ChipFind - документация

Электронный компонент: HA17902PJ

Скачать:  PDF   ZIP
HA17902 Series
Quad Operational Amplifier
Description
The HA17902 is an internal phase compensation quad operational amplifier that operates on a single-
voltage power supply and is appropriate for use in a wide range of general-purpose control equipment.
Features
Wide usable power-supply voltage range and single-voltage supply operation
Internal phase compensation
Wide common-mode voltage range and operation for inputs close to the 0 level
Ordering Information
Type No.
Application
Package
HA17902PJ
Car use
DP-14
HA17902FPJ
FP-14DA
HA17902FPK
FP-14DA
HA17902P
Industrial use
DP-14
HA17902FP
FP-14DA
HA17902
Commercial use
DP-14
HA17902 Series
2
Pin Arrangement
+
+
+
+
(Top view)
1
2
3
4
5
6
7
14
13
12
11
10
9
8
Vout4
Vin()4
Vin(+)4
GND
Vin(+)3
Vin()3
Vout3
Vout1
Vin()1
Vin(+)1
V
CC
Vin(+)2
Vin()2
Vout2
2
3
4
1
Circuit Structure (1/4)
Q
6
Q
5
Q
7
Q
13
Q
12
Q
11
Q
10
Q
9
Q
8
Q
4
Q
3
Q
2
Q
1
C
Vin()
Vin(+)
R
1
Vout
HA17902 Series
3
Absolute Maximum Ratings (Ta = 25C)
Item
Symbol
HA17902/
P
HA17902
PJ
HA17902
FP
HA17902
FPJ
HA17902
FPK
Unit
Power supply
voltage
V
CC
28
28
28
28
28
V
Sink current
Io sink
50
50
50
50
25
mA
Allowable power
dissipation
P
T
625*
1
625*
1
625*
2
625*
2
625*
2
mW
Common-mode
input voltage
V
CM
0.3 to
V
CC
0.3 to
V
CC
0.3 to
V
CC
0.3 to
V
CC
0.3 to
V
CC
V
Differential-mode
input voltage
Vin(diff)
V
CC
V
CC
V
CC
V
CC
V
CC
V
Operating
temperature
Topr
20 to +75
40 to +85
20 to +75
40 to +85
40 to
+125
C
Storage
temperature
Tstg
55 to
+125
55 to
+125
55 to
+125
55 to
+125
55 to
+150
C
Notes: 1. These are the allowable values up to Ta = 50
C. Derate by 8.3mW/
C above that temperature.
2. See notes on SOP Package Usage in Reliability section.
HA17902 Series
4
Electrical Characteristics 1 (V
CC
= + 15V, Ta = 25C)
Item
Symbol
Min
Typ
Max
Unit
Test Conditions
Input offset voltage
V
IO
--
3
8
mV
V
CM
= 7.5V, R
S
= 50
, Rf = 5k
Input offset current
I
IO
--
5
50
nA
I
IO
=
|
I
I
I
I
+
|
, V
CM
= 7.5V
Input bias current
I
IB
--
30
500
nA
V
CM
= 7.5V
Power-supply
rejection ratio
PSRR
--
93
--
dB
f = 100Hz, R
S
= 1k
, Rf = 100k
Voltage gain
A
VD
75
90
--
dB
R
S
= 1k
, Rf = 100k
, RL =
Common-mode
rejection ratio
CMR
--
80
--
dB
R
S
= 50
, Rf = 5k
Common-mode input
voltage range
V
CM
0.3
--
13.5
V
R
S
= 1k
, Rf = 100k
, f = 100Hz
Maximum output
voltage amplitude
V
OP-P
--
13.6
--
V
f = 100Hz, R
S
= 1k
, Rf = 100k
,
R
L
= 20k
Output voltage
V
OH1
13.2
13.6
--
V
I
OH
= 1mA
V
OH2
12
13.3
--
V
I
OH
= 10mA
V
OL1
--
0.8
1
V
I
OL
= 1mA
V
OL2
--
1.1
1.8
V
I
OL
= 10mA
Output source current
Io source
15
--
--
mA
V
OH
= 10V
Output sink current
Io sink
3
9
--
mA
V
OL
= 1V
Supply current
I
CC
--
0.8
2
mA
Vin = GND, R
L
=
Slew rate
SR
--
0.19
--
V/
s
f = 1.5kHz, V
CM
= 7.5V, R
L
=
Channel separation
CS
--
120
--
dB
f = 1kHz
Electrical Characteristics 2 (V
CC
= + 15V, Ta = 40 to 125C)
Item
Symbol
Min
Typ
Max
Unit
Test Conditions
Input offset voltage
V
IO
--
--
8
mV
V
CM
= 7.5V, R
S
= 50
, Rf = 5k
Input offset current
I
IO
--
--
200
nA
V
CM
= 7.5V , I
IO
=
|
I
I
I
I
+
|
Input bias current
I
IB
--
--
500
nA
V
CM
= 7.5V
Common-mode input
voltage range
V
CM
0
--
13.0
V
R
S
= 1k
, Rf = 100k
, f = 100Hz
Output voltage
V
OH
13.0
--
--
V
I
OH
= 1mA
V
OL
--
--
1.3
V
I
OL
= 1mA
Supply current
I
CC
--
--
4
mA
Vin = GND, R
L
=
HA17902 Series
5
Test Circuits
1. Input offset voltage (V
IO
), input offset current (I
IO
), and Input bias current (I
IB
) test circuit
Rf 5k
Rf 5k
SW1
On
Off
On
Off
SW2
On
Off
Off
On
V
O
V
O1
V
O2
V
O3
V
O4
V
CC
V
CM
=
1
2
V
CC
V
CM
Vout
+
V
SW2
R 10k
R 10k
SW1
R
S
50
R
S
50
V
IO
=
V
O1
1 + Rf / R
S
(mV)
I
IO
=
V
O2
V
O1
R(1 + Rf / R
S
)
(nA)
I
IB
=
|
V
O4
V
O3
|
2 R(1 + Rf / R
S
)
(nA)
2. Common-mode rejection ratio (CMR) test circuit
CMR = 20 log
V
IN
Rf
V
O
R
S
(dB)
+
Vout
V
CC
Rf 5.0k
Rf
5.0k
R
S
50
R
S
50
Vin
3. Supply current (I
CC
) test circuit
+
A
V
CC
Vout
HA17902 Series
6
4. Voltage gain (A
VD
), slew rate (SR), common-mode input voltage range (V
CM
), and maximum output
voltage amplitude (V
OP-P
) test circuit.
+
+
+
+
Rf
100k
Rf
100k
Rf
20k
V
CC
Vout
SW1
R
S
1k
R
S
1k
R
51k
47
47
47
Vin
Vin
V
2
V
1
D.U.T
40dB
(1)
A
VD
: R
S
= 1k
, Rf = 100k
, R
L
=
, V
1
= V
2
= 1/2 V
CC
A
VD
= 20 log
+ 40
V
O
V
IN
(dB)
(2) SR: f = 1.5kHz, R
L
=
, V
1
= V
2
= 1/2 V
CC
V
T
SR =
[V/
s]
V
T
(3) V
CM
: R
S
= 1k
, Rf = 100k
, f = 100Hz, V
1
= 1/2 V
CC
, R
L
=
,
and the value of V
2
just slightly prior to the point where the output waveform changes.
(4) V
OP-P
:R
S
= 1k
, Rf = 100k
, R
L
: 20k
, f = 100Hz, V
OP-P
= V
OH
V
OL
[V
P-P
]
5. Output source current (Iosource) test circuit
Io source: V
OH
= 10V
+
V
CC
V
OH
10k
A
6. Output sink current (Iosink) test circuit
Io sink: V
OL
= 1V
+
V
CC
V
OH
10k
A
HA17902 Series
7
Characteristics Curve
10
20
30
100
75
50
25
0
Input Bias Current I
IB
(nA)
Power-Supply Voltage V
CC
(V)
Input Bias Current vs.
Power-Supply
Voltage Characteristics
55 35
125
90
80
70
60
50
40
30
20
10
0
Input Bias Current I
IB
(nA)
Ambient Temperature Ta (
C)
Input Bias Current vs.
Ambient
Temperature Characteristics
15
5
25
45
65
85 105
Ta = 25
C
Vin = 7.5 V
55
15
85
125
90
80
70
60
50
40
30
20
10
0
Output Sink Current I
o sink
(mA)
Ambient Temperature Ta (
C)
Output Sink Current vs.
Ambient Temperature Characteristics
35
5
25
45
65
105
55
15
85
125
90
80
70
60
50
40
30
20
10
0
Output Sink Current I
o source
(mA)
Ambient Temperature Ta (
C)
Output Source Current vs.
Ambient Temperature Characteristics
35
5
25
45
65
105
V
CC
= 15 V
V
OH
= 1 V
V
CC
= 15 V
V
OH
= 10 V
HA17902 Series
8
1
10
1 M
160
140
120
100
80
60
40
20
0
Voltage Gain A
VD
(dB)
Frequency f (Hz)
Voltage Gain vs.
Frequency Characteristics
100
1 k
10 k
100 k
30
160
140
120
100
80
60
40
20
0
Voltage Gain A
VD
(dB)
Power-Supply Voltage V
CC
(V)
Voltage Gain vs.
Power-Supply Voltage Characteristics
10
20
V
CC
= 15 V
Ta = 25
C
Ta = 25
C
30
4
3
2
1
0
Supply Current I
CC
(mA)
Power-Supply Voltage V
CC
(V)
Supply Current vs.
Power-Supply Voltage Characteristics
10
20
20
15
10
5
0
Maximum Output Voltage Amplitude
V
OP-P
(V
P-P
)
1 M
Frequency f (Hz)
10 k
100 k
Maximum Output Voltage Amplitude vs.
Frequency Characteristics
Ta = 25
C
Vin = GND
1 k
HA17902 Series
9
30
0.8
0.6
0.4
0.2
Slew Rate SR (V/
s)
Power-Supply Voltage V
CC
(V)
Slew Rate vs.
Power-Supply Voltage Characteristics
10
20
120
100
80
60
40
20
0
Common-Mode Rejection Ratio
CMR (dB)
Common-Mode Rejection Ratio vs.
Frequency Characteristics
1 M
Frequency f (Hz)
1 k
10 k
0
100
100 k
V1 = V2 = 1/2 V
CC
f = 1.5 kHz
V
CC
= 15 V
Ta = 25
C
R
S
= 50
HA17902 Series
10
30
0.8
0.6
0.4
0.2
Slew Rate SR (V/
s)
Power-Supply Voltage V
CC
(V)
Slew Rate vs.
Power-Supply Voltage Characteristics
10
20
120
100
80
60
40
20
0
Common-Mode Rejection Ratio
CMR (dB)
Common-Mode Rejection Ratio vs.
Frequency Characteristics
1 M
Frequency f (Hz)
1 k
10 k
0
100
100 k
V1 = V2 = 1/2 V
CC
f = 1.5 kHz
V
CC
= 15 V
Ta = 25C
R
S
= 50
HA17902 Series
11
HA17902 Application Examples
The HA17902 is a quad operational amplifier, and consists of four operational amplifier circuits and one
bias current circuit. It features single-voltage power supply operation, internal phase compensation, a wide
zero-cross bandwidth, a low input bias current, and a high open-loop gain. Thus the HA17902 can be used
in a wide range of applications. This section describes several applications using the HA17902.
1. Noninverting Amplifier
Figure 1 shows the circuit diagram for a noninverting amplifier. The voltage gain of this amplifier is
given by the following formula.
= 1 +
R2
R1
Vout
Vin
+
+Vin
10k
R
1
10k
R
2
1M
Vout
Figure 1 Noninverting Amplifier
2. Summing Amplifier
Since the circuit shown in figure 2 applies +V
1
and +V
2
to the noninverting input and +V
3
and +V
4
to
the inverting input, the total output will be Vout = V
1
+ V
2
V
3
V
4
.
+
R
100k
R
100k
R
100k
R
100k
+V
1
+V
2
+V
3
+V
4
R
100 k
Vout
V
CC
Vin(+)
Vin()
HA17902
100k
Figure 2 Summing Amplifier
HA17902 Series
12
3. High Input Impedance DC Differential Amplifier
The circuit shown in figure 3 is a high input impedance DC differential amplifier. This circuit's
common-mode rejection ratio (CMR) depends on the matching between the R
1
/R
2
and R
4
/R
3
resistance
ratios. This amplifier's output is given by the following formula.
Vout = 1 +
(V
2
V
1
)
R
4
R
3
+
+
R
2
100k
100k
R
4
R
1
100k
R
3
100k
Vout
V
1
V
2
Figure 3 High Input Impedance DC Differential Amplifier
4. Voltage Controlled Oscillator
Figure 4 shows an oscillator circuit in which the amplifier A
1
is an integrator, the amplifier A
2
is a
comparator, and transistor Q
1
operates as a switch that controls the oscillator frequency. If the output
Vout1 is at the low level, this will cut off transistor Q1 and cause the A
1
inverting input to go to a higher
potential than the noninverting input. Therefore, A
1
will integrate this negative input state and its output
level will decrease. When the A
1
integrator output becomes lower than the A
2
comparator noninverting
input level (V
CC
/2) the comparator output goes high. This turns on transistor Q
1
causing the integrator to
integrate a positive input state and for its output to increase. This operation generates a square wave on
Vout1 and a triangular wave on Vout2.
+
+
100k
10k
51k
51k
R
100k
V
CC
V
CC
A
2
A
1
Vout1
Vout2
V
CC
/2
HA17902
HA17902
R/2
50k
Q
1
+V
C
C 0.05
F
Figure 4 Voltage Controlled Oscillator
HA17902 Series
13
Package Dimensions
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
DP-14
Conforms
Conforms
0.97 g
Unit: mm
7.62
0.25
0
15
19.20
20.32 Max
1
8
14
7
1.30
2.54
0.25
0.48
0.10
6.30
7.40 Max
0.51 Min
2.54 Min
5.06 Max
+ 0.10
0.05
2.39 Max
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
FP-14DA
--
Conforms
0.23 g
Unit: mm
*Dimension including the plating thickness
Base material dimension
*0.22
0.05
*0.42
0.08
0.70
0.20
0.12
0.15
0
8
M
0.10
0.10
2.20 Max
5.5
10.06
1.42 Max
14
8
1
7
10.5 Max
+ 0.20
0.30
7.80
1.15
1.27
0.40
0.06
0.20
0.04
HA17902 Series
14
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party's rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi's sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong)
: http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Europe GmbH
Electronic components Group
Dornacher Stra
e 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
For further information write to: