Array
Symbol
Min
Typ
Max
Units
A
1.70
mm
A1
0.40
0.50
0.60
mm
b
0.50
0.60
0.70
mm
c
0.31
0.36
0.38
mm
D
21.9
22.0
22.1
mm
D1
18.0 (BSC)
mm
E
13.9
14.0
14.1
mm
E1
10.0 (BSC)
mm
e
1.00 (BSC)
mm
aaa
0.15
mm
Rev 1.0
A
A1
C
b
e
e
E
E
1
D1
D
aaa
Bottom View
Side View
Rev: 1.00 10/2001
42/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
Package Dimensions--119-Pin PBGA
A
B
Pin 1
Corner
K
E
F
C
T
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
G
S
D
1
2
3
4
5
6
7
Package Dimensions--119-Pin PBGA
Unit: mm
Symbol
Description
Min. Nom. Max
A
Width
13.9
14.0
14.1
B
Length
21.9
22.0
22.1
C
Package Height (including ball)
1.73
1.86
1.99
D
Ball Size
0.60
0.75
0.90
E
Ball Height
0.50
0.60
0.70
F
Package Height (excluding balls) 1.16
1.26
1.36
G
Width between Balls
1.27
K
Package Height above board
0.65
0.70
0.75
R
Width of package between balls
7.62
S
Length of package between balls
20.32
T
Variance of Ball Height
0.15
Bottom View
R
Top View
Side View
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
119-Bump BGA Package
Rev: 1.00 10/2001
43/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)

Ordering Information for GSI Synchronous Burst RAMs
Org
Part Number
1
Type
Package
Speed
2
(MHz/ns)
T
A
3
2M x 18
GS832418B-250
DCD Pipeline/Flow Through
119 BGA
250/6
C
2M x 18
GS832418B-225
DCD Pipeline/Flow Through
119 BGA
225/6.5
C
2M x 18
GS832418B-200
DCD Pipeline/Flow Through
119 BGA
200/7.5
C
2M x 18
GS832418B-166
DCD Pipeline/Flow Through
119 BGA
166/8.5
C
2M x 18
GS832418B-150
DCD Pipeline/Flow Through
119 BGA
150/10
C
2M x 18
GS832418B-133
DCD Pipeline/Flow Through
119 BGA
133/11
C
2M x 18
GS832418C-250
DCD Pipeline/Flow Through
209 BGA
250/6
C
2M x 18
GS832418C-225
DCD Pipeline/Flow Through
209 BGA
225/6.5
C
2M x 18
GS832418C-200
DCD Pipeline/Flow Through
209 BGA
200/7.5
C
2M x 18
GS832418C-166
DCD Pipeline/Flow Through
209 BGA
166/8.5
C
2M x 18
GS832418C-150
DCD Pipeline/Flow Through
209 BGA
150/10
C
2M x 18
GS832418C-133
DCD Pipeline/Flow Through
209 BGA
133/11
C
1M x 36
GS832436B-250
SCD/DCD Pipeline/Flow Through
119 BGA
250/6
C
1M x 36
GS832436B-225
SCD/DCD Pipeline/Flow Through
119 BGA
225/6.5
C
1M x 36
GS832436B-200
SCD/DCD Pipeline/Flow Through
119 BGA
200/7.5
C
1M x 36
GS832436B-166
SCD/DCD Pipeline/Flow Through
119 BGA
166/8.5
C
1M x 36
GS832436B-150
SCD/DCD Pipeline/Flow Through
119 BGA
150/10
C
1M x 36
GS832436B-133
SCD/DCD Pipeline/Flow Through
119 BGA
133/11
C
1M x 36
GS832436C-250
SCD/DCD Pipeline/Flow Through
209 BGA
250/6
C
1M x 36
GS832436C-225
SCD/DCD Pipeline/Flow Through
209 BGA
225/6.5
C
1M x 36
GS832436C-200
SCD/DCD Pipeline/Flow Through
209 BGA
200/7.5
C
1M x 36
GS832436C-166
SCD/DCD Pipeline/Flow Through
209 BGA
166/8.5
C
1M x 36
GS832436C-150
SCD/DCD Pipeline/Flow Through
209 BGA
150/10
C
1M x 36
GS832436C-133
SCD/DCD Pipeline/Flow Through
209 BGA
133/11
C
512K x 72
GS832472C-250
SCD/DCD Pipeline/Flow Through
209 BGA
250/6
C
512K x 72
GS832472C-225
SCD/DCD Pipeline/Flow Through
209 BGA
225/6.5
C
512K x 72
GS832472C-200
SCD/DCD Pipeline/Flow Through
209 BGA
200/7.5
C
512K x 72
GS832472C-166
SCD/DCD Pipeline/Flow Through
209 BGA
166/8.5
C
512K x 72
GS832472C-150
SCD/DCD Pipeline/Flow Through
209 BGA
150/10
C
Notes:
1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS832418B-150IB.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3. T
A
= C = Commercial Temperature Range. T
A
= I = Industrial Temperature Range.
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.00 10/2001
44/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
512K x 72
GS832472C-133
SCD/DCD Pipeline/Flow Through
209 BGA
133/11
C
2M x 18
GS832418B-250I
DCD Pipeline/Flow Through
119 BGA
250/6
I
2M x 18
GS832418B-225I
DCD Pipeline/Flow Through
119 BGA
225/6.5
I
2M x 18
GS832418B-200I
DCD Pipeline/Flow Through
119 BGA
200/7.5
I
2M x 18
GS832418B-166I
DCD Pipeline/Flow Through
119 BGA
166/8.5
I
2M x 18
GS832418B-150I
DCD Pipeline/Flow Through
119 BGA
150/10
I
2M x 18
GS832418B-133I
DCD Pipeline/Flow Through
119 BGA
133/11
I
2M x 18
GS832418C-250I
DCD Pipeline/Flow Through
209 BGA
250/6
I
2M x 18
GS832418C-225I
DCD Pipeline/Flow Through
209 BGA
225/6.5
I
2M x 18
GS832418C-200I
DCD Pipeline/Flow Through
209 BGA
200/7.5
I
2M x 18
GS832418C-166I
DCD Pipeline/Flow Through
209 BGA
166/8.5
I
2M x 18
GS832418C-150I
DCD Pipeline/Flow Through
209 BGA
150/10
I
2M x 18
GS832418C-133I
DCD Pipeline/Flow Through
209 BGA
133/11
I
1M x 36
GS832436B-250I
SCD/DCD Pipeline/Flow Through
119 BGA
250/6
I
1M x 36
GS832436B-225I
SCD/DCD Pipeline/Flow Through
119 BGA
225/6.5
I
1M x 36
GS832436B-200I
SCD/DCD Pipeline/Flow Through
119 BGA
200/7.5
I
1M x 36
GS832436B-166I
SCD/DCD Pipeline/Flow Through
119 BGA
166/8.5
I
1M x 36
GS832436B-150I
SCD/DCD Pipeline/Flow Through
119 BGA
150/10
I
1M x 36
GS832436B-133I
SCD/DCD Pipeline/Flow Through
119 BGA
133/11
I
1M x 36
GS832436C-250I
SCD/DCD Pipeline/Flow Through
209 BGA
250/6
I
1M x 36
GS832436C-225I
SCD/DCD Pipeline/Flow Through
209 BGA
225/6.5
I
1M x 36
GS832436C-200I
SCD/DCD Pipeline/Flow Through
209 BGA
200/7.5
I
1M x 36
GS832436C-166I
SCD/DCD Pipeline/Flow Through
209 BGA
166/8.5
I
1M x 36
GS832436C-150I
SCD/DCD Pipeline/Flow Through
209 BGA
150/10
I
1M x 36
GS832436C-133I
SCD/DCD Pipeline/Flow Through
209 BGA
133/11
I
512K x 72
GS832472C-250I
SCD/DCD Pipeline/Flow Through
209 BGA
250/6
I
Ordering Information for GSI Synchronous Burst RAMs
(Continued)
Org
Part Number
1
Type
Package
Speed
2
(MHz/ns)
T
A
3
Notes:
1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS832418B-150IB.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3. T
A
= C = Commercial Temperature Range. T
A
= I = Industrial Temperature Range.
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.00 10/2001
45/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
512K x 72
GS832472C-225I
SCD/DCD Pipeline/Flow Through
209 BGA
225/6.5
I
512K x 72
GS832472C-200I
SCD/DCD Pipeline/Flow Through
209 BGA
200/7.5
I
512K x 72
GS832472C-166I
SCD/DCD Pipeline/Flow Through
209 BGA
166/8.5
I
512K x 72
GS832472C-150I
SCD/DCD Pipeline/Flow Through
209 BGA
150/10
I
512K x 72
GS832472C-133I
SCD/DCD Pipeline/Flow Through
209 BGA
133/11
I
Ordering Information for GSI Synchronous Burst RAMs
(Continued)
Org
Part Number
1
Type
Package
Speed
2
(MHz/ns)
T
A
3
Notes:
1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS832418B-150IB.
2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each
device is Pipeline/Flow Through mode-selectable by the user.
3. T
A
= C = Commercial Temperature Range. T
A
= I = Industrial Temperature Range.
4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.
Rev: 1.00 10/2001
46/46
2001, Giga Semiconductor, Inc.
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Preliminary
GS832418(B/C)/GS832436(B/C)/GS832472(C)
36Mb Sync SRAM Datasheet Revision History
DS/DateRev. Code: Old;
New
Types of Changes
Format or Content
Page;Revisions;Reason
832418_r1
Creation of new datasheet