ChipFind - документация

Электронный компонент: GMS81C50

Скачать:  PDF   ZIP

Document Outline

Nov. 1999
Ver 2.2
HYUNDAI
GMS81C50 Series
CONTENTS
1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. PIN ASSIGNMENT (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4. PACKAGE DIMENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 28 SOP PIN DIMENSION (DIMENSIONS IN INCH) . . . . . . . . . . . . 7
4.2 28 Skinny DIP PIN DIMENSION (DIMENSIONS IN INCH) . . . . . . . 7
4.3 40 PDIP Pin Dimension (dimension in inch) . . . . . . . . . . . . . . . . . . . 8
4.4 44 PLCC Pin Dimension (dimension in mm) . . . . . . . . . . . . . . . . . . 8
4.5 44 QFP Pin Dimension (dimension in mm) . . . . . . . . . . . . . . . . . . . . 9
5. PIN FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6. PORT STRUCTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1 R0 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 R1 Ports (R10, R11, R12, R13, R14) . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 R1 Ports (R15, R16, R17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.4 R2, R3, R4 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5 REMOUT Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.6 Xin, Xout Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.7 RESET Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.8 TEST Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7. ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.1 Absolute maximum ratings ( Ta=25 'C) . . . . . . . . . . . . . . . . . . . . . 16
7.2 Recommended Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.3 DC characteristics (VDD=2.2~4.0, Vss=0, Ta=0~70 `C) . . . . . . . . 17
7.4 REMOUT Port Ioh characteristics graph . . . . . . . . . . . . . . . . . . . . 18
7.5 REMOUT port Iol characteristics graph . . . . . . . . . . . . . . . . . . . . . 18
7.6 AC characteristics (VDD=2.2~4.0V, Vss=0V, Ta=0~70'C) . . . . . . . 19
8. MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.2 Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3 Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.4 Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
GMS81C50 Series
HYUNDAI
9. I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1 R0 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2 R1 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.3 R2 Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10. CLOCK GENERATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.1 Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
11. TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.1 Basic Interval Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.2 Timer0, Timer1, Timer2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
12. INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.1 Interrupt priority and sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.2 INTERRUPT CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . 58
12.3 INTERRUPT ACCEPT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12.4 INTERRUPT PROCESSING SEQUENCE . . . . . . . . . . . . . . . . . . 60
12.5 SOFTWARE INTERRUPT (Interrupt by Break (BRK) Instruction) 61
12.6 MULTIPLE INTERRUPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
12.7 Key Scan Input Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
13. WATCH DOG TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.1 Control of WDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.2 WDT Interrupt Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
14. STANDBY FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
14.1 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
14.2 STOP MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
14.3 STANDBY MODE RELEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
14.4 RELEASE OPERATION OF STANDBY MODE . . . . . . . . . . . . . . 72
15. OSCILLATION CIRCUIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
16. RESET FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
16.1 EXTERNAL RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
16.2 POWER ON RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
16.3 Low Voltage Detection Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
16.4 Low Voltage Indicator Register (LVIR) . . . . . . . . . . . . . . . . . . . . . 79
HYUNDAI
GMS81C50 Series
1
GMS81C50 Series
CMOS SINGLE-CHIP 8-BIT MICROCONTROLLER
FOR UR (Universal Remocon) & KEYBOARD
1. OVERVIEW
1.1 Description
The GMS81C50 Series is an advanced CMOS 8-bit microcontroller with 16K/24K/32K bytes of ROM. The device is one of
GMS800 family. The LG Semicon GMS81C50 Series is a powerful microcontroller which provides a highly flexible and
cost effective solution to many UR & Keyboard applications. The GMS81C50 Series provides the following standard fea-
tures: 16K/24K/32K bytes of ROM, 448 bytes of RAM, 8-bit timer/counter, on-chip oscillator and clock circuitry. In addi-
tion, the GMS81C50 Series supports power saving modes to reduce power consumption.
1.2 Features
Instruction Cycle Time:
- 1us at 4MHz
Programmable I/O pins
Operating Voltage
- 2.2 ~ 4.0 V @ 4MHz
Timer
- Timer / Counter ......... 16 Bit * 1 ch
......... 8 Bit * 2 ch
- Basic Interval Timer ...... 8 Bit * 1 ch
- Watch Dog Timer ............ 6Bit * 1ch
8 Interrupt sources
* Nested Interrupt control is available.
- External input: 2
- Keyscan input
- Basic Interval Timer
- Watchdog timer
- Timer : 3
Power On Reset
Power saving Operation Modes
- STOP
- SLEEP
Low Voltage Detection Circuit
Watch Dog Timer Auto Start (During 1second
after Power on Reset)
1.3 Development Tools
The GMS81C50 Series is supported by a full-featured
Device Name
ROM Size
RAM Size
Package
GMS81C5016
16K Bytes
448 Bytes
( included
256 bytes
stack memory )
28 SOP
28 Skinny DIP
40 PDIP
44 PLCC
44 QFP
GMS81C5024
24K Bytes
GMS81C5032
32K Bytes
28 PIN
40 PIN
44 PIN
INPUT
3
3
3
OUTPUT
2
2
2
I/O
21
33
33
GMS81C50 Series
HYUNDAI
2
macro assembler, an in-circuit emulator CHOICE-Dr
TM
.
In Circuit Emulators
CHOICE-Dr. (with EVA81C)
Assembler
LGS Macro Assembler
HYUNDAI
GMS81C50 Series
3
2. BLOCK DIAGRAM
REMOUT
R17 / T0
R16 / T1
R15 / T2
R14 / EC
R12 / INT2
R11 / INT1
R00 ~ R07
R10 ~ R17
TEST
RESET
XIN
XOUT
VDD
VSS
R00 ~ R07
R10 ~ R17
R20 ~ R27
R30 ~ R37
R40
G8MC
Core
RAM
(448byte)
Watchdog
Timer
Prescaler
&
B.I.T
Timer
Interrupt
Key Scan
INT.
Generation
Block
Clock Gen.
&
System
Control
R0
Port
R1
Port
R2
Port
R3
Port
R4
Port
ROM
(32 Kbyte)
GMS81C50 Series
HYUNDAI
4
3. PIN ASSIGNMENT (Top View)
R14/ EC
R03
R04
R05
R06
R07
VDD
XOUT
XIN
R11/ INT1
R12/ INT2
R13
TEST
R02
R01
R00
R10
RESET
R15/ T2
REMOUT
R16/ T1
R17/ T0
R24
VSS
R20
R21
R22
R23
40PDIP
R00
1
R01
2
R02
3
R03
4
R04
5
R05
6
R06
7
R07
8
R34
9
R35
10
VDD
11
R36
12
R37
13
XOUT
14
XIN
15
R10
16
R11/ INT1
17
R12/ INT2
18
R15 / T2
19
TEST
20
R14 / EC
R27
R26
R25
R24
R23
R22
R21
R20
VSS
40
39
38
37
36
35
34
33
32
31
R33
R32
R31
R30
REMOUT
R17 / T0
R16 / T1
RESET
30
29
28
27
26
25
24
23
22
21
R13
R40
HYUNDAI
GMS81C50 Series
5
44PLCC
RESET
REMOUT
R15 / T2
R12 / INT2
R11 / INT1
39
38
37
36
35
34
33
32
31
30
29
R40
VSS
R10
R3
5
R3
4
R0
7
R0
6
18
19
20
21
22
23
24
25
26
27
28
VD
D
R3
6
R3
7
XO
UT
XIN
VD
D
R0
5
R00
R01
7
8
9
10
11
12
13
14
R24
R25
R26
R14 / EC
R02
R03
15
16
17
R23
R04
VS
S
R3
3
R2
0
R2
1
6
5
4
3
2
1
44
43
42
41
40
R3
2
R3
1
R3
0
R1
7
/
T
0
R2
2
VS
S
R1
6
/
T
1
TEST
R27
R13
VDD
GMS81C50 Series
HYUNDAI
6
44QFP
22
21
20
19
18
17
16
15
14
13
12
1
2
3
4
5
6
7
8
9
10
11
34
35
36
37
38
39
40
41
42
43
44
33
32
31
30
29
28
27
26
25
24
23
R3
5
R3
4
R0
7
R0
6
VD
D
R3
6
R3
7
XO
UT
XIN
VD
D
R0
5
VS
S
R3
3
R2
0
R2
1
R3
2
R3
1
R3
0
R1
7
/
T
0
R2
2
VS
S
R1
6
/
T
1
RESET
REMOUT
R15 / T2
R12 / INT2
R11 / INT1
R40
VSS
R10
R14 / EC
TEST
R13
R00
R01
R24
R25
R26
R02
R03
R23
R04
R27
VDD
HYUNDAI
GMS81C50 Series
7
4. PACKAGE DIMENSION
4.1 28 SOP PIN DIMENSION (DIMENSIONS IN INCH)
4.2 28 Skinny DIP PIN DIMENSION (DIMENSIONS IN INCH)
GMS81C50 Series
HYUNDAI
8
4.3 40 PDIP Pin Dimension (dimension in inch)
4.4 44 PLCC Pin Dimension (dimension in mm)
2.045
2.075
0.065
0.015
0.022
0.
200
max.
0.530
0.550
0.045
0.100 BSC
0.600 BSC
0.
140
0.
120
MIN 0.
015
0.012
0.008
HYUNDAI
GMS81C50 Series
9
4.5 44 QFP Pin Dimension (dimension in mm)
GMS81C50 Series
HYUNDAI
10
5. PIN FUNCTION
V
DD
: Supply voltage.
V
SS
: Circuit ground.
TEST: Used for shipping inspection of the IC. For normal
operation, it should be connected to V
DD
.
RESET: Reset the MCU.
X
IN
: Input to the inverting oscillator amplifier and input to
the internal main clock operating circuit.
X
OUT
: Output from the inverting oscillator amplifier.
R00~R07: R0 is an 8-bit CMOS bidirectional I/O port. R0
pins 1 or 0 written to the Port Direction Register can be
used as outputs or inputs.
R10~R17: R1 is an 8-bit CMOS bidirectional I/O port. R1
pins 1 or 0 written to the Port Direction Register can be
used as outputs or inputs.
In addition, R1 serves the functions of the various follow-
ing special features.
R20~R22, R30~R37 : R2 & R3 is a 8-bit CMOS bidirec-
tional I/O port. Each pins 1 or 0 written to the their Port Di-
rection Register can be used as outputs or inputs.
R40 : R40 is 1-bit CMOS bidirectional I/O port. This pin 1
or 0 written to the its Port Direction Register can be used
as outputs or inputs.
Port pin
Alternate function
R11
R12
R14
R15
R16
R17
INT1 (External Interrupt input 1)
INT2 (External Interrupt input 2)
/EC (Event Counter input )
T2 (Timer / Counter input 2)
T1 (Timer / Counter input 1)
T0 (Timer / Counter input 0)
HYUNDAI
GMS81C50 Series
11
PIN NAME
INPUT/
OUTPUT
Function
@ RESET @ STOP
R00
I/O
R01
R02
R03
R04
R05
R06
R07
R10
R11/INT1
R12/INT2
R13
R14/EC
R15/T2
R16/T1
R17/T0
R20
R21
R22
R23
R24
XIN
XOUT
REMOUT
RESET
TEST
VDD
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I
O
O
I
I
P
- Each bit of the port can be
individually configured as an
input or an output by user software
- Push-pull output
- CMOS input with pull-up resistor
(can be selectable by user software)
- Can be programmable as Key
Scan Input or Open drain output
- Pull-ups are automatically
disabled at output mode
- Each bit of the port can be
individually configured as an
input or an output by user software
- CMOS input with pull-up resistor
(can be selectable by user software)
- Push-pull output
- Can be programmable as
Open drain output
- Direct Driving of LED(N-TR)
- Pull-ups are disabled at output
mode
Low
High
- Oscillator Input
- Oscillator Output
`L` output
`L` Output
- High Current Output
`L` level
state
of before
STOP
- Includes pull-up resistor
- Includes pull-up resistor
- Positive power supply
- Ground
Pin Numbers
28Pin
40PDIP 44PLCC
44QFP
28
1
13
41
1
2
14
42
2
3
15
43
3
4
16
44
4
5
17
1
5
6
18
2
6
7
19
3
7
8
20
4
11
16
29
12
12
17
30
13
13
18
31
14
14
19
32
15
17
22
36
19
18
23
37
20
20
26
40
23
21
27
41
24
R25
I/O
R26
I/O
R27
I/O
23
33
4
31
24
34
5
32
25
35
6
33
26
36
7
34
27
37
8
35
-
38
9
36
-
39
10
37
-
40
11
38
VSS
P
10
15
28
11
9
14
27
10
19
24
38
21
16
21
35
18
15
20
33
16
8
11
12,23,24
6,7,39
22
31
1,2.34
17,28,29
R30
R31
R32
R33
R34
I/O
I/O
I/O
I/O
I/O
INPUT
State
of before
STOP
R35
I/O
R36
I/O
R37
I/O
-
28
42
25
-
29
43
26
-
30
44
27
-
32
3
30
-
9
21
4
-
10
22
5
-
12
25
8
-
13
26
9
R40
I/O
-
25
39
22
GMS81C50 Series
HYUNDAI
12
6. PORT STRUCTURES
6.1 R0 Ports
6.2 R1 Ports (R10, R11, R12, R13, R14)
Pin Name
Circuit Type
@ RESET
Hi - Z
or
High-Input
(with pullup)
R00 ~ R07
MUX
Direction Register
Data Bus
PAD
Rd
VDD
VDD
VSS
Rd
Data Register
Pull-up Selection
Data Bus
Open drain Selection
Pin Name
Circuit Type
@ RESET
Hi - Z
or
High-Input
(with pullup)
R10
R11 / INT1
R12 / INT2
R13
R14 / EC
MUX
Direction Register
Data Bus
PAD
VDD
VDD
VSS
Rd
Data Register
Pull-up Selection
Open drain Selection
Function Selection
to R11...INT1
to R12...INT2
to R14...EC
NOISE
FILTER
HYUNDAI
GMS81C50 Series
13
6.3 R1 Ports (R15, R16, R17)
6.4 R2, R3, R4 Ports
Pin Name
Circuit Type
@ RESET
Hi - Z
or
High-Input
(with pullup)
R15 / T2
R16 / T1
R17 / T0
MUX
Direction Register
Data Bus
PAD
VDD
VDD
VSS
Rd
Data Register
Pull-up Selection
Open drain Selection
Function Selection
from R15...T2
from R16...T1
from R17...T0
MUX
Pin Name
Circuit Type
@ RESET
Hi - Z
or
High-Input
(with pullup)
R20 ~ R27
R30 ~ R37
R40
MUX
Direction Register
Data Bus
PAD
VDD
VDD
VSS
Rd
Data Register
Pull-up Selection
Open drain Selection
GMS81C50 Series
HYUNDAI
14
6.5 REMOUT Port
6.6 Xin, Xout Ports
6.7 RESET Port
Pin Name
Circuit Type
@ RESET
REMOUT
Low level
internal signal
PAD
VDD
VSS
Pin Name
Circuit Type
@ RESET
Xin
Xout
oscillation
Xin
Xout
VSS
from STOP circuit
NOISE
FILTER
Low level
Pin Name
Circuit Type
@ RESET
RESET
PAD
VDD
VSS
VSS
Pull - up resistor
from POWER
on RESET circuit
NOISE
FILTER
HYUNDAI
GMS81C50 Series
15
6.8 TEST Port
High level
TEST
Pin Name
Circuit Type
@ RESET
PAD
VDD
VSS
Pull - up resistor
NOISE
FILTER
GMS81C50 Series
HYUNDAI
16
7. ELECTRICAL CHARACTERISTICS
7.1 Absolute maximum ratings ( Ta=25 'C)
Note: Stresses above those listed under "Absolute Maxi-
mum Ratings" may cause permanent damage to the de-
vice. This is a stress rating only and functional operation of
the device at any other conditions above those indicated in
the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for ex-
tended periods may affect device reliability
7.2 Recommended Operating Ranges
Supply Voltage
Input Voltage
Output Voltage
Operating Temperature
Storage Temperature
Power Dissipation
VDD
VI
VO
Topr
Tstg
PD
-0.3 ~ +7.0
-0.3 ~ VDD + 0.3
0 ~ 70
-65 ~ 150
700
-0.3 ~ VDD + 0.3
V
V
mW
V
Parameter
Unit
Symbol
Rating
Supply Voltage
VDD
Operating Temperature
Topr
Oscillation Frequency
fXin
fXin = 4MHz
V
MHz
2.2
4.0
4.0
0
70
Parameter
Unit
Symbol
min.
Condition
typ.
max.
1.0
HYUNDAI
GMS81C50 Series
17
7.3 DC characteristics (VDD=2.2~4.0, Vss=0, Ta=0~70 `C)
! "! #! $$%
"
&
! '$ ! "! #(! "
)! #
! "! #! $$%
"
! '$ ! "! #(! "
)! #
*
"
)
+
*
+
,
,
"
"
*
+
*
+
,
,
,
$$%
,
"
- #
.
/
)
0
/
)
0
1
1
#
/
"#
1
)
"
23$
45
$6%
,
7 #89:
,
;
;
;
- #! $$%
- #! $$%
'* . (
'$ &(! "
)! #

! "! )! #
- #
- #
7
7
,
7 . 01
,
7 . 1
,
7 1
,
7 01
7
7
7 )
7 )
7 #
7 ""
7 #
7 "
.
1
1
. #
. #
#

.
1
1
1
1
1
,
$82%
7
0
-
)
1
,
$82%! &
7 "
. )
. "
. 0
1
18
;
&

*
)
2
,
7 . "1
. <
)
2
,
7 "1
)
"
"
,
;
7 #89:
7 #
7 ""
1
1
GMS81C50 Series
HYUNDAI
18
7.4 REMOUT Port Ioh characteristics graph
7.5 REMOUT port Iol characteristics graph
-35.0
-30.0
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
0
1
2
3
4
VOH(V)
I
O
H
(mA
)
VDD=4V
VDD=3V
VDD=2V
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
0
1
2
3
4
VOL(V)
IO
L
(
m
A
)
VDD=4V
VDD=3V
VDD=2V
HYUNDAI
GMS81C50 Series
19
7.6 AC characteristics (VDD=2.2~4.0V, Vss=0V, Ta=0~70'C)
(Continued)
Parameter
Symbol
Pin
Specification
Unit
min.
typ.
max.
No.
External clock input cycle time
System clock cycle time
1
2
tcp
Xin
250
500
1000
ns
tsys
500
1000
2000
ns
External clock pulse width High
3
tcpH
40
ns
Xin
Xin
External clock pulse width Low
4
tcpL
40
ns
Xin
External clock rising time
5
trcp
40
ns
Xin
External clock falling time
6
tfcp
40
ns
INT1~ INT2
interrupt pulse width High
7
tIH
2
tsys
INT1~ INT2
Interrupt pulse width Low
8
tIL
2
tsys
Reset input pulse width low
9
tRSTL
8
tsys
Event counter input pulse width high
10
tECH
2
tsys
RESET
EC
Event counter input pulse width low
11
tECL
2
tsys
EC
Event counter input pulse rising time
12
trEC
40
ns
EC
Event counter input pulse falling time
13
tfEC
40
ns
EC
GMS81C50 Series
HYUNDAI
20
Figure 7-1 Clock, Interrupt, RESET, EC Input Timing
XIN
tCP
tCPH
tCPL
trCP
tfCP
Vcc-0.5V
0.5V
INT1
INT2
0.8Vcc
0.2Vcc
tIH
tIL
0.2Vcc
tRSTL
RESET
0.8Vcc
0.2Vcc
tECL
tECH
trEC
tfEC
EC
HYUNDAI
GMS81C50 Series
21
8. MEMORY ORGANIZATION
The GMS81C50 Series has separate address spaces for
Program memory, Data Memory and Display memory.
Program memory can only be read, not written to. It can be
up to 32K bytes of Program memory. Data memory can be
read and written to up to 448 bytes including the stack area.
8.1 Registers
This device has six registers that are the Program Counter
(PC), an Accumulator (A), two index registers (X, Y), the
Stack Pointer (SP), and the Program Status Word (PSW).
The Program Counter consists of 16-bit register.
Figure 8-1 Configuration of Registers
Accumulator:
The Accumulator is the 8-bit general purpose register, used
for data operation such as transfer, temporary saving, and
conditional judgement, etc. The Accumulator can be used
as a 16-bit register with Y Register as shown below.
In the case of multiplication instruction, execute as a mul-
tiplier register. After multiplication operation, the lower 8-
bit of the result enters. (Y*A => YA). In the case of divi-
sion instruction, execute as the lower 8-bit of dividend. Af-
ter division operation, quotient enters.
Figure 8-2 Configuration of YA 16-bit Register
X, Y Registers:
In the addressing mode which uses these index registers,
the register contents are added to the specified address,
which becomes the actual address. These modes are ex-
tremely effective for referencing subroutine tables and
memory tables. The index registers also have increment,
decrement, comparison and data transfer functions, and
they can be used as simple accumulators.
* X Register : In the case of division instruction, execute
as register.
* Y Register : In the case of 16-bit operation instruction,
execute as the upper 8-bit of YA. (16-bit accumulator). In
the case of multiplication instruction, execute as a multipli-
cand register. After multiplication operation, the upper 8-
bit of the result enters. In the case of division instruction,
execute as the upper 8-bit of dividend. After division oper-
ation, remains enters. Y register can be used as loop
counter of conditional branch command. (e.g.DBNE Y,
rel)
Stack Pointer:
The Stack Pointer is an 8-bit register used for occurrence
interrupts, calling out subroutines and PUSH, POP, RETI,
RET instruction. Stack Pointer identifies the location in the
stack to be accessed (save or restore).
Generally, SP is automatically updated when a subroutine
call is executed or an interrupt is accepted. However, if it
is used in excess of the stack area permitted by the data
memory allocating configuration, the user-processed data
may be lost. The SP is post-decremented when a subrou-
tine call or a push instruction is executed, or when an inter-
rupt is accepted. The SP is pre-incremented when a return
or a pop instruction is executed.
The stack can be located at any position within 100
H
to
1FF
H
of the internal data memory. The SP is not initialized
by hardware, requiring to write the initial value (the loca-
tion with which the use of the stack starts) by using the ini-
tialization routine. Normally, the initial value of "FF
H
" is
A
ACCUMULATOR
X REGISTER
Y REGISTER
STACK POINTER
PROGRAM COUNTER
PROGRAM STATUS
WORD
X
Y
SP
PCL
PCH
PSW
Two 8-bit Registers can be used as a "YA" 16-bit Register
Y
A
Y
A
GMS81C50 Series
HYUNDAI
22
used.
Figure 8-3 Stack Operation
Program Counter:
The Program Counter is a 16-bit wide which consists of
two 8-bit registers, PCH and PCL. This counter indicates
the address of the next instruction to be executed. In reset
state, the program counter has reset routine address
(PC
H
:0FF
H
, PC
L
:0FE
H
).
Program Status Word:
The Program Status Word (PSW) contains several bits that
reflect the current state of the CPU. The PSW is described
in Figure 8-4 . It contains the Negative flag, the Overflow
flag, the Break flag the Half Carry (for BCD operation),
the Interrupt enable flag, the Zero flag, and the Carry flag.
[Carry flag C]
This flag stores any carry or borrow from the ALU of CPU
after an arithmetic operation and is also changed by the
Shift Instruction or Rotate Instruction.
SP
1
Stack Address ( 100
H
~ 1FF
H
)
15
0
8
7
Hardware fixed
Caution:
The Stack Pointer must be initialized by software be-
cause its value is undefined after RESET.
Example: To initialize the SP
LDX
#0FFH
TXSP
; SP
FF
H
At execution of
a CALL/TCALL/PCALL
PCL
PCH
01FF
SP after
execution
SP before
execution
01FD
01FE
01FD
01FC
01FF
Push
down
At acceptance
of interrupt
PCL
PCH
01FF
01FC
01FE
01FD
01FC
01FF
Push
down
PSW
At execution
of RET instruction
PCL
PCH
01FF
01FF
01FE
01FD
01FC
01FD
Pop
up
At execution
of RETI instruction
PCL
PCH
01FF
01FF
01FE
01FD
01FC
01FC
Pop
up
PSW
0100H
01FFH
Stack
depth
At execution
of PUSH instruction
A
01FF
01FE
01FE
01FD
01FC
01FF
Push
down
SP after
execution
SP before
execution
PUSH A (X,Y,PSW)
At execution
of POP instruction
A
01FF
01FF
01FE
01FD
01FC
01FE
Pop
up
POP A (X,Y,PSW)
HYUNDAI
GMS81C50 Series
23
[Zero flag Z]
This flag is set when the result of an arithmetic operation
or data transfer is "0" and is cleared by any other result.
Figure 8-4 PSW (Program Status Word) Register
[Interrupt disable flag I]
This flag enables/disables all interrupts except interrupt
caused by Reset or software BRK instruction. All inter-
rupts are disabled when cleared to "0". This flag immedi-
ately becomes "0" when an interrupt is served. It is set by
the EI instruction and cleared by the DI instruction.
[Half carry flag H]
After operation, this is set when there is a carry from bit 3
of ALU or there is no borrow from bit 4 of ALU. This bit
can not be set or cleared except CLRV instruction with
Overflow flag (V).
[Break flag B]
This flag is set by software BRK instruction to distinguish
BRK from TCALL instruction with the same vector ad-
dress.
[Direct page flag G]
This flag assigns RAM page for direct addressing mode. In
the direct addressing mode, addressing area is from zero
page 00
H
to 0FF
H
when this flag is "0". If it is set to "1",
addressing area is 1 Page. It is set by SETG instruction and
cleared by CLRG.
[Overflow flag V]
This flag is set to "1" when an overflow occurs as the result
of an arithmetic operation involving signs. An overflow
occurs when the result of an addition or subtraction ex-
ceeds +127(7F
H
) or -128(80
H
). The CLRV instruction
clears the overflow flag. There is no set instruction. When
the BIT instruction is executed, bit 6 of memory is copied
to this flag.
[Negative flag N]
This flag is set to match the sign bit (bit 7) status of the re-
sult of a data or arithmetic operation. When the BIT in-
struction is executed, bit 7 of memory is copied to this flag.
N
NEGATIVE FLAG
V
G
B
H
I
Z
C
MSB
LSB
RESET VALUE : 00
H
PSW
OVERFLOW FLAG
BRK FLAG
CARRY FLAG RECEIVES
ZERO FLAG
INTERRUPT ENABLE FLAG
CARRY OUT
HALF CARRY FLAG RECEIVES
CARRY OUT FROM BIT 1 OF
ADDITION OPERLANDS
SELECT DIRECT PAGE
when g=1, page is addressed by RPR
GMS81C50 Series
HYUNDAI
24
8.2 Program Memory
A 16-bit program counter is capable of addressing up to
64K bytes, but this device has 16K/24K/32K bytes pro-
gram memory space only physically implemented. Ac-
cessing a location above FFFF
H
will cause a wrap-around
to 0000
H
.
Figure 8-5 , shows a map of Program Memory. After reset,
the CPU begins execution from reset vector which is stored
in address FFFE
H
and FFFF
H
as shown in Figure 8-6 .
As shown in Figure 8-5 , each area is assigned a fixed lo-
cation in Program Memory. Program Memory area con-
tains the user program.
Figure 8-5 Program Memory Map
Page Call (PCALL) area contains subroutine program to
reduce program byte length by using 2 bytes PCALL in-
stead of 3 bytes CALL instruction. If it is frequently
called, it is more useful to save program byte length.
Table Call (TCALL) causes the CPU to jump to each
TCALL address, where it commences the execution of the
service routine. The Table Call service area spaces 2-byte
for every TCALL: 0FFC0
H
for TCALL15, 0FFC2
H
for
TCALL14, etc., as shown in Figure 8-7 .
Example: Usage of TCALL
The interrupt causes the CPU to jump to specific location,
where it commences the execution of the service routine.
The External interrupt 0, for example, is assigned to loca-
tion 0FFFA
H
. The interrupt service locations spaces 2-byte
interval: 0FFF8
H
and 0FFF9
H
for External Interrupt 1,
0FFFA
H
and 0FFFB
H
for External Interrupt 0, etc.
Any area from 0FF00
H
to 0FFFF
H
, if it is not going to be
used, its service location is available as general purpose
Program Memory.
Figure 8-6 Interrupt Vector Area
PROGRAM
MEMORY
TCALL
AREA
INTERRUPT
VECTOR AREA
8000H
FF00H
FFC0H
FFE0H
FFFFH
PCALL
AREA
U-PAGE
A000H
C000H
32KByte
24KByte
16KByte
Range
Range
Range
LDA
#5
TCALL
0FH
;
1BYTE INSTR UCTIO N
:
;
INSTEAD O F 2 BYTES
:
;
NO R M AL C ALL
;
;TABLE CALL ROUTINE
;
FUNC_A:
LDA
LRG0
RET
;
FUNC_B:
LDA
LRG1
RET
;
;TABLE CALL ADD. AREA
;
ORG
0FFC0H
;
TCALL ADDRESS AREA
DW
FUNC_A
DW
FUNC_B
1
2
E0
E2
Address
Vector Area Memory
E4
E6
E8
EA
EC
EE
F0
F2
F4
F6
F8
FA
FC
FE
-
-
-
Basic Interval Timer Interrupt Vector Area
-
-
Timer2 Interrupt Vector Area
Timer0 Interrupt Vector Area
-
External Interrupt 2 Vector Area
Key Scan Interrupt Vector Area
RESET Vector Area
External Interrupt 1 Vector Area
Timer1 Interrupt Vector Area
Watch Dog Timer Interrupt Vector Area
"-" means reserved area.
NOTE:
-
0FFDE
H
S/W Interrupt Vector Area
HYUNDAI
GMS81C50 Series
25
Figure 8-7 PCALL and TCALL Memory Area
PCALL
rel
4F35
PCALL 35H
TCALL
n
4A
TCALL
4
0FFC0
H
C1
Address
Program Memory
C2
C3
C4
C5
C6
C7
C8
0FF00
H
Address
PCALL Area Memory
0FFBF
H
PCALL Area
(192 Bytes)
* means that the BRK software interrupt is using
same address with TCALL0.
NOTE:
TCALL 15
TCALL 14
TCALL 13
TCALL 12
TCALL 11
TCALL 10
TCALL 9
TCALL 8
TCALL 7
TCALL 6
TCALL 5
TCALL 4
TCALL 3
TCALL 2
TCALL 1
TCALL 0 / BRK *
C9
CA
CB
CC
CD
CE
CF
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
4F
~
~
~
~
NEXT
35
0FF35H
0FF00H
0FFFFH
11111111 11010110
01001010
PC:
F
H
F
H
D
H
6
H
4A
~
~
~
~
25
0FFD6H
0FF00H
0FFFFH
D1
NEXT
0FFD7H
0D125H
Reverse
GMS81C50 Series
HYUNDAI
26
Example: The usage software example of Vector address and the initialize part.
ORG
0FFE0H
DW
NOT_USED
DW
NOT_USED
DW
NOT_USED
DW
BIT_INT
; BIT
DW
WDT_INT
; Watch Dog Timer
DW
NOT_USED
DW
NOT_USED
DW
TMR2_INT
; Timer-2
DW
TMR1_INT
; Timer-1
DW
TMR0_INT
; Timer-0
DW
NOT_USED
;
DW
INT2
; Int.2
DW
INT1
; Int.1
DW
KEY_INT
; Key Scan
DW
NOT_USED
;
DW
RESET
; Reset
ORG
08000H
;********************************************
;
MAIN PROGRAM
*
;********************************************
;
RESET:
DI
;Disable All Interrupts
LDX
#0
RAM_CLR:
LDA
#0
;RAM Clear(!0000H->!00BFH)
STA
{X}+
CMPX
#0C0H
BNE
RAM_CLR
;
;
LDX
#03FH
;Stack Pointer Initialize
TXSP
LDM
R0, #0
;Normal Port 0
LDM
R0DD,#1000_0010B
;Normal Port Direction
LDM
PUR0,#1000_0010B
;Pull Up Selection Set
LDM
PMR0,#0000_0001B
;R0 port / int
:
:
LDM
PCOR,#1
;Enable Peripheral clock
:
:
HYUNDAI
GMS81C50 Series
27
8.3 Data Memory
Figure 8-8 shows the internal Data Memory space availa-
ble. Data Memory is divided into 3 groups, a user RAM,
control registers, Stack.
Figure 8-8 Data Memory Map
User Memory
The GMS81C50 Series has 448
8 bits for the user mem-
ory (RAM).
Control Registers
The control registers are used by the CPU and Peripheral
function blocks for controlling the desired operation of the
device. Therefore these registers contain control and status
bits for the interrupt system, the timer/ counters, analog to
digital converters and I/O ports. The control registers are in
address range of 0C0
H
to 0FF
H
.
Note that unoccupied addresses may not be implemented
on the chip. Read accesses to these addresses will in gen-
eral return random data, and write accesses will have an in-
determinate effect.
More detailed informations of each register are explained
in each peripheral section.
Note: Write only registers can not be accessed by bit ma-
nipulation instruction. Do not use read-modify-write instruc-
tion. Use byte manipulation instruction.
Example; To write at CKCTLR
LDM
CLCTLR,#09H ;Divide ratio
8
Stack Area
The stack provides the area where the return address is
saved before a jump is performed during the processing
routine at the execution of a subroutine call instruction or
the acceptance of an interrupt.
When returning from the processing routine, executing the
subroutine return instruction [RET] restores the contents of
the program counter from the stack; executing the interrupt
return instruction [RETI] restores the contents of the pro-
gram counter and flags.
The save/restore locations in the stack are determined by
the stack pointed (SP). The SP is automatically decreased
after the saving, and increased before the restoring. This
means the value of the SP indicates the stack location
number for the next save. Refer to Figure 8-3 on page 22.
RAM
(192 Bytes)
CONTROL
REGISTERS
0000H
00BFH
00C0H
00FFH
0100H

01FFH
PAGE0
PAGE1
RAM (STACK)
(256 Bytes)
Address
Function Register
Read
Write
Symbol
RESET Value
00C0h
PORT R0 DATA REG.
R/W
R0
undefined
00C1h
PORT R0 DATA DIRECTION REG.
W
R0DD
00000000b
00C2h
PORT R1 DATA REG.
R/W
R1
undefined
00C3h
PORT R1 DATA DIRECTION REG.
W
R1DD
00000000b
00C4h
PORT R2 DATA REG.
R/W
R2
undefined
00C5h
PORT R2 DATA DIRECTION REG.
W
R2DD
00000000b
00C6h
reserved
GMS81C50 Series
HYUNDAI
28
00C7h
CLOCK CONTROL REG.
W
CKCTLR
--110111b
BASIC INTERVAL REG.
R
BTR
undefined
00C8h
WATCH DOG TIMER REG.
W
WDTR
-0001111b
00C9h
PORT R1 MODE REG.
W
PMR1
00000000b
00CAh
INT. MODE REG.
R/W
IMOD
-0000000b
00CBh
EXT. INT. EDGE SELECTION
W
IEDS
00000000b
00CCh
INT. ENABLE REG. LOW
R/W
IENL
-00-----b
00CDh
INT. REQUEST FLAG REG. LOW
R/W
IRQL
-00-----b
00CEh
INT. ENABLE REG. HIGH
R/W
IENH
000-000-b
00CFh
INT. REQUEST FLAG REG. HIGH
R/W
IRQH
000-000-b
00D0h
TIMER0 (16bit) MODE REG.
R/W
TM0
00000000b
00D1h
TIMER1 (8bit) MODE REG.
R/W
TM1
00000000b
00D2h
TIMER2 (8bit) MODE REG.
R/W
TM2
00000000b
00D3h
TIMER0 HIGH-MSB DATA REG.
W
T0HMD
undefined
00D4h
TIMER0 HIGH-LSB DATA REG.
W
T0HLD
undefined
00D5h
TIMER0 LOW-MSB DATA REG.
W
T0LMD
undefined
TIMER0 HIGH-MSB COUNT REG.
R
undefined
00D6h
TIMER0 LOW-LSB DATA REG.
W
T0LLD
undefined
TIMER0 LOW-LSB COUNT REG.
W
undefined
00D7h
TIMER1 HIGH DATA REG.
W
T1HD
undefined
00D8h
TIMER1 LOW DATA REG.
W
T1LD
undefined
TIMER1 LOW COUNT REG.
R
undefined
00D9h
TIMER2 DATA REG.
W
T2DR
undefined
TIMER2 COUNT REG.
R
undefined
00DAh
TIMER0 / TIMER1 MODE REG.
R/W
TM01
00000000b
00DBh
Reserved
00DCh
STANDBY MODE RELEASE REG0
W
SMPR0
00000000b
00DDh
STANDBY MODE RELEASE REG0
W
SMPR1
00000000b
00DEh
PORT R1 OPEN DRAIN ASSIGN REG.
W
R1ODC
00000000b
00DFh
PORT R2 OPEN DRAIN ASSIGN REG.
W
R2ODC
00000000b
00E0h
PORT R3 OPEN DRAIN ASSIGN REG.
W
R3ODC
00000000b
00E1h
PORT R4 OPEN DRAIN ASSIGN REG.
W
R4ODC
- - - - - - - 0b
00E2h
Reserved
00E3h
Reserved
00E4h
PORT R0 OPEN DRAIN ASSIGN REG.
W
R0ODC
00000000b
00E5h
PORT R3 DATA REG.
R/W
R3
undefined
00E6h
PORT R3 DATA DIRECTION REG.
W
R3DD
00000000b
HYUNDAI
GMS81C50 Series
29
00E7h
PORT R4 DATA REG.
R/W
R4
- - - - - - - Xb
00E8h
PORT R4 DATA DIRECTION REG.
W
R4DD
- - - - - - - 0b
00E9h
Reserved
00EAh
Reserved
00EBh
Reserved
00ECh
Reserved
00EDh
Reserved
00EEh
Reserved
00EFh
LOW VOLTAGE INDICATION REG.
R
LVIR
- - - - - - 00b
00F0h
SLEEP MODE REG.
W
SLPM
- - - - - - - 0b
00F1h
Reserved
00F2
Reserved
00F3h
Reserved
00F4h
Reserved
00F5h
Reserved
00F6h
STANDBY RELEASE LEVEL CONT. REG. 0
W
SRLC0
00000000b
00F7h
STANDBY RELEASE LEVEL CONT. REG. 1
W
SRLC1
00000000b
00F8h
PORT R0 PULL-UP REG. CONT. REG.
W
R0PC
00000000b
00F9h
PORT R1 PULL-UP REG. CONT. REG.
W
R1PC
00000000b
00FAh
PORT R2 PULL-UP REG. CONT. REG.
W
R2PC
00000000b
00FBh
PORT R3 PULL-UP REG. CONT. REG.
W
R3PC
00000000b
00FCh
PORT R4 PULL-UP REG. CONT. REG.
W
R4PC
- - - - - - - 0b
00FDh
Reserved
00FEh
Reserved
00FFh
Reserved
GMS81C50 Series
HYUNDAI
30
8.4 Addressing Mode
The GMS81C50 Series uses six addressing modes;
Register addressing
Immediate addressing
Direct page addressing
Absolute addressing
Indexed addressing
Register-indirect addressing
(1) Register Addressing
Register addressing accesses the A, X, Y, C and PSW.
(2) Immediate Addressing
#imm
In this mode, second byte (operand) is accessed as a data
immediately.
Example:
0435
ADC
#35H
When G-flag is 1, then RAM address is difined by 16-bit
address which is composed of 8-bit RAM paging register
(RPR) and 8-bit immediate data.
Example: G=1, RPR=0CH
E45535
LDM
35H,#55H
(3) Direct Page Addressing
dp
In this mode, a address is specified within direct page.
Example; G=0
C535
LDA
35H
;A
RAM[35H]
(4) Absolute Addressing
!abs
Absolute addressing sets corresponding memory data to
Data , i.e. second byte(Operand I) of command becomes
lower level address and third byte (Operand II) becomes
upper level address.
With 3 bytes command, it is possible to access to whole
memory area.
ADC, AND, CMP, CMPX, CMPY, EOR, LDA, LDX,
LDY, OR, SBC, STA, STX, STY
Example;
0735F0
ADC
!0F035H
;A
ROM[0F035H]
35
A+35H+C
A
04
MEMORY
E4
0F100
H
data
55H
~
~
~
~
data
0C35
H
35
0F102
H
55
0F101
H
data
35
35
H
0E551
H
data
A
~
~
~
~
C5
0E550
H
07
0F100
H
~
~
~
~
data
0F035
H
F0
0F102
H
35
0F101
H
A+data+C
A
address: 0F035
HYUNDAI
GMS81C50 Series
31
The operation within data memory (RAM)
ASL, BIT, DEC, INC, LSR, ROL, ROR
Example; Addressing accesses the address 0135
H
regard-
less of G-flag and RPR.
983501
INC
!0135H
;A
ROM[135H]
(5) Indexed Addressing
X indexed direct page (no offset)
{X}
In this mode, a address is specified by the X register.
ADC, AND, CMP, EOR, LDA, OR, SBC, STA, XMA
Example; X=15
H
, G=1, RPR=01
H
D4
LDA
{X}
;ACC
RAM[X].
X indexed direct page, auto increment
{X}+
In this mode, a address is specified within direct page by
the X register and the content of X is increased by 1.
LDA, STA
Example; G=0, X=35
H
DB
LDA
{X}+
X indexed direct page (8 bit offset)
dp+X
This address value is the second byte (Operand) of com-
mand plus the data of
-register. And it assigns the mem-
ory in Direct page.
ADC, AND, CMP, EOR, LDA, LDY, OR, SBC, STA
STY, XMA, ASL, DEC, INC, LSR, ROL, ROR
Example; G=0, X=0F5
H
C645
LDA
45H+X
98
0F100
H
~
~
~
~
data
135
H
01
0F102
H
35
0F101
H
data+1
data
address: 0135
data
D4
115
H
0E550
H
data
A
~
~
~
~
data
DB
35
H
data
A
~
~
~
~
36H
X
data
45
3A
H
0E551
H
data
A
~
~
~
~
C6
0E550
H
45H+0F5H=13AH
GMS81C50 Series
HYUNDAI
32
Y indexed direct page (8 bit offset)
dp+Y
This address value is the second byte (Operand) of com-
mand plus the data of Y-register, which assigns Memory in
Direct page.
This is same with above (2). Use Y register instead of X.
Y indexed absolute
!abs+Y
Sets the value of 16-bit absolute address plus Y-register
data as Memory. This addressing mode can specify mem-
ory in whole area.
Example; Y=55
H
D500FA
LDA
!0FA00H+Y
(6) Indirect Addressing
Direct page indirect
[dp]
Assigns data address to use for accomplishing command
which sets memory data(or pair memory) by Operand.
Also index can be used with Index register X,Y.
JMP, CALL
Example; G=0
3F35
JMP
[35H]
X indexed indirect
[dp+X]
Processes memory data as Data, assigned by 16-bit pair
m e m o r y w h i c h i s d e t e r m i n e d b y p a i r d a t a
[dp+X+1][dp+X] Operand plus
X-register data in Direct
page.
ADC, AND, CMP, EOR, LDA, OR, SBC, STA
Example; G=0, X=10
H
1625
ADC
[25H+X]
D5
0F100
H
data
A
~
~
~
~
data
0FA55
H
0FA00H+55H=0FA55H
FA
0F102
H
00
0F101
H
0A
35
H
jump to address 0E30A
H
~
~
~
~
35
0FA00
H
E3
36
H
3F
0E30A
H
NEXT
~
~
~
~
05
35
H
0E005
H
~
~
~
~
25
0FA00
H
E0
36
H
16
0E005
H
data
~
~
~
~
A + data + C
A
25 + X(10) = 35
H
HYUNDAI
GMS81C50 Series
33
Y indexed indirect
[dp]+Y
Processes momory data as Data, assigned by the data
[dp+1][dp] of 16-bit pair memory paired by Operand in Di-
rect page
plus Y-register data.
ADC, AND, CMP, EOR, LDA, OR, SBC, STA
Example; G=0, Y=10
H
1725
ADC
[25H]+Y
Absolute indirect
[!abs]
The program jumps to address specified by 16-bit absolute
address.
JMP
Example; G=0
1F25E0
JMP
[!0C025H]
05
25
H
0E005
H
+ Y(10) = 0E015
H
~
~
~
~
25
0FA00
H
E0
26
H
17
0E015
H
data
~
~
~
~
A + data + C
A
25
0E025
H
jump to
~
~
~
~
E0
0FA00
H
E7
0E026
H
25
0E725
H
NEXT
~
~
~
~
1F
PROGRAM MEMORY
address 0E30A
H
GMS81C50 Series
HYUNDAI
34
9. I/O PORTS
The GMS81C50 Series has 33 I/O ports which are
PORT0(8 I/O), PORT1 (8 I/O), PORT2 (8 I/O), PORT3 (8
I/O), PORT4 (1 I/O). Pull-up resistor of each port can be
selectable by program. Each port contains data direction
register which controls I/O and data register which stores
port data.
9.1 R0 Ports
R0 is an 8-bit CMOS bidirectional I/O port (address
0C0
H
). Each I/O pin can independently used as an input or
an output through the R0DD register (address 0C1
H
).
R0 has internal pull-ups that is independently connected or
disconnected by R0PC. The control registers for R0 are
shown below.
(1) R0 I/O Data Direction Register (R0DD)
R0 I/O Data Direction Register (R0DD) is 8-bit register,
and can assign input state or output state to each bit. If
R0DD is ``1``, port R0 is in the output state, and if ``0``, it
is in the input state. R0DD is write-only register. Since
R0DD is initialized as ``00 h`` in reset state, the whole port
R0 becomes input state.
(2) R0 Data Register (R0)
R0 data register (R0) is 8-bit register to store data of port
R0. When set as the output state by R0DD, and data is writ-
ten in R0, data is outputted into R0 pin. When set as the in-
put state, input state of pin is read. The initial value of R0
is unknown in reset state.
(3) R0 Open drain Assign Register (R0ODC)
R0 Open Drain Assign Register (R0ODC) is 8bit register,
and can assign R0 port as open drain output port each bit,
if corresponding port is selected as output. If R0ODC is
selected as ``1``, port R0 is open drain output, and if select-
ed as ``0``, it is push-pull output. R0ODC is write-only
register and initialized as ``00 h`` in reset state.
(4) R0 Pull-up Resistor Control Register (R0PC)
R0 pull-up resistor control register (R0PC) is 8-bit register
and can control pull-up on or off each bit, if corresponding
port is selected as input. If R0PC is selected as ``1``, pull-
up ia disabled and if selected as ``0``, it is enabled. R0PC
is write-only register and initialized as ``00 h`` in reset
state. The pull-up is automatically disabled, if correspond-
ing port is selected as output.
9.2 R1 Ports
R1 is an 8-bit CMOS bidirectional I/O port (address
0C2
H
). Each I/O pin can independently used as an input or
an output through the R1DD register (address 0C3
H
).
R1 has internal pull-ups that is independently connected or
disconnected by register R1PC. The control registers for
R1 are shown below.
R0 Data Register (R/W)
R0
ADDRESS : 0C0
H
RESET VALUE : Undefined
R07 R06 R05 R04 R03 R02 R01 R00
Port Direction
R0 Direction Register (W)
R0DD
ADDRESS : 0C1
H
RESET VALUE : 00
H
0: Input
1: Output
Pull-up select
R0 Pull-up Selection Register (W)
R0PC
ADDRESS :0F8
H
RESET VALUE : 00
H
0: Without pull-up
1: With pull-up
Open drain select
R0 Open drain Assign Register (W)
R0ODC
ADDRESS :0E4
H
RESET VALUE : 00
H
0: Push-pull
1: Open drain
HYUNDAI
GMS81C50 Series
35
(1) R1 I/O Data Direction Register (R1DD)
R1 I/O Data Direction Register (R1DD) is 8-bit register,
and can assign input state or output state to each bit. If
R1DD is ``1``, port R1 is in the output state, and if ``0``, it
is in the input state. R1DD is write-only register. Since
R1DD is initialized as ``00 h`` in reset state, the whole port
R1 becomes input state.
(2) R1 Data Register (R1)
R1 data register (R1) is 8-bit register to store data of port
R1. When set as the output state by R1DD, and data is writ-
ten in R1, data is outputted into R1 pin. When set as the in-
put state, input state of pin is read. The initial value of R1
is unknown in reset state.
(3) R1 Mode Register (PMR1)
R1 Port Mode Register (PMR1) is 8-bit register, and can
assign the selection mode for each bit. When set as ``0``,
corresponding bit of PMR1 acts as port R1 selection mode,
and when set as ``1``, it becomes function selection mode.
PMR1 is write-only register and initialized as ``00 h`` in
reset state. Therefore, becomes Port selection mode. Port
R1 can be I/O port by manipulating each R1DD bit, if cor-
responding PMR1 bit is selected as ``0``.
Table 9-1
Selection mode of PMR1
(4) R1 Pull-up Resistor Control Register (R1PC)
R1 pull-up resistor control register (R1PC) is 8-bit register
and can control pull-up on or off each bit, if corresponding
port is selected as input. If R1PC is selected as ``1``, pull-
up ia disabled and if selected as ``0``, it is enabled. R1PC
is write-only register and initialized as ``00 h`` in reset
state. The pull-up is automatically disabled, if correspond-
ing port is selected as output.
R1 Data Register (R/W)
R1
ADDRESS : 0C2
H
RESET VALUE : Undefined
R17 R16 R15 R14 R13 R12 R11 R10
Port Direction
R1 Direction Register (W)
R1DD
ADDRESS : 0C3
H
RESET VALUE : 00
H
0: Input
1: Output
Pull-up select
R1 Pull-up Selection Register (W)
R1PC
ADDRESS : 0F9
H
RESET VALUE : 00
H
0: Without pull-up
1: With pull-up
Open drain select
R1 Open drain Assign Register (W)
P1ODC
ADDRESS : 0DE
H
RESET VALUE : 00
H
0: Push-pull
1: Open drain
Mode select
R1 Port Mode Register (W)
PMR1
ADDRESS : 0C9
H
RESET VALUE : 00
H
0: Port R1 selection
1: Function selection
Pin Name
PMR1
Selection
Mode
Remarks
T0S
0
R17 (I/O)
-
1
T0 (O)
Timer0
T1S
0
R16 (I/O)
-
1
T1 (O)
Timer1
T2S
0
R15 (I/O)
-
1
T2 (O)
Timer2
ECS
0
R14 (I/O)
-
1
/EC (I)
Timer0 Event
INT2S
0
R12 (I/O)
1
INT2 (I)
Timer0 Input
Capture
INT1S
0
R11 (I/O)
1
INT1 (I)
GMS81C50 Series
HYUNDAI
36
9.3 R2 Port
R2 is an 8-bit CMOS bidirectional I/O port (address
0C4
H
). Each I/O pin can independently used as an input or
an output through the R2DD register (address 0C5
H
).
R2 has internal pujll-ups that is independently connected
or disconnected by R2PC (address 0FA
H
). The control reg-
isters for R2 are shown as below.
(1) R2 I/O Data Direction Register (R2DD)
R2 I/O Data Direction Register (R2DD) is 8-bit register,
and can assign input state or output state to each bit. If
R2DD is ``1``, port R2 is in the output state, and if ``0``, it
is in the input state. R2DD is write-only register. Since
R2DD is initialized as ``00 h`` in reset state, the whole port
R2 becomes input state.
(2) R2 Data Register (R2)
R2 data register (R2) is 8-bit register to store data of port
R2. When set as the output state by R2DD, and data is writ-
ten in R2, data is outputted into R2 pin. When set as the in-
put state, input state of pin is read. The initial value of R2
is unknown in reset state.
(3) R2 Open drain Assign Register (R2ODC)
R2 Open Drain Assign Register (R2ODC) is 8bit register,
and can assign R2 port as open drain output port each bit,
if corresponding port is selected as output. If R2ODC is
selected as ``1``, port R2 is open drain output, and if select-
ed as ``0``, it is push-pull output. R2ODC is write-only
register and initialized as ``00 h`` in reset state.
(4) R2 Pull-up Resistor Control Register (R2PC)
R2 pull-up resistor control register (R2PC) is 8-bit register
and can control pull-up on or off each bit, if corresponding
port is selected as input. If R2PC is selected as ``1``, pull-
up ia disabled and if selected as ``0``, it is enabled. R2PC
is write-only register and initialized as ``00 h`` in reset
state. The pull-up is automatically disabled, if correspond-
ing port is selected as output.
R2 Data Register (R/W)
R2
ADDRESS : 0C4
H
RESET VALUE : Undefined
R27 R26 R25 R24 R23 R22 R21 R20
Port Direction
R2 Direction Register (W)
R2DD
ADDRESS : 0C5
H
RESET VALUE : 00
H
0: Input
1: Output
Pull-up select
R2 Pull-up Selection Register (W)
R2PC
ADDRESS :0FA
H
RESET VALUE : 00
H
0: Without pull-up
1: With pull-up
Open drain select
R2 Open drain Assign Register (W)
R2ODC
ADDRESS :0DF
H
RESET VALUE : 00
H
0: Push-pull
1: Open drain
HYUNDAI
GMS81C50 Series
37
R3 Port
R3 is an 8-bit CMOS bidirectional I/O port (address
0E5
H
). Each I/O pin can independently used as an input or
an output through the R3DD register (address 0E6
H
).
R3 has internal pull-ups that is independently connected or
disconnected by R3PC (address 0FB
H
). The control regis-
ters for R3 are shown as below.
(1) R3 I/O Data Direction Register (R3DD)
R3 I/O Data Direction Register (R3DD) is 8-bit register,
and can assign input state or output state to each bit. If
R3DD is ``1``, port R3 is in the output state, and if ``0``, it
is in the input state. R3DD is write-only register. Since
R3DD is initialized as ``00 h`` in reset state, the whole port
R3 becomes input state.
(2) R3 Data Register (R3)
R3 data register (R3) is 8-bit register to store data of port
R3. When set as the output state by R3DD, and data is writ-
ten in R3, data is outputted into R3 pin. When set as the in-
put state, input state of pin is read. The initial value of R3
is unknown in reset state.
(3) R3 Open drain Assign Register (R3ODC)
R3 Open Drain Assign Register (R3ODC) is 8bit register,
and can assign R3 port as open drain output port each bit,
if corresponding port is selected as output. If R3ODC is
selected as ``1``, port R3 is open drain output, and if select-
ed as ``0``, it is push-pull output. R3ODC is write-only
register and initialized as ``00 h`` in reset state.
(4) R3 Pull-up Resistor Control Register (R3PC)
R3 pull-up resistor control register (R3PC) is 8-bit register
and can control pull-up on or off each bit, if corresponding
port is selected as input. If R3PC is selected as ``1``, pull-
up ia disabled and if selected as ``0``, it is enabled. R3PC
is write-only register and initialized as ``00 h`` in reset
state. The pull-up is automatically disabled, if correspond-
ing port is selected as output.
R3 Data Register (R/W)
R3
ADDRESS : 0E5
H
RESET VALUE : Undefined
R37 R36 R35 R34 R33 R32 R31 R30
Port Direction
R3 Direction Register (W)
R3DD
ADDRESS : 0E6
H
RESET VALUE : 00
H
0: Input
1: Output
Pull-up select
R3 Pull-up Selection Register (W)
R3PC
ADDRESS :0FB
H
RESET VALUE : 00
H
0: Without pull-up
1: With pull-up
Open drain select
R3 Open drain Assign Register (W)
R3ODC
ADDRESS :0E0
H
RESET VALUE : 00
H
0: Push-pull
1: Open drain
GMS81C50 Series
HYUNDAI
38
R4 Port
R4 is an 1-bit CMOS bidirectional I/O port (address
0E7
H
). Each I/O pin can independently used as an input or
an output through the R4DD register (address 0E8
H
).
R3 has internal pull-ups that is independently connected or
disconnected by R4PC (address 0FC
H
). The control regis-
ters for R4 are shown as below.
(1) R4 I/O Data Direction Register (R4DD)
R4 I/O Data Direction Register (R4DD) is 1-bit register,
and can assign input state or output state to each bit. If
R4DD is ``1``, port R4 is in the output state, and if ``0``, it
is in the input state. R4DD is write-only register. Since
R4DD is initialized as ``00 h`` in reset state, the whole port
R4 becomes input state.
(2) R4 Data Register (R4)
R4 data register (R4) is 1-bit register to store data of port
R4. When set as the output state by R4DD, and data is writ-
ten in R4, data is outputted into R4 pin. When set as the in-
put state, input state of pin is read. The initial value of R4
is unknown in reset state.
(3) R4 Open drain Assign Register (R4ODC)
R4 Open Drain Assign Register (R4ODC) is 1-bit register,
and can assign R4 port as open drain output port each bit,
if corresponding port is selected as output. If R4ODC is
selected as ``1``, port R4 is open drain output, and if select-
ed as ``0``, it is push-pull output. R4ODC is write-only
register and initialized as ``00 h`` in reset state.
(4) R4 Pull-up Resistor Control Register (R4PC)
R4 pull-up resistor control register (R4PC) is 1-bit register
and can control pull-up on or off each bit, if corresponding
port is selected as input. If R4PC is selected as ``1``, pull-
up ia disabled and if selected as ``0``, it is enabled. R4PC
is write-only register and initialized as ``00 h`` in reset
state. The pull-up is automatically disabled, if correspond-
ing port is selected as output.
R4 Data Register (R/W)
R4
ADDRESS : 0E7
H
RESET VALUE : Undefined
R40
Port Direction
R4 Direction Register (W)
R4DD
ADDRESS : 0E8
H
RESET VALUE : 00
H
0: Input
1: Output
Pull-up select
R4 Pull-up Selection Register (W)
R4PC
ADDRESS :0FC
H
RESET VALUE : 00
H
0: Without pull-up
1: With pull-up
Open drain select
R4 Open drain Assign Register (W)
R4ODC
ADDRESS :0E1
H
RESET VALUE : 00
H
0: Push-pull
1: Open drain
HYUNDAI
GMS81C50 Series
39
10. CLOCK GENERATOR
Clock generating circuit consists of Clock Pulse Generator
(C.P.G), Prescaler, Basic Interval Timer (B.I.T) and Watch
Dog Timer. The clock applied to the Xin pin divided by
two is used as the internal system clock.
Figure 10-1 Block Diagram of Clock Generator
Prescaler consists of 12-bit binary counter. The clock sup-
plied from oscillation circuit is input to prescaler (fex).
The divided output from each bit of prescaler is provided
to peripheral hardware.
Figure 10-2 Block diagram of Prescaler
9
PRESCALER
C.P.G
MUX
WDT (6)
COMPARATOR
Internal Data Bus
0
1
2
3
4
0
5
6
6
WDTON
To Reset
Circuit
IFWDT
WDTCL
IFBIT
5
0
7
0
fcpu
fex
PS1
ENPCK
Peripheral
CKCTLR
BTCL
3
8
OSC
Circuit
B.I.T (8)
6
WDTR
Internal System Clock
5
B.I.T
Peripheral
PS0
PS1
PS2
PS3
PS4
PS5
PS6
PS7
PS8
PS9
PS10 PS11
PS12
fex
ENPCK
fcpu
PS1
PS2
PS3
PS4
PS5
PS6
PS7
PS8
PS9
PS10
PS11
PS12
GMS81C50 Series
HYUNDAI
40
Table 10-1 ps output period
Clock to peripheral hardware can be stopped by bit4 (EN-
PCK) of CKCTLR Register. ENPCK is set to ``1`` in reset
state.
Figure 10-3 Clock Control Register
fex (MHz)
4 MHz
2 MHz
frequency
period
frequency
period
ps 0
ps 1
ps 2
ps 3
ps 4
ps 5
ps 6
ps 7
ps 8
ps 9
ps 10
ps 11
ps 12
4 MHz
2 MHz
1 MHz
500 KHz
250 KHz
125 KHz
62.5 KHz
31.25 KHz
15.63 KHz
7.183 KHz
3.906 KHz
1.953 KHz
0.976 KHz
250 ns
500 ns
1 us
2 us
4 us
8 us
16 us
32 us
64 us
128 us
256 us
512 us
1024 us
2 MHz
1 MHz
500 KHz
250 KHz
125 KHz
62.5 KHz
31.25 KHz
15.63 KHz
7.183 KHz
3.906 KHz
1.953 KHz
0.976 KHz
0.488 KHz
500 ns
1 us
2 us
4 us
8 us
16 us
32 us
64 us
128 us
256 us
512 us
1024 us
2048 us
0
-
-
WDTON
ENPCK
BTCL
BTS2
BTS1
BTS0
7
W <00C7 h>
CKCTLR
Clock Control Register
ENPCK
Periphral clock
0
1
stopped
provided
HYUNDAI
GMS81C50 Series
41
10.1 Operation Mode
The system clock controller starts or stops the main-fre-
quency clock oscillator. Figure 10-2 shows the operating
mode transition diagram.
Main-clock operating mode
This mode is fast-frequency operating mode.
The CPU and the peripheral hardwares are operated on the
high-frequency clock. At reset release, this mode is in-
voked.
STOP mode
In this mode, the system operations are all stopped, holding
the internal states valid immediately before the stop at the
low power consumption level
Figure 10-4 Operating Mode
STOP
Mode
RESET
Operation
Main: Stopped
Main: Oscillating
ST
O
P
In
st
ru
ct
io
n
Main - Oscillating
NOTE:
Refer to 14.3 context
Reset
R
efe
r to
N
ote
SLEEP
Mode
Mode
Main
Operating
Reset
Re
fe
r t
o
no
te
R
egi
ster
se
ttin
g
Release
Instruction
GMS81C50 Series
HYUNDAI
42
11. TIMER
11.1 Basic Interval Timer
The GMS81C50 Series has one 8-bit Basic Interval Timer
that is free-run and can not stop. Block diagram is shown
in Figure 11-1 .
The Basic Interval Timer generates the time base for key
scanning, watchdog timer counting, and etc. It also pro-
vides a Basic interval timer interrupt (IFBIT). As the count
overflow from FF
H
to 00
H
, this overflow causes the inter-
rupt to be generated.
-8bit binary counter
-Use the bit output of prescaler as input to secure the oscil-
lation stabilization time after power-on
-Secures the oscillation stabilization time in standby mode
(stop mode) release
-Contents of B.I.T can be read
-Provides the clock for watch dog timer.
Figure 11-1 Block Diagram of Basic Interval Timer
(1) Control of B.I.T
The Basic Interval Timer is controlled by the clock control
register (CKCTLR) shown in Figure 11-2 . If bit3(BTCL)
of CKCTLR is set to ``1``, B.I.T is cleared, and then, after
one machine cycle, BTCL becomes ``0``, and B.I.T starts
counting. BTCL is set to ``0`` in reset state.
MUX
BITR
IFBIT
PS3
PS4
PS5
PS6
PS7
PS8
PS9
PS10
DATA BUS
DATA BUS
-
-
WDTON
ENPCK
BTCL
BTS2
BTS1
BTS0
CKCTLR
BIT0
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BIT7
HYUNDAI
GMS81C50 Series
43
Figure 11-2 BTCL mode of B.I.T
(2) Input clock selection of B.I.T
The input clock of B.I.T can be selected from the prescaler
within a range of 2us to 256us by clock input selection bits
(BTS2~BTS0). (at fex = 4MHz). In reset state, or power
on reset, BTS2=``1``, BTS1=``1``, BTS0=``1`` to secure
the longest oscillation stabilization time. B.I.T can gener-
ate the wide range of basic interval time interrupt request
(IFBIT) by selecting prescaler output. Interrupt interval
can be selected to kinds of interval time as shown in
Figure 11-3 .
Figure 11-3 Basic Interval Timer Interrupt Time
(3) Reading Basic Interval Timer
By reading of the Basic Interval Timer Register (BITR),
we can read counter value of B.I.T. Because B.I.T can be
cleared or read, the spending time up to maximum 65.5ms
can be available. B.I.T is read-only register. If B.I.T reg-
0
-
-
WDTON
ENPCK
BTCL
BTS2
BTS1
BTS0
7
W <00C7 h>
CKCTLR
Clock Control Register
BTCL
Periphral clock
0
1
free-run
Automatically cleared, after one cycle
512 us
1,024 us
2,048 us
4,096 us
8,192 us
16,384 us
32,768 us
65,536 us
0
-
-
WDTON
ENPCK
BTCL
BTS2
BTS1
BTS0
7
W <00C7 h>
CKCTLR
Clock Control Register
BTS0
B.I.T. Input clock
0
1
BTS1
0
0
BTS2
0
0
Standby release time
0
1
0
1
1
0
0
0
1
1
0
1
0
1
1
1
1
1
PS3 (2us)
PS4 (4us)
PS5 (8us)
PS6 (16us)
PS7 (32us)
PS8 (64us)
PS9 (128us)
PS10 (256us)
GMS81C50 Series
HYUNDAI
44
ister is written, then CKCTLR register with same address
is written.
11.2 Timer0, Timer1, Timer2
(1) Timer Operation Mode
Timer consists of 16bit binary counter Timer0 (T0), 8bit
binary Timer1 (T1), Timer2 (T2), Timer Data Register,
Timer Mode Register (TM01, TM0, TM1, TM2) and con-
trol circuit. Timer Data Register Consists of Timer0 High-
MSB Data Register (T0HMD), Timer0 High-LSB Data
Register (T0HLD), Timer0 Low-MSB Data Register
(T0LMD), Timer0 Low-LSB Data Register (T0LLD),
Timer1 High Data Register (T1HD), Timer1 Low Data
Register (T1LD), Timer2 Data Register (T2DR). Any of
the PS0 ~ PS5, PS11 and external event input EC can be
selected as clock source for T0. Any of the PS0 ~ PS3, PS7
~ PS10 can be selected as clock T1. Any of the PS5 ~ PS12
can be selected as clock source for T2.
* Relevant Port Mode Register (PMR1 : 00C9 h) value
should be assigned for event counter,
0
BIT7
BIT6
BIT5
BIT4
BIT3
BIT2
BIT1
BIT0
7
R <00C7 h>
BITR
Basic Interval Timer Register
Timer0
- 16-bit Interval Timer
- 16-bit Event Counter
- 16-bit Input Capture
- 16-bit rectangular-wave output
- Single/Modulo-N Mode
- Timer Output Initial Value Setting
- Timer0~Timer1 combination Logic Output
- One Interrupt Generating Every 2nd
Counter Overflow
Timer1
- 8-bit Interval Timer
- 8-bit rectangular-wave output
Timer2
- 8-bit Interval Timer
- 8-bit rectangular-wave output
- Modulo-N Mode
HYUNDAI
GMS81C50 Series
45
Figure 11-4 Timer / Counter Block diagram
(2) Function of Timer & Counter
T2 OUT / R15
TIMER0 (16 BIT)
Polarity
Selection
T0HMD
T0HLD
T0LMD
T0LLD
Tout LOGIC
T1HD
T1LD
TIMER1 (8 BIT)
EDGE
Selection
T1 OUT / R16
REMOUT
T0 OUT / R17
EC / R14
INT2 / R12
(Capture
Signal)
16
8
8
8
8
8
8
16
TIMER2 (8 BIT)
T2DR
PS0 ( 0.25 us)
16,384 us
PS0 ( 0.25 us)
64 us
PS5 ( 8 us)
2.048 us
PS1 ( 0. 5 us)
32,768 us
PS1 ( 0.5 us)
128 us
PS6 ( 16 us)
4,096 us
PS2 ( 1 us)
65,536 us
PS2 ( 1 us)
256 us
PS7 ( 32 us)
8,192 us
PS3 ( 2 us)
131,072 us
PS3 ( 2 us)
512us
PS8 ( 64 us)
16,384 us
PS4 ( 4 us)
262,144 us
PS7 ( 32 us)
8,192 us
PS9 ( 128 us)
32,768 us
PS5 ( 8 us)
524,288 us
PS8 ( 64 us)
16,384 us
PS10 ( 256 us)
65,536 us
PS11 ( 512 us)
33,554,432 us
PS9 ( 128 us)
32,768 us
PS11 ( 512 us)
131,072 us
EC
-
PS10 ( 256 us)
65,536 us
PS12 (1,024 us)
262,144 us
fex = 4MHz
16bit Timer (T0)
8bit Timer (T1)
8bit Timer (T2)
Resolution (CK)
Max. Count
Resolution (CK)
Max. Count
Resolution (CK)
Max. Count
GMS81C50 Series
HYUNDAI
46
Figure 11-5 Block Diagram of Timer0
Internal Data Bus
TIMER0 H
COUNT
REG
TIMER0 L
COUNT
REG
TIMER0
HM
DATA
REG
TIMER0
HL
DATA
REG
TIMER0
LM
DATA
REG
TIMER0
LL
DATA
REG
SINGLE/
MODULO-N
SELECTION
MUX
CK
T0 COUNTER
(16 BIT)
Clear
PS0
PS1
PS2
PS3
PS4
PS5
PS11
EC
M
U
X
D
E
L
A
Y
EDGE
SELECTION
MUX
Int.
Gen.
OUTPUT GEN.
TM0
R / W
<00D0 h>
<00D5 h>
<00D6 h>
<00D3 h>
<00D4 h>
<00D5 h>
<00D6 h>
16
16
16
INT2
T0INT
T0 OUT
IFT0
DATA READ
7
6
5
4
3
2
1
0
HYUNDAI
GMS81C50 Series
47
Figure 11-6 Block Diagram of Timer1
Internal Data Bus
7
6
5
4
3
2
1
0
TIMER1
COUNT REG
TIMER1
H
DATA
REG
TIMER1
L
DATA
REG
SINGLE/
MODULO-N
SELECTION
MUX
CK
T1 COUNTER
(8 BIT)
PS0
PS1
PS2
PS3
PS7
PS8
PS9
PS10
Int.
Gen.
OUTPUT GEN.
TM1
R/W
<00D1h>
<00D7 h>
<00D8 h>
T1OUT
IFT1
OUTPUT GEN.
X
<00D8 h>
T1INT
GMS81C50 Series
HYUNDAI
48
Figure 11-7 Block Diagram of Timer2
Internal Data Bus
7
6
5
4
3
2
1
0
TIMER2
COUNT REG
MUX
CK
T2 COUNTER
(8 BIT)
PS5
PS6
PS7
PS8
PS9
PS10
PS11
PS12
OUTPUT GEN.
TM2
R/W
<00D2 h>
<00D9 h>
T2 OUT
<00D9 h>
TIMER2
DATA REG
IFT2
HYUNDAI
GMS81C50 Series
49
Figure 11-8 Timer0 / Timer1 Mode Register
0
TOUTS
TOUTB
-
T0OUTP
T0INIT
T1INIT
TOUT1
TOUT0
7
R / W <00DA h>
TM01
Timer0 / Timer1 Mode Register
TOUT0
TOUT1
TOUT LOGIC
0
0
0
1
1
0
1
1
T1INIT
Timer1 Output Initial Value
0
1
T0INIT
0
1
T0OUTP
T0OUT Polarity Selection
0
1
TOUTB
REMOUT Port Bit Control
0
1
TOUTS
REMOUT Port Output Selection
(TOUT logic or TOUTB)
0
1
AND of T0 OUTPUT and T1 OUTPUT
NAND of T0 OUTPUT and T1 OUTPUT
OR of T0 OUTPUT and T1 OUTPUT
NOR of T0 OUTPUT and T1 OUTPUT
Timer1 output low
Timer1 output high
Timer0 Output Initial Value
Timer0 Output Low
Timer0 Output High
T0OUT polarity equal to TOUT logic input signal
T0OUT polarity reverse to TOUT logic input signal
REMOUT output low
REMOUT output high
Bit (TOUTB) output through REMOUT
TOUT logic output through REMOUT
GMS81C50 Series
HYUNDAI
50
Figure 11-9 Timer0 Mode Register
0
CAP0
T0ST
T0CN
T0MOD
T0IFS
T0SL2
T0SL1
T0SL0
7
R / W <00D0 h>
TM0
Timer0 Mode Register
T0SL2
T0SL1
Input clock selection
0
0
0
0
0
1
0
1
T0IFS
Timer0 Interrupt Selection
0
1
1
0
1
0
1
1
1
1
T0SL0
0
1
0
1
0
1
0
1
Notes
PS0 (250ns)
PS1 (500ns)
PS2 ( 1us)
PS3 ( 2us)
PS4 ( 4us)
PS5 ( 8us)
PS11 (512us)
EC
Event
Counter
*
Interrupt every counter overflow
Interrupt every 2nd counter overflow
T0MOD
Timer0 Single/Modulo-N Selection
0
1
Modulo-N
Single
T0CN
Timer0 Counter Continuation/Pause Control
0
1
Count pause
Count contination
T0ST
Timer0 Start/Stop Control
0
1
Timer0 Stop
Timer Start after clear
CAP0
Timer0 Interrupt Selection
0
1
Timer/Counter
Input capture *
* PS1 : not supporting input capture.
HYUNDAI
GMS81C50 Series
51
Figure 11-10 Timer1 Mode Register
0
T1ST
T1CN
T1MOD
T1IFS
-
T1SL2
T1SL1
T1SL0
7
R / W <00D1 h>
TM1
Timer1 Mode Register
T1SL2
T1SL1
Input clock selection
0
0
0
0
0
1
0
1
T1IFS
Timer1 Interrupt Selection
0
1
1
0
1
0
1
1
1
1
T1SL0
0
1
0
1
0
1
0
1
PS0 (250ns)
PS1 (500ns)
PS2 ( 1us)
PS3 ( 2us)
PS7 ( 32us)
PS8 ( 64us)
PS9 (128us)
Interrupt every counter overflow
Interrupt every 2nd counter overflow
T1MOD
Timer1 Single/Modulo-N Selection
0
1
Modulo-N
Single
T1CN
Timer1 Counter Continuation/Pause Control
0
1
Count pause
Count contination
T1ST
Timer1 Start/Stop Control
0
1
Timer1 Stop
Timer1 Start after clear
PS10 (256us)
GMS81C50 Series
HYUNDAI
52
Figure 11-11 Timer2 Mode Register
Figure 11-12 External Interrupt Signal Edge Selection Register
0
-
-
-
T2ST
T2CN
T2SL2
T2SL1
T2SL0
7
R / W <00D2 h>
TM2
Timer2 Mode Register
T2SL2
T2SL1
Input clock selection
0
0
0
0
0
1
0
1
1
0
1
0
1
1
1
1
T2SL0
0
1
0
1
0
1
0
1
PS5 ( 8us)
PS6 ( 16us)
PS7 ( 32us)
PS8 ( 64us)
PS9 ( 128us)
PS10 ( 256us)
PS11 ( 512us)
T2CN
Timer2 Counter Continuation/Pause Control
0
1
Count pause
Count contination
T2ST
Timer2 Start/Stop Control
0
1
Timer2 Stop
Timer2 Start after clear
PS12 (1024us)
IED*H
IED*L
INT*
0
-
-
IED2H
IED2L
IED1H
IED1L
-
-
7
W <00CB h>
IEDS
External Interrupt Signal Edge Selection Register
0
0
0
1
1
1
0
1
-
Falling Edge Selection
Rising Edge Selection
Both Edge Selection
2)
HYUNDAI
GMS81C50 Series
53
(3) Timer0, Timer1
TIMER0 and TIMER1 have an up-counter. When value of
the up-counter reaches the content of Timer Data Register
(TDR), the up-counter is cleared to ``00 h``, and interrupt
(IFT0, IFT1) is occured at the next clock.
Figure 11-13 Operatiion of Timer0
For Timer0, the internal clock (PS) and the external clock
(EC) can be selected as counter clock. But Timer1 and
Timer2 use only internal clock. As internal clock. Timer0
can be used as internal-timer which period is determined
by Timer Data Register (TDR). Chosen as external
clock, Timer0 executes as event-counter. The counter ex-
ecution of Timer0 and Timer1 is controlled by T0CN,
T0ST, CAP0, T1CN, T1ST, of Timer Mode Register TM0
and TM1. T0CN, T1CN are used to stop and start Timer0
and Timer1 without clearing the counter. T0ST, T1ST is
used to clear the counter. For clearing and starting the
counter, T0ST or T1ST should be temporarily set to ``0``
and then set to ``1``. T0CN, T1CN, T0ST and T1ST
should be set ``1``, when Timer counting-up. Controlling
of CAP0 enables Timer0 as input capture. By program-
ming of CAP0 to ``1``, the period of signal from INT2 can
be measured and then, event counter value for INT2 can
be read. During counting-up, value of counter can be read.
Timer execution is stopped by the reset signal (RESET
= ``L``)
Note: In the process of reading 16-bit Timer Data, first
read the upper 8-bit data. Then read the lower 8-bit data,
and read the upper 8-bit data again. If the earlier read up-
per 8-bit data are matched with the later read upper 8-bit
data, read 16-bit data are correct. If not, caution should be
taken in the selection of upper 8-bit data.
(Example)
1) Upper 8-bit Read 0A 0A
2) Lower 8-bit Read FF 01
3) Upper 8-bit Read 0B 0B
=====================
- -
0AFF 0B01
Concurrence
Concurrence
Concurrence
CLEAR
CLEAR
CLEAR
0
T0 Data
Registers
Value
T0 Value
INTERRUPT
INTERRUPT
INTERRUPT
Interval period
IFT0
GMS81C50 Series
HYUNDAI
54
Figure 11-14 Start/Stop operation of Timer0
Figure 11-15 Input capture operation of Timer0
Concurrence
CLEAR
INTERRUPT
Concurrence
CLEAR
INTERRUPT
IFT0
T0ST
T0CN
0
0
1
0
1
Counter
Count
Stop
Clear
& Count
Stop
Count
continue
Clear & Start
T0 Data
Register
Value
T0 Value
Clear & Start
T0
T1
T2
T3
INT2
HYUNDAI
GMS81C50 Series
55
* Single/Modulo-N Mode
Timer0 (Timer1) can select initial (T0INIT, T1INIT of
TM01) output level of Timer Output port. If initial level is
``L``, Low-Data Register value of Timer Data Register is
transferred to comparator and T0OUT (T1OUT) is to be
``Low``, if initial level is High? High -Data Register is
transferred and to be ``High``. Single Mode can be set by
Mode Select bit (T0MOD, T1MOD) of Timer Mode Reg-
ister (TM0, TM1) to ``1`` When used as Single Mode,
Timer counts up and compares with value of Data Regis-
ter. If the result is same, Time Out interrupt occurs and
level of Timer Output port toggle, then counter stops as re-
set state. When used as Modulo-N Mode, T0MOD
(T1MOD) should be set ``0``. Counter counts up until the
value of Data Register and occurs Time-out interrupt. The
level of Timer Output port toggle and repeats process of
counting the value which is selected in Data Register.
During Modulo-N Mode, If interrupt select bit (T0IFS,
T1IFS) of Mode Register is ``0``, Interrupt occurs on ev-
ery Time-out. If it is ``1``, Interrupt occurs every second
time-out.
Note: (*note. Timer Output is toggled whenever time
out happen)
Figure 11-16 Operation Diagram for Single/Modulo-N Mode
(4) Timer 2
Timer2 operates as a up-counter. The content of T2DR are
compared with the contents of up-counter. If a match is
found. Timer2 interrupt (IFT2) is generated and the up-
counter is cleared to ``00 h``. Therefore, Timer2 executes
as a interval timer. Interrupt period is determined by the
count source clock for the Timer2 and content of T2DR.
When T2ST is set to ``1``, count value of Timer 2 is
cleared and starts counting-up. For clearing and starting
the Timer2. T2ST have to set to ``1`` after set to ``0``. In
order to write a value directly into the T2DR, T2ST should
be set to ``0``. Count value of Timer2 can be read at any
time.
8bit / 16bit
counting
8bit / 16bit
counting
Timer Enable initial.
value toggle.
Timer-output toggle.
interrupt occurs.
count stop.
Timer Enable initial.
value toggle.
Timer-Output Toggle.
Int occurs (IFS = 1) Each 2nd time out.
Int occurs (IFS = 0) When Time out.
[ Single Mode ]
[ Modulo-N Mode ]
GMS81C50 Series
HYUNDAI
56
Figure 11-17 Operation of Timer2
Figure 11-18 Start/Stop of Timer2
Concurrence
Concurrence
Concurrence
CLEAR
CLEAR
CLEAR
0
T2 Data
Registers
Value
T2 Value
INTERRUPT
INTERRUPT
INTERRUPT
Interval period
IFT0
Concurrence
CLEAR
INTERRUPT
Concurrence
CLEAR
INTERRUPT
IFT2
T2ST
0
count stop by 0
count start clear by 1
Counter
Count up
Count
continue
Count up after clear
T2 Data
Register
Value
T2 Value
Count Stop
HYUNDAI
GMS81C50 Series
57
12. INTERRUPTS
The GMS81C50 Series interrupt circuits consist of Inter-
rupt Mode Register (MOD), Interrupt enable register
(IENH, IENL), Interrupt request flags of IRQH, IRQL,
Priority circuit and Master enable flag ("I" flag of PSW). 8
interrupt sources are provided. The configuration of inter-
rupt circuit is shown in Figure 12-1 .
The GMS81C50 Series contains 8 interrupt sources; 3 ex-
ternals and 5 internals. Nested interrupt services with pri-
ority control is also possible. Software interrupt is non-
maskable interrupt, the others are all maskable interrupts.
- 8 interrupt source (2Ext, 3Timer, BIT, WDT and Key
Scan)
- 8 interrupt vector
- Nested interrupt control is possible
- Programmable interrupt mode
- Hardware accept mode
- Software selection accept mode
- Read and write of interrupt request flag are possible.
- In interrupt accept, request flag is automatically cleared.
Figure 12-1 Block Diagram of Interrupt
12.1 Interrupt priority and sources.
Each interrupt vector is independent and has its own prior-
ity. Software interrupt (BRK) is also available. Interrupt
source classification is shown in Table 12-1.
Internal Data Bus
KSCNR
INT1R
INT2R
T0R
T1R
T2R
WDTR
BITR
PRIORITY
CONTROL
IENL
IENH
IMOD
IRQ
KSCN
INT1
INT2
IFT0
IFT1
IFT2
IFWDT
IFBIT
INT.
VECTOR
ADDR.
BRK
Standby Mode Release
7
0
-
-
7
0
-
-
7
0
-
-
-
-
-
-
GMS81C50 Series
HYUNDAI
58
Table 12-1 Interrupt Priority & Source
12.2 INTERRUPT CONTROL REGISTER
I flag of PSW is a interrupt mask enable flag. When I flag
= ``0``, all interrupts become disable. When I flag = ``1``,
interrupts can be selectively enabled and disabled by con-
tents of corresponding Interrupt Enable Register. When in-
terrupt is occured, interrupt request flag is set, and
Interrupt request is detected at the edge of interrupt signal.
The accepted interrupt request flag is automatically cleared
during interrupt cycle process. The interrupt request flag
maintains ``1`` until the interrupt is accepted or is cleared
in program. In reset state, interrupt request flag register
(IRQH, IRQL) is cleared to ``0``. It is possible to read the
state of interrupt register and to mainpulate the contents of
register and to generate interrupt. (Refer to software inter-
rupt).
Mask
Priority
Interrupt Source
INT Vector High
INT Vector Low
Hardwar
e
Interrupt
INT2R (External Interrupt2)
non-maskable
maskable
-
0
1
2
3
4
5
6
7
-
INT1R (External Interrupt1)
-
WDTR (Watctdog Timer)
BITR (Basic Interval Timer)
RST (RESET pin)
KSCNR (Key Scan)
T0R (Timer0)
T1R (Timer1)
T2R (Timer2)
BRK instruction
FFFF
FFFE
FFFB
FFFA
FFF9
FFF8
FFF7
FFF6
FFF3
FFF2
FFF1
FFF0
FFEF
FFEE
FFE9
FFE8
FFE7
FFE6
FFDF
FFDE
-
WDTR
BITE
-
-
-
-
-
KSCNE
INT1E
INT2E
-
T0E
T1E
T2E
-
-
WDTR
BITE
-
-
-
-
-
KSCNE
INT1R
INT2R
-
T0R
T1R
T2R
-
IRQL
IRQH
R/W <00CFh>
R/W <00CDh>
R/W <00CEh>
R/W <00CCh>
IENH
IE N L
IENL : INTERRUPT ENABLE REGISTER LOW
IENH : INTERRUPT ENABLE REGISTER HIGH
IRQL : INTERRUPT REQUEST REGISTER LOW
IRQH : INTERRUPT REQUEST REGISTER HIGH
HYUNDAI
GMS81C50 Series
59
12.3 INTERRUPT ACCEPT MODE
The interrupt priority order is determined by bit (IM1,
IM0) of IMOD register.
(1) Selection of Interrupt by IP3-IP0
The condition allow for accepting interrupt is set state of
the interrupt mask enable flag and
the interrupt enable bit must be ``1``. In Reset state, these
IP3 - IP0 registers become all ``0``.
Table 12-2 Interrupt Selection by IP3 - IP0
0
-
-
IM1
IM0
IP3
IP2
IP1
IP0
7
R/W <00CA h>
IMOD
Interrupt Mode Register
IM1
IM0
0
0
0
1
1
*
Priority
fixed by hardware
changeable by IP3~ IP0
Interrupt is inhibited
Assigning by interrupt accept mode bit
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
KSCNR (Key Scan)
INT1R (External interrupt 1)
INT2R (External interrupt 2)
Reserved
T0R (Timer 0)
T1R (Timer 1)
T2R (Timer 2)
Reserved
Reserved
WDTR (Watch Dog Timer)
BITR (Basic Interval Timer)
Reserved
IP3
IP2
IP1
IP0
Selection Interrupt
GMS81C50 Series
HYUNDAI
60
(2) Interrupt Timing
Figure 12-2 Interrupt Enable Accept Timing
*Interrupt Request sampling time
-Maximum 12 machine cycle (When execute DIV
instruction)
-Minimum 0 machine cycle
*Interrupt preprocess step is 8 machine cycle
*Interrupt overhead
-Maximum 1 + 12 + 8 = 21 machine cycle
-Minimum 1 + 0 + 8 = 9 machine cycle
(3) The valid timing after executing Interrupt control instructions
I flag is valid just after executing of EI/DI on the contrary.
Interrupt Enable register is valid one instruction after con-
trolling interrupt Enable Register.
12.4 INTERRUPT PROCESSING SEQUENCE
When an interrupt is accepted, the on-going process is
stopped and the interrupt service routine is executed. After
the interrupt service routine is completed it is necessary to
restore everything to the state before the interrupt oc-
cured.As soon as an interrupt is accepted, the content of the
program counter and PSW are savedin the stack area. At
the same time, the content of the vector address corre-
sponding to the accepted interrupt, which is in the interrupt
vector table, enters into the program counter and interrupt
service is executed. In order to execute the interrupt ser-
vice routine, it is necessary to write the jump addresses in
the vector table (FFE0 h ~ FFFF h) corresponding to each
interrupt
* Interrupt Processing Step
1) Store upper byte of Program Counter, SP <= SP
2) Store lower byte of Program Counter, SP <= SP - 1
3) Store Program Status Word, SP <= SP - 2
4) After resetting of I-flag, clear accepted Interrupt Re-
quest Flag. (Set B-flag for BRK Instruction)
5) Call Interrupt service routine
CLOCK
SYNC
A command before interrupt
interrupt process step
Interrupt Request Sampling
HYUNDAI
GMS81C50 Series
61
Figure 12-3 Interrupt Procesing Step Timing
12.5 SOFTWARE INTERRUPT (Interrupt by Break (BRK) Instruction)
S o f t w a r e i n t e r r u p t i s a v a i l a b l e j u s t b y w r i t i n g
``Break(BRK)`` instruction. The values of PC and PSW is
stacked by BRK instruction and then B flag of PSW is set
and I flag is reset.
Interrupt vector of BRK instruction is shared by vector of
Table Call (TCALL0). When both instruction of BRK and
TCALL0 are used, as shown in Figure 12-4 each process-
ing routine is judged by contents of B flag. There is no in-
struction to reset directly B flag.
*1 ISR
: Interrupt Service
Routine
*2 LVA
: Low Vector Address
*3 HVA
: High Vector Address
PC
=
OP
CODE
Interrupt Process Step
ISR
SP
SP-1
SP-2
LVA
HVA
new PC
*2
*3
*1
=
OP
CODE
=
PCH
=
PCL
=
PSW
=
``L``
vector
=
``H``
vector
clock
SYNC
R/W
internal
addr bus
internal
data bus
internal
READ
internal
WRITE
set
reset
(Right after BRK execution)
N
V
G
B
H
I
Z
C
PSW
Flag change by BRK execution
N
V
G
1
H
0
Z
C
PSW
GMS81C50 Series
HYUNDAI
62
Figure 12-4 Execution of BRK or TCALL0
12.6 MULTIPLE INTERRUPT
If there is an interrupt, Interrupt Mask Enable Flag is auto-
matically cleared before entering the Interrupt Service
Routine. After then, no interrupt is accepted. If EI instruc-
tion is executed, interrupt mask enable bit becomes ``1``,
and each enable bit can accept interrupt request. When two
or more interrupts are generated simultaneously, the high-
est priority interrupt set by Interrupt Mode Register is ac-
cepted.
12.7 Key Scan Input Processing
(1) Standby Mode Release Register (SMRR)
Key Scan Interrupt is generated by detecting low or high
Input from each Input pin (R0, R1) is one of the sources
which release standby (SLEEP, STOP) mode. Key Scan
ports are all 16bit which are controlled by Standby Mode
Release Register (SMRR0, SMRR1). Key Input is consid-
ered as Interrupt, therefore, KSCNE bit of IEHN should be
set for correct interrupt executing, SLEEP mode and STOP
mode, the rest of executing is the same as that of external
Interrupt. Each SMRR Register bit is allowed for each port
(for Bit= ``0``, no Key Input, for Bit= ``1``, Key Input
available). At reset, SMRR becomes ``00 h``. So, there is
no Key Input source.
B flag
BRK INTERRUPT ROUTINE
TCALL0 ROUTINE
RETI
RET
BRK or
TCALL0
0
1
HYUNDAI
GMS81C50 Series
63
Figure 12-5 Key Scan Block
R00
R01
.
.
.
R07
R10
R11
.
.
.
R17
R0 port
Selection Logic
SMRR0
W <00DC h>
Internal
Key Scan
Interrupt
7
0
SMRR1
W <00DD h>
7
0
R0 port
Selection Logic
0
KR07
KR06
KR05
KR04
KR03
KR02
KR01
KR00
7
W <00DC h>
SMRR0
SMRR0 Register
0
KR17
KR16
KR15
KR14
KR13
KR12
KR11
KR10
7
W <00DD h>
SMRR1
SMRR1 Register
GMS81C50 Series
HYUNDAI
64
(2) Standby Release Level Control Register (SRLC)
Standby release level control register (SRLC) can select
the key scan input level ``L`` or ``H`` for standby release
by each bit pin (R0, R1). Standby release level control reg-
ister (SRLC) is write-only register and initialized as ``00
h`` in reset state.
SMRR0
KR07
Key Input Selection
0
1
no select
select
SMRR1
KR17
0
1
KR06
0
1
no select
select
KR16
0
1
KR05
0
1
no select
select
KR15
0
1
KR04
0
1
no select
select
KR14
0
1
KR03
0
1
no select
select
KR13
0
1
KR02
0
1
no select
select
KR12
0
1
KR01
0
1
no select
select
KR11
0
1
KR00
0
1
no select
select
KR10
0
1
0
KLR07
KLR06
KLR05
KLR04
KLR03
KLR02
KLR01
KLR00
7
W <00F6 h>
SRLC0
SRLC0 Register
0
KLR17
KLR16
KLR15
KLR14
KLR13
KLR12
KLR11
KLR10
7
W <00F7 h>
SRLC1
SRLC1 Register
HYUNDAI
GMS81C50 Series
65
SRLC0
KLR07
Key Input Level
0
1
Low
High
SRLC1
KLR17
0
1
KLR06
0
1
KLR16
0
1
KLR05
0
1
KLR15
0
1
KLR04
0
1
KLR14
0
1
KLR03
0
1
KLR13
0
1
KLR02
0
1
KLR12
0
1
KLR01
0
1
KLR11
0
1
KLR00
0
1
KLR10
0
1
Low
High
Low
High
Low
High
Low
High
Low
High
Low
High
Low
High
GMS81C50 Series
HYUNDAI
66
13. WATCH DOG TIMER
Watch Dog Timer (WDT) consists of 6-bit binary counter,
6-bit comparator, and Watch Dog Timer Register
(WDTR).
Figure 13-1 Block diagram of Watch Dog Timer
13.1 Control of WDT
Watch Dog Timer can be used 6-bit general Timer or spe-
cific Watch dog timer by setting
bit5 (WDTON) of Clock Control Register (CKCTLR).
By assigning bit6(WDTCL) of WDTR, 6-bit counter can
be cleared.
IFBIT
0
5
6BIT COMPARATOR
WDTR
W <00C8 h>
IF WDT
CLR
WDTON
To Reset circuit
Internal Data Bus
WDT0
WDT1
WDT2
WDT3
WDT4
WDT5
WDTR0
WDTR1
WDTR2
WDTR3
WDTR4
WDTR5
WDTCL
0
6
0
-
-
WDTON
ENPCK
BTCL
BTS2
BTS1
BTS0
7
W <00C7 h>
CKCTLR
Clock Control Register
WDTON
Watch Dog Timer Function Control
0
1
6-bit Timer
Watch Dog Timer
HYUNDAI
GMS81C50 Series
67
13.2 WDT Interrupt Interval
WDT Interrupt (IFWDT) interval is determined by the in-
terrupt IFBIT interval of Basic Interval Timer and the val-
ue of WDT Register.
-Interval of IFWDT = (IFBIT interval) * (WDTR value)
-Interval of IFWDT : 512 us * 1 = 512 us (MIN>)
-65,536us * 63 = 4,128,768 us (MAX>)
As IFBIT (Basic Interval Timer Interrupt Request) is used
for input clock of WDT, Input clock cycle is possible from
512 us to 65,536 us by BTS. (at fex = 4MHz)
*At Hardware reset time ,WDT starts automatically.
Therefore, the user must select the CKCTLR, WDTR be-
fore WDT overflow.
-Reset WDTR value = 0F h,15
-interval of WDT = 65,536 * 15 = 983040 us
(about 1second )
Determine Interval of IFWDT
Interval of IFWDT = Value of WDTR
>
Interval of IFBIT
0
-
WDTCL
WDTR5
WDTR4
WDTR3
WDTR2
WDTR1
WDTR0
7
W <00C8 h>
WDTR
Watch DOG Timer Register
WDTCL
Watch Dog Timer Operation
0
1
free-run
Automatically cleared, after one machine cycle
GMS81C50 Series
HYUNDAI
68
N o t e : W h e n W D T R R e g i s t e r v a l u e i s 6 3 ( 3 F h )
(Caution) : Do not use ``0`` for WDTR Register value.
Device come into the reset state by WDT
32,756 us
64,512 us
129,024 us
258,048 us
516,096 us
1,032,192 us
2,064,384 us
4,128,768 us
0
-
-
WDTON
ENPCK
BTCL
BTS2
BTS1
BTS0
7
W <00C7 h>
CKCTLR
Clock Control Register
BTS0
WDT Input clock
0
1
BTS1
0
0
BTS2
0
0
Max. Interval of WDT
Output (*note1)
0
1
0
1
1
0
0
0
1
1
0
1
0
1
1
1
1
1
512 us
1,024 us
2,048 us
4,096 us
8,192 us
16,384 us
32,768 us
65,536 us
HYUNDAI
GMS81C50 Series
69
14. STANDBY FUNCTION
To save power consumption, there is STOP modes. In this
modes, the execution of program stops.
14.1 Sleep Mode
SLEEP mode can be entered by setting the bit of SLEEP
mode register (SLPM). In the mode, CPU clock stops but
oscillator keeps running. B.I.T and a part of peripheral
hardware execute, but prescalers output which provide
clock to peripherals can be stopped by program. (Except,
PS10 cant stopped.) In SLEEP mode, more consuming
power can be saved by not using other peripheral hardware
except for B.I.T. By setting ENPCK (peripheral clock con-
trol bit) of CKCTLR (clock control register) to ``0``, pe-
ripheral hardware halted, and SLEEP mode is entered. To
release SLEEP mode by BITR (basic interval timer inter-
rupt), bit10 of prescaler should be selected as B.I.T input
clock before entering SLEEP mode. ``NOP`` instruction
should be follows setting of SLEEP mode for rising pre-
charge time of data bus line.
(ex) setting of SLEEP mode : set the bit of SLEEP
; mode register (SLPM)
NOP : NOP instruction
14.2 STOP MODE
STOP mode can be entered by STOP instruction during
program. In STOP mode, oscillator is stopped to make all
clocks stop, which leads to less power consumption. All
registers and RAM data are preserved. ``NOP`` instruction
should be follows STOP instruction for rising precharge
time of Data Bus line.
(ex) STOP : STOP instruction execution
NOP : NOP instruction
0
-
-
SLPM0
7
W <00F0 h>
SLPM
SLEEP MODE CONTROL Register
SLPM0
0
1
condition
sleep mode release
sleep mode
-
-
-
-
-
0
-
-
WDTON
ENPCK
BTCL
BTS2
BTS1
BTS0
7
W <00C8 h>
CKCTLR
Colck Control Register
ENCPK
0
1
Peripheral Clock
stopped
provided
GMS81C50 Series
HYUNDAI
70
Figure 14-1 Block Diagram of Standby Circuit
Figure 14-2 ENPCK and Basic Interval Timer Clock
OSC.
Circuit
Clock Pulse GEN
CLR
MUX
Prescaler
CLR
S Q
R
S Q
R
Overflow Detection
Basic Interval Timer
CLR
CPU Clock
B.I.T 7
STOP
Release Signal From Interrupt Circuit
RESET
Control
Signal
Selector
Prescaler
ENPCK
Basic Interval Timer
PS10
Peripheral
HYUNDAI
GMS81C50 Series
71
14.3 STANDBY MODE RELEASE
Release of STANDBY mode is executed by RESET input
and Interrupt signal. Register value is defined when Reset.
When there is a release signal of STOP mode (Interrupt,
RESET input), the instruction execution starts after stabi-
lization oscillation time is set by value of BTS2 ~ BTS0
and set ENPCK to ``1``.
Table 14-1 Standby Mode Register
Table 14-2 Standby Mode Release
Release Signal
KSCN (key input)
SLEEP
RESET
INT1 , INT2
B.I.T
STOP
O
O
O
O
O
O
O
X
Release Factor
KSCN
(key input)
Release Method
RESET
INT1
INT2
Basic Interval Timer
(IFBIT)
Standby mode is released by low input of selected pin by key scan Input
(SMRR0, SMRR1) In case of interrupt mask enable flag = ``0``,
program executes just after standby instruction,
if flag = ``1``, enters each interrupt service routine.
When external interrupt (INT1, INT2) enable flag is ``1``, standby mode is released
at the rising edge of each terminal. When Standby mode is released at interrupt.
Mask Enable flag = ``0``, program executes from the next instruction of standby
instruction. When ``1``, enters each interrupt service routine.
When B.I.T is executed only by bit10 of prescaler (PS10), SLEEP mode can be
release. Interrupt release SLEEP mode, when BIT interrupt enable flag is ``1``.
When standby mode is released at interrupt. Mask enable flag = ``0``,
program executes from the next instruction of SLEEP instruction.
When ``1``, enters each interrupt service routine.
By RESET Pin = Low level, Standby mode is release and system is initialized
GMS81C50 Series
HYUNDAI
72
Figure 14-3 Release Timing of Standby Mode
14.4 RELEASE OPERATION OF STANDBY MODE
After standby mode is released, the operation begins ac-
cording to content of related interrupt register just before
standby mode start (Figure 14-4 )
(1) Interrupt Enable Flag(I) of PSW = ``0``
Release by only interrupt which interrupt enable flag =
``1``, and starts to execute from next to standby instruction
(SLEEP or STOP).
(2) Interrupt Enable Flag(I) of PSW = ``1``
Released by only interrupt which each interrupt enable flag
= ``1``, and jump to the relevant interrupt service routine.
Note: When STOP instruction is used, B.I.T should guar-
antee the stabilization oscillation time. Thus, just before en-
tering STOP mode, clock of bit10 (PS10) of prescaler is
selected or peripheral hardware clock control bit (ENPCK)
to ``1``, Therefore the clock necessary for stabilization os-
cillation time should be input into B.I.T. otherwise, standby
mode is released by reset signal. In case of interrupt re-
quest flag and interrupt enable flag are both ``1``, standby
mode is not entered.
STOP Mode
Stable
OSC. time
Program Setting Time by
CKCTLR
Longer than
stable OSC. Time
Xin
Longer than
2 machine cycle
SLEEP Mode
SLEEP command
[ SLEEP MODE ]
[ STOP MODE ]
release by interrupt
RESET
clock
release by interrupt
RESET
HYUNDAI
GMS81C50 Series
73
Figure 14-4 Standby Mode Release Flow
Table 14-3 Operation State in Standby Mode
STOP Command
Standby Mode
Interrupt Request GEN.
IE Flag
Standby Mode Release
PSW
IE Flag
Interrupt Service Routine
Standby Next Command
Execution
0
1
0
1
Internal circuit
STOP mode
SLEEP mode
Oscillator
Internal CPU clock
Register
RAM
I/O port
Prescaler
Basic Interval Timer
Watch Dog Timer
Timer
Address Bus, Data Bus
Active
Stop
Retained
Retained
Retained
Active
PS10 selected : Active
Others : Stop
Stop
Stop
Retained
Stop
Stop
Retained
Retained
Retained
Retained
Stop
Stop
Stop
Retained
GMS81C50 Series
HYUNDAI
74
15. OSCILLATION CIRCUIT
Oscillation circuit is designed to be used either with a ce-
ramic resonator or crystal oscillator. Fig. 4.2-(a) shows
circuit diagrams using a crystal (or ceramic) oscillator. As
shown in the diagram, oscillation circuits can be construct-
ed by connecting a oscillator between Xout and Xin.
Clock from oscillation circuit makes CPU clock via clock
pulse generator, and then enters prescaler to make periph-
eral hardware clock. Alternately, the oscillator may be
driven from an external source as shown is Fig. 4.2.-(b). In
the Standby (STOP) mode, oscillatiion stop, Xout state
goes to ``HIigh``, Xin state goes to ``Low``, and built-in
feed back resistor is disabled.
Figure 15-1 Oscillator configurations
* Recommendable resonator
* MC type is building in load capacitior.CCR type is chip type.
Cout
Cin
Xin
Xout
(b) External clock input circuit
Xin
Xout
External clock
(a) External Crystal (Ceramic) oscillator circuit
Frequency
Resonator Maker
Part Name
Load Capacitor
Operating Voltage
4.0 MHz
CQ
ZTA4.00MG
Cin=Cout=30pF
2.2 ~ 4.0V
TDK
FCR4.0MC5
Cin=Cout=open
2.2 ~ 4.0V
TDK
FCR4.0M5
Cin=Cout=33pF
2.2 ~ 4.0V
TDK
CCR4.0MC3
2.2 ~ 4.0V
HYUNDAI
GMS81C50 Series
75
16. RESET FUNCTION
16.1 EXTERNAL RESET
The RESET pin should be held at low for at least 2machine
cycles with the power supply voltage within the operating
voltage range and must be connected 0.1uF capacitor for
stable system initialization. The RESET pin contains a
Schmitt trigger with an internal pull-up resistor.
Figure 16-1
16.2 POWER ON RESET
Power On Reset circuit automatically detects the rise of
power voltage (the rising time should be within 50ms) the
power voltage reaches a certain level, RESET terminal is
maintained at L Level until a crystal ceramic oscillator
oscillates stably. After power applies and starting of oscil-
lation, this reset state is maintained for about oscillation
cycle of 219 (about 65.5ms : at 4MHz).The execution of
built-in Power On Reset circuit is as follows :
(1) Latch the pulse from Power On Detection Pulse Gener-
ator circuit, and reset Prescaler, B.I.T and B.I.T Overflow
detection circuit.
(2) Once B.I.T Overflow detection circuit is reset. Then,
Prescaler starts to count.
(3) Prescaler output is inputted into B.I.T and PS10 of
Prescaler output is automatically selected. If overflow of
B.I.T is detected, Overflow detection circuit is set.
(4) Reset circuit generates maximum period of reset pulse
from Prescaler and B.I.T.
Figure 16-2 Block Diagram of Power On Reset Circuit
RESET
0.1 uF Capacitor
RESET
Power On DET
Pulse GEN.
OSC.
CLR
Prescaler
CLR
Basic Interval
Tiemr
CLR
Basic Interval
Tiemr
XTAL
PS10
MSB
Internal Reset
VDD
VSS
0.1uF
Internal IC
GMS81C50 Series
HYUNDAI
76
Note: Notice ; When Power On Reset, oscillator stabiliza-
tion time doesn`t include OSC. Start time.
Figure 16-3 Oscillator stabilization diagram
Figure 16-4 Reset Timing by Diagram
16.3 Low Voltage Detection Mode
(1) Low voltage detection condition
An on board voltage comparator checks that VDD is at the
required level to ensure correct operation of the device. If
VDD is below a certain level, Low voltage detector forces
the device into low voltage detection mode.
(2) Low Voltage Detection Mode
There is no power consumption except stop current, stop
mode release function is disabled. All I/O port is config-
ured as input mode and Data memory is retained until volt-
age through external capacitor is worn out. In this mode,
all port can be selected with Pull-up resistor by Mask op-
tion. If there is no information on the Mask option sheet
,the default pull up option (all port connect to pull-up resis-
??
2 %1 %%,8,6@
$ 14$ 26%%1 %
RESET
ADDR. BUS
INTERNAL
DATA BUS
SP
SP-1
SP-2
FFFE
FFFF
NEW PC
FE
LSB
VECTOR
MSB
VECTOR
INTERNAL
RESET
HYUNDAI
GMS81C50 Series
77
tor ) is selected.
(3) Release of Low Voltage Detection Mode
Reset signal result from new battery(normally 3V) wakes
the low voltage detection mode and come into normal reset
state. It depends on user whether to execute RAM clear
routine or not.
Figure 16-5 Low Voltage vs Temperature
(4) SRAM BACK-UP after Low Voltage Detection.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
0
10
20
30
40
50
60
70
%'(
4* '(
2.6
2.8
3.0
GMS81C50 Series
HYUNDAI
78
Figure 16-6 Low Voltage Detection and Protection
(5) S/W flow chart example after Reset using SRAM Back-up
Figure 16-7 S/W Flow Chart Example for SRAM Back-up
3.0V
1.8V(TYP)
( 20
(
* SRAM Data Backup
User
Removes
Batteries
User
Replace
Batteries
Interrupt :
disable
Stop release
: disable
All I/O port
: input Mode
Remout port
: Low Level
OSC :
STOP
All I/O port pull-up ON (Mask Option )
SRAM Data retention
* The operation after Low voltage detection
about hours depend on Vcc-Gnd Capacitor
0V
Low Voltage Detection
point
MCU OPR.
Voltage
Power On Reset
( SRAM unstable )
Power On Reset
( SRAM retention)
0.7V(V
RET
)
RESET
Stack Pointer initialize
SRAM DATA IS VALID?
Check the SRAM value
(RAM Pattern, Check sum..)
N
Y
Clear All Ram area
Use saved SRAM
value
HYUNDAI
GMS81C50 Series
79
16.4 Low Voltage Indicator Register (LVIR)
Low Voltage Indication Register (LVIR) is read only Reg-
ister. It is useful to display the consumption of Batteries.
If VDD power level is below a cirtain level which is higher
than low voltage detection level ( refer to Figure 16-6 ) ,
The bit of LVIR register could be set according to the VDD
level sequentially. The VDD dection levels for Indication
are two , that is , Bit1 and Bit0 of LVIR Register. The de-
tection level of Bit0 is higer than Bit1.
-
-
-
-
-
-
LVIR1
LVIR0
<00EF h>
LVIR
bit
7
6
5
4
3
2
1
0
initial value
-
-
-
-
-
0
0
R / W
-
-
-
-
-
R
R
-
-
GMS81C50 Series
HYUNDAI
80
Appendix A. GMS800 Series Instruction
A-1
1. Instruction Map
00000
00
00001
01
00010
02
00011
03
00100
04
00101
05
00110
06
00111
07
01000
08
01001
09
01010
0A
01011
0B
01100
0C
01101
0D
01110
0E
01111
0F
000
SET1
dp.bit
BBS
A.bit,rel
BBS
dp.bit,rel
ADC
#imm
ADC
dp
ADC
dp+X
ADC
!abs
ASL
A
ASL
dp
TCALL
0
SETA1
.bit
BIT
dp
POP
A
PUSH
A
BRK
001
CLRC
//
//
//
SBC
#imm
SBC
dp
SBC
dp+X
SBC
!abs
ROL
A
ROL
dp
TCALL
2
CLRA1
.bit
COM
dp
POP
X
PUSH
X
BRA
rel
010
CLRG
//
//
//
CMP
#imm
CMP
dp
CMP
dp+X
CMP
!abs
LSR
A
LSR
dp
TCALL
4
NOT1
M.bit
TST
dp
POP
Y
PUSH
Y
PCALL
Upage
011
DI
//
//
//
OR
#imm
OR
dp
OR
dp+X
OR
!abs
ROR
A
ROR
dp
TCALL
6
OR1
OR1B
CMPX
dp
POP
PSW
PUSH
PSW
RET
100
CLRV
//
//
//
AND
#imm
AND
dp
AND
dp+X
AND
!abs
INC
A
INC
dp
TCALL
8
AND1
AND1B
CMPY
dp
CBNE
dp+X
TXSP
INC
X
101
SETC
//
//
//
EOR
#imm
EOR
dp
EOR
dp+X
EOR
!abs
DEC
A
DEC
dp
TCALL
10
EOR1
EOR1B
DBNE
dp
XMA
dp+X
TSPX
DEC
X
110
SETG
//
//
//
LDA
#imm
LDA
dp
LDA
dp+X
LDA
!abs
TXA
LDY
dp
TCALL
12
LDC
LDCB
LDX
dp
LDX
dp+Y
XCN
DAS
111
EI
//
//
//
LDM
dp,#imm
STA
dp
STA
dp+X
STA
!abs
TAX
STY
dp
TCALL
14
STC
M.bit
STX
dp
STX
dp+Y
XAS
STOP
10000
10
10001
11
10010
12
10011
13
10100
14
10101
15
10110
16
10111
17
11000
18
11001
19
11010
1A
11011
1B
11100
1C
11101
1D
11110
1E
11111
1F
000
BPL
rel
CLR1
dp.bit
BBC
A.bit,rel
BBC
dp.bit,rel
ADC
{X}
ADC
!abs+Y
ADC
[dp+X]
ADC
[dp]+Y
ASL
!abs
ASL
dp+X
TCALL
1
JMP
!abs
BIT
!abs
ADDW
dp
LDX
#imm
JMP
[!abs]
001
BVC
rel
//
//
//
SBC
{X}
SBC
!abs+Y
SBC
[dp+X]
SBC
[dp]+Y
ROL
!abs
ROL
dp+X
TCALL
3
CALL
!abs
TEST
!abs
SUBW
dp
LDY
#imm
JMP
[dp]
010
BCC
rel
//
//
//
CMP
{X}
CMP
!abs+Y
CMP
[dp+X]
CMP
[dp]+Y
LSR
!abs
LSR
dp+X
TCALL
5
MUL
TCLR1
!abs
CMPW
dp
CMPX
#imm
CALL
[dp]
011
BNE
rel
//
//
//
OR
{X}
OR
!abs+Y
OR
[dp+X]
OR
[dp]+Y
ROR
!abs
ROR
dp+X
TCALL
7
DBNE
Y
CMPX
!abs
LDYA
dp
CMPY
#imm
RETI
100
BMI
rel
//
//
//
AND
{X}
AND
!abs+Y
AND
[dp+X]
AND
[dp]+Y
INC
!abs
INC
dp+X
TCALL
9
DIV
CMPY
!abs
INCW
dp
INC
Y
TAY
101
BVS
rel
//
//
//
EOR
{X}
EOR
!abs+Y
EOR
[dp+X]
EOR
[dp]+Y
DEC
!abs
DEC
dp+X
TCALL
11
XMA
{X}
XMA
dp
DECW
dp
DEC
Y
TYA
110
BCS
rel
//
//
//
LDA
{X}
LDA
!abs+Y
LDA
[dp+X]
LDA
[dp]+Y
LDY
!abs
LDY
dp+X
TCALL
13
LDA
{X}+
LDX
!abs
STYA
dp
XAY
DAA
111
BEQ
rel
//
//
//
STA
{X}
STA
!abs+Y
STA
[dp+X]
STA
[dp]+Y
STY
!abs
STY
dp+X
TCALL
15
STA
{X}+
STX
!abs
CBNE
dp
XYX
NOP
LOW
HIGH
LOW
HIGH
Appendix A. GMS800 Series Instruction
A-2
2. Alphabetic order table of instruction
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
1
ADC #imm
04
2
2
Add with carry.
NV - - H - ZC
2
ADC dp
05
2
3
A
A + (M) + C
3
ADC dp + X
06
2
4
4
ADC !abs
07
3
4
5
ADC !abs+Y
15
3
5
6
ADC [dp+X]
16
2
6
7
ADC [dp]+Y
17
2
6
8
ADC {X}
14
1
3
9
ADDW dp
1D
2
5
16-bits add without carry : YA
YA + (dp+1)(dp)
NV - - H - ZC
10
AND #imm
84
2
2
Logical AND
N - - - - - Z -
11
AND dp
85
2
3
A
A ^ (M)
12
AND dp + X
86
2
4
13
AND !abs
87
3
4
14
AND !abs+Y
95
3
5
15
AND [dp+X]
96
2
6
16
AND [dp] + Y
97
2
6
17
AND {X}
94
1
3
18
AND1 M.bit
8B
3
4
Bit AND C-flag : C
C ^ (M.bit)
- - - - - - - C
19
AND1B M.bit
8B
3
4
Bit AND C-flag and NOT : C
C ^ ~(M.bit)
- - - - - - - C
20
ASL A
08
1
2
Arithmetic shift left
N - - - - - ZC
21
ASL dp
09
2
4
22
ASL dp + X
19
2
5
23
ASL !abs
18
3
5
24
BBC A.bit,rel
y2
2
4/6
Branch if bit clear :
- - - - - - - -
25
BBC dp.bit,rel
y3
3
5/7
if(bit) = 0, then PC
PC + rel
26
BBS A.bit,rel
x2
2
4/6
Branch if bit clear :
- - - - - - - -
27
BBS dp.bit,rel
x3
3
5/7
if(bit) = 1, then PC
PC + rel
28
BCC rel
50
2
2/4
Branch if carry bit clear :
if(C) = 0, then PC
PC + rel
MM - - - - Z -
29
BCS rel
D0
2
2/4
Branch if carry bit set : If (C) =1, then PC
PC + rel
- - - - - - - -
30
BEQ rel
F0
2
2/4
Branch if equal : if (Z) = 1, then PC
PC + rel
- - - - - - - -
31
BIT dp
0C
2
4
Bit test A with memory :
MM - - - - Z -
32
BIT !abs
1C
3
5
Z
A ^ M, N
(M
7
), V
(M
6
)
33
BMI rel
90
2
2/4
Branch if munus : if (N) = 1, then PC
PC + rel
- - - - - - - -
34
BNE rel
70
2
2/4
Branch if not equal : if (Z) = 0, then PC
PC + rel
- - - - - - - -
35
BPL rel
10
2
2/4
Branch if not minus : if (N) = 0, then PC
PC + rel
- - - - - - - -
36
BRA rel
2F
2
4
Branch always : PC
PC + rel
- - - - - - - -
37
BRK
0F
1
8
Software interrupt:
- - - 1 - 0 - -
B
"1", M(SP)
(PC
H
), SP
SP - 1,
M(s)
(PC
L
), SP
S - 1, M(SP)
PSW,
SP
SP - 1, PC
L
(0FFDE
H
), PC
H
(0FFDF
H
)
38
BVC rel
30
2
2/4
Branch if overflow bit clear :
- - - - - - - -
If (V) = 0, then PC
PC + rel
39
BVS rel
B0
2
2/4
Branch if overflow bit set :
- - - - - - - -
If (V) = 1, then PC
PC + rel
C 7 6 5 4 3 2 1 0
"
0
"
Appendix A. GMS800 Series Instruction
A-3
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
40
CALL !abs
3B
3
8
Subroutine call
- - - - - - - -
41
CALL [dp]
5F
2
8
M(SP)
(PC
H
), SP
SP-1, M(SP)
(PC
L
), SP
SP-1
if !abs, PC
abs ; if [dp], PC
L
(dp), PC
H
(dp+1)
42
CBNE dp,rel
FD
3
5/7
Compare and branch if not equal ;
- - - - - - - -
43
CBNE dp + X, rel
8D
3
6/8
If A
(M), then PC
PC + rel.
44
CLR1 dp.bit
y1
2
4
Clear bit : (M.bit)
"0"
- - - - - - - -
45
CLR1A A.bit
2B
2
2
Clear A.bit : (A.bit)
"0"
- - - - - - - -
46
CLRC
20
1
2
Clear C-flag : C
"0"
- - - - - - - 0
47
CLRG
40
1
2
Clear G-flag : G
"0"
- - 0 - - - - -
48
CLRV
80
1
2
Clear V-flag : V
"0"
- 0 - - 0 - - -
49
CMP #imm
44
2
2
Compare accumulator contents with memory contents
N - - - - - ZC
50
CMP dp
45
2
3
A - (M)
51
CMP dp + X
46
2
4
52
CMP !abs
47
3
4
53
CMP !abs + Y
55
3
5
54
CMP [dp + X]
56
2
6
55
CMP [dp] + Y
57
2
6
56
CMP {X}
54
1
3
57
CMPW dp
5D
2
4
Compare YA contents with memory pair contents :
N - - - - - ZC
YA - (dp+1)(dp)
58
CMPX #imm
5E
2
2
Compare X contents with memory contents
N - - - - - ZC
59
CMPX dp
6C
2
3
X - (M)
60
CMPX !abs
7C
3
4
61
CMPY #imm
7E
2
2
Compare Y contents with memory contents
N - - - - - ZC
62
CMPY dp
8C
2
3
Y - (M)
63
CMPY !abs
9C
3
4
64
COM dp
2C
2
4
1's complement : (dp)
~(dp)
N - - - - - Z -
65
DAA
DF
1
3
Decimal adjust for addition
N - - - - - ZC
66
DAS
CF
1
3
Decimal adjust for substraction
N - - - - - ZC
67
DBNE dp,rel
AC
3
5/7
Decrement and branch if not equal :
- - - - - - - -
68
DBNE Y,rel
7B
2
4/6
if (M)
0, then PC
PC + rel.
69
DEC A
A8
1
2
Decrement
N - - - - - Z -
70
DEC dp
A9
2
4
M
M - 1
71
DEC dp + X
B9
2
5
72
DEC !abs
B8
3
5
73
DEC X
AF
1
2
74
DEC Y
BE
1
2
75
DECW dp
BD
2
6
Decrement memory pair : (dp+1)(dp)
{(dp+1)(dp)} - 1
N - - - - - Z -
76
DI
60
1
3
Disable interrupts : I
"0"
- - - - - 0 - -
77
DIV
9B
1
12
Divide : YA/X
Q:A, R:Y
NV - - H - Z -
78
EI
E0
1
3
Enable interrupts : I
"1"
- - - - - 1 - -
Appendix A. GMS800 Series Instruction
A-4
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
79
EOR #imm
A4
2
2
Exclusive OR
N - - - - - Z -
80
EOR dp
A5
2
3
A
A
(M)
81
EOR dp + X
A6
2
4
82
EOR !abs
A7
3
4
83
EOR !abs + Y
B5
3
5
84
EOR [ dp + X]
96
2
6
85
EOR [dp] + Y
97
2
6
86
EOR {X}
94
1
3
87
EOR1 M.bit
AB
3
5
Bit exclusive-OR C-flag : C
C
(M.bit)
- - - - - - - C
88
EOR1B M.bit
AB
3
5
Bit exclusive-OR C-flag and NOT : C
C
(M.bit)
- - - - - - - C
89
INC A
88
1
2
Increment
N - - - - - ZC
90
INC dp
89
2
4
(M)
(M) + 1
N - - - - - Z -
91
INC dp + X
99
2
5
92
INC !abs
98
3
5
93
INC X
8F
1
2
94
INC Y
9E
1
2
95
INCW dp
9D
2
6
Increment memory pair : (dp+1)(dp)
{(dp+1)(dp)} + 1
N - - - - - Z -
96
JMP !abs
1B
3
3
Unconditional jump
- - - - - - - -
97
JMP [!abs]
1F
3
5
PC
jump address
98
JMP [dp]
3F
2
4
99
LDA #imm
C4
2
2
Load accumulator
N - - - - - Z -
100
LDA dp
C5
2
3
A
(M)
101
LDA dp + X
C6
2
4
102
LDA !abs
C7
3
4
103
LDA !abs + Y
D5
3
5
104
LDA [dp + X]
D6
2
6
105
LDA [dp]+Y
D7
2
6
106
LDA {X}
D4
1
3
107
LDA {X}+
DB
1
4
X-register auto-increment : A
(M), X
X + 1
108
LDC M.bit
CB
3
4
Load C-flag : C
(M.bit)
- - - - - - - C
109
LDCB M.bit
CB
3
4
Load C-flag with NOT : C
~(M.bit)
- - - - - - - C
110
LDM dp,#imm
E4
3
5
Load memory with immediate data : (M)
imm
- - - - - - - -
111
LDX #imm
1E
2
2
Load X-register
N - - - - - Z -
112
LDX dp
CC
2
3
X
(M)
113
LDX dp + Y
CD
2
4
114
LDX !abs
DC
3
4
115
LDY #imm
3E
2
2
Load X-register
N - - - - - Z -
116
LDY dp
C9
2
3
Y
(M)
117
LDY dp + Y
D9
2
4
118
LDY !abs
D8
3
4
119
LDYA dp
7D
2
5
Load YA : YA
(dp+1)(dp)
N - - - - - Z -
120
LSR A
48
1
2
Logical shift right
N - - - - - ZC
121
LSR dp
49
2
4
122
LSR dp + X
59
2
5
123
LSR !abs
58
3
5
7 6 5 4 3 2 1 0 C
"
0
"
Appendix A. GMS800 Series Instruction
A-5
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
124
MUL
5B
1
9
Multiply : YA
Y x A
N - - - - - Z -
125
NOP
FF
1
2
No operation
- - - - - - - -
126
NOT1 M.bit
4B
3
5
Bit complement : (M.bit)
~(M.bit)
- - - - - - - -
127
OR #imm
64
2
2
Logical OR
N - - - - - Z -
128
OR dp
65
2
3
A
A V (M)
129
OR dp + X
66
2
4
130
OR !abs
67
3
4
131
OR !abs + Y
75
3
5
132
OR [dp +X}
76
2
6
133
OR [dp] + Y
77
2
6
134
OR {X}
74
1
3
135
OR1 M.bit
6B
3
5
Bit OR C-flag : C
C V (M.bit)
- - - - - - - C
136
OR1B M.bit
6B
3
5
Bit OR C-flag and NOT : C
C V ~(M.bit)
- - - - - - - C
137
PCALL
4F
2
6
U-page call : M(SP)
(PC
H
), SP
SP -1,
- - - - - - - -
M(SP)
(PC
L
), SP
SP -1,
PC
L
(upage), PC
H
"OFF
H
"
138
POP A
0D
1
4
Pop from stack
- - - - - - - -
139
POP X
2D
1
4
SP
SP + 1, Reg.
M(SP)
140
POP Y
4D
1
4
141
POP PSW
6D
1
4
(restored)
142
PUSH A
0E
1
4
Push to stack
- - - - - - - -
143
PUSH X
2E
1
4
M(SP)
Reg. SP
SP - 1
144
PUSH Y
4E
1
4
145
PUSH PSW
6E
1
4
146
RET
6F
1
5
Return from subroutine :
- - - - - - - -
SP
SP+1, PC
L
M(SP), SP
SP+1, PC
H
M(SP)
147
RETI
7F
1
6
Return from interrupt :
(restored)
SP
SP+1, PSW
M(SP), SP
SP+1,PC
L
M(SP),
SP
SP+1, PC
H
M(SP)
148
ROL A
28
1
2
Rotate left through carry
N - - - - - ZC
149
ROL dp
29
2
4
150
ROL dp + X
39
2
5
151
ROL !abs
38
3
5
152
ROR A
68
1
2
Rotate right through carry
N - - - - - ZC
153
ROR dp
69
2
4
154
ROR dp + X
79
2
5
155
ROR !abs
78
3
5
156
SBC #imm
24
2
2
Substract with carry
NV - - HZC
157
SBC dp
25
2
3
A
A - (M) - ~(C)
158
SBC dp + X
26
2
4
159
SBC !abs
27
3
4
160
SBC !abs + Y
35
3
5
161
SBC [dp + X]
36
2
6
162
SBC [dp] + Y
37
2
6
163
SBC {X}
34
1
3
C 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 C
Appendix A. GMS800 Series Instruction
A-6
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
164
SET1 dp.bit
x1
2
4
Set bit : (M.bit)
"1"
- - - - - - - -
165
SETA1 A.bit
0B
2
2
Set A.bit : (A.bit)
"1"
- - - - - - - -
166
SETC
A0
1
2
Set C-flag : C
"1"
- - - - - - - 1
167
SETG
C0
1
2
Set G-flag : G
"1"
- - 1 - - - - -
168
STA dp
E5
2
3
Store accumulator contents in memory
- - - - - - - -
169
STA dp + X
E6
2
4
(M)
A
170
STA !abs
E7
3
4
171
STA !abs + Y
F5
3
5
172
STA [dp + X]
F6
2
6
173
STA [dp] + Y
F7
2
6
174
STA {X}
F4
1
3
175
STA {X}+
FB
1
4
X-register auto-increment : (M)
A, X
X + 1
176
STC M.bit
EB
3
6
Store C-flag : (M.bit)
C
- - - - - - - -
177
STOP
00
1
3
Stop mode (halt CPU, stop oscillator)
- - - - - - - -
178
STX dp
EC
2
4
Store X-register contents in memory
- - - - - - - -
179
STX dp + Y
ED
2
5
(M)
X
180
STX !abs
FC
3
5
181
STY dp
E9
2
4
Store Y-register contents in memory
- - - - - - - -
182
STY dp + X
F9
2
5
(M)
Y
183
STY !abs
F8
3
5
184
STYA dp
DD
2
5
Store YA : (dp+1)(dp)
YA
- - - - - - - -
185
SUBW dp
3D
2
5
16-bits substract without carry : YA
YA - (dp+1)(dp)
NV - - H - ZC
186
TAX
E8
1
2
Transfer accumulator contents to X-register : X
A
N - - - - - Z -
187
TAY
9F
1
2
Transfer accumulator contents to Y-register : Y
A
N - - - - - Z -
188
TCALL n
nA
1
8
Table call :
- - - - - - - -
M(SP)
(PC
H
), SP
SP -1,
M(SP)
(PC
L
), SP
SP -1
PC
L
(Table vector L), PC
H
(Table vector H)
189
TCLR1 !abs
5C
3
6
Test and clear bits with A :
N - - - - - Z -
A - (M), (M)
(M) ^ ~(A)
190
TSET1 !abs
3C
3
6
Test and set bits with A :
N - - - - - Z -
A - (M), (M)
(M) V (A)
191
TSPX
AE
1
2
Transfer stack-pointer contents to X-register : X
SP
N - - - - - Z -
192
TST dp
4C
2
3
Test memory contents for negative or zero : (dp) - 00
H
N - - - - - Z -
193
TXA
C8
1
2
Transfer X-register contents to accumulator : A
X
N - - - - - Z -
194
TXSP
8E
1
2
Transfer X-register contents to stack-pointer : SP
X
N - - - - - Z -
195
TYA
BF
1
2
Transfer Y-register contents to accumulator : A
Y
N - - - - - Z -
196
XAX
EE
1
4
Exchange X-register contents with accumulator : X
f
A
- - - - - - - -
197
XAY
DE
1
4
Exchange Y-register contents with accumulator : Y
f
A
- - - - - - - -
198
XCN
CE
1
5
Exchange nibbles within the accumulator:
N - - - - - Z -
A
7
~ A
4
f
A
3
~ A
0
199
XMA dp
BC
2
5
Exchange memory contents with accumulator
N - - - - - Z -
200
XMA dp + X
AD
2
6
(M)
f
A
201
XMA {X}
BB
1
5
202
XYX
FE
1
4
Exchange X-register contents with Y-register : X
f
Y
- - - - - - - -
Appendix A. GMS800 Series Instruction
A-7
2.1 Instruction Table by Function
1. Arithmetic/Logic Operation
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
1
ADC #imm
04
2
2
Add with carry.
NV - - H - ZC
2
ADC dp
05
2
3
A
A + (M) + C
3
ADC dp + X
06
2
4
4
ADC !abs
07
3
4
5
ADC !abs+Y
15
3
5
6
ADC [dp+X]
16
2
6
7
ADC [dp]+Y
17
2
6
8
ADC {X}
14
1
3
9
AND #imm
84
2
2
Logical AND
N - - - - - Z -
10
AND dp
85
2
3
A
A ^ (M)
11
AND dp + X
86
2
4
12
AND !abs
87
3
4
13
AND !abs+Y
95
3
5
14
AND [dp+X]
96
2
6
15
AND [dp] + Y
97
2
6
16
AND {X}
94
1
3
17
ASL A
08
1
2
Arithmetic shift left
N - - - - - ZC
18
ASL dp
09
2
4
19
ASL dp + X
19
2
5
20
ASL !abs
18
3
5
21
CMP #imm
44
2
2
Compare accumulator contents with memory contents
N - - - - - ZC
22
CMP dp
45
2
3
A - (M)
23
CMP dp + X
46
2
4
24
CMP !abs
47
3
4
25
CMP !abs + Y
55
3
5
26
CMP [dp + X]
56
2
6
27
CMP [dp] + Y
57
2
6
28
CMP {X}
54
1
3
29
CMPX #imm
5E
2
2
Compare X contents with memory contents
N - - - - - ZC
30
CMPX dp
6C
2
3
X - (M)
31
CMPX !abs
7C
3
4
32
CMPY #imm
7E
2
2
Compare Y contents with memory contents
N - - - - - ZC
33
CMPY dp
8C
2
3
Y - (M)
34
CMPY !abs
9C
3
4
35
COM dp
2C
2
4
1's complement : (dp)
~(dp)
N - - - - - Z -
36
DAA
DF
1
3
Decimal adjust for addition
N - - - - - ZC
37
DAS
CF
1
3
Decimal adjust for substraction
N - - - - - ZC
38
DEC A
A8
1
2
Decrement
N - - - - - Z -
39
DEC dp
A9
2
4
M
M - 1
40
DEC dp + X
B9
2
5
41
DEC !abs
B8
3
5
42
DEC X
AF
1
2
43
DEC Y
BE
1
2
44
DIV
9B
1
12
Divide : YA/A
Q:A, R:Y
NV - - H - Z -
C 7 6 5 4 3 2 1 0
"
0
"
Appendix A. GMS800 Series Instruction
A-8
45
EOR #imm
A4
2
2
Exclusive OR
N - - - - - Z -
46
EOR dp
A5
2
3
A
A
(M)
47
EOR dp + X
A6
2
4
48
EOR !abs
A7
3
4
49
EOR !abs + Y
B5
3
5
50
EOR [ dp + X]
96
2
6
51
EOR [dp] + Y
97
2
6
52
EOR {X}
94
1
3
53
INC A
88
1
2
Increment
N - - - - - ZC
54
INC dp
89
2
4
(M)
(M) + 1
N - - - - - Z -
55
INC dp + X
99
2
5
56
INC !abs
98
3
5
57
INC X
8F
1
2
58
INC Y
9E
1
2
59
LSR A
48
1
2
Logical shift right
N - - - - - ZC
60
LSR dp
49
2
4
61
LSR dp + X
59
2
5
62
LSR !abs
58
3
5
63
MUL
5B
1
9
Multiply : YA
Y x A
N - - - - - Z -
64
OR #imm
64
2
2
Logical OR
N - - - - - Z -
65
OR dp
65
2
3
A
A V (M)
66
OR dp + X
66
2
4
67
OR !abs
67
3
4
68
OR !abs + Y
75
3
5
69
OR [dp +X}
76
2
6
70
OR [dp] + Y
77
2
6
71
OR {X}
74
1
3
72
ROL A
28
1
2
Rotate left through carry
N - - - - - ZC
73
ROL dp
29
2
4
74
ROL dp + X
39
2
5
75
ROL !abs
38
3
5
76
ROR A
68
1
2
Rotate right through carry
N - - - - - ZC
77
ROR dp
69
2
4
78
ROR dp + X
79
2
5
79
ROR !abs
78
3
5
80
SBC #imm
24
2
2
Substract with carry
NV - - HZC
81
SBC dp
25
2
3
A
A - (M) - ~(C)
82
SBC dp + X
26
2
4
83
SBC !abs
27
3
4
84
SBC !abs + Y
35
3
5
85
SBC [dp + X]
36
2
6
86
SBC [dp] + Y
37
2
6
87
SBC {X}
34
1
3
88
TST dp
4C
2
3
Test memory contents for negative or zero : (dp) - 00
H
N - - - - - Z -
89
XCN
CE
1
5
Exchange nibbles within the accumulator:
N - - - - - Z -
A
7
~ A
4
f
A
3
~ A
0
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
7 6 5 4 3 2 1 0 C
"
0
"
C 7 6 5 4 3 2 1 0
7 6 5 4 3 2 1 0 C
Appendix A. GMS800 Series Instruction
A-9
2. Register / Memory Operation
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
1
LDA #imm
C4
2
2
Load accumulator
N - - - - - Z -
2
LDA dp
C5
2
3
A
(M)
3
LDA dp + X
C6
2
4
4
LDA !abs
C7
3
4
5
LDA !abs + Y
D5
3
5
6
LDA [dp + X]
D6
2
6
7
LDA [dp]+Y
D7
2
6
8
LDA {X}
D4
1
3
9
LDA {X}+
DB
1
4
X-register auto-increment : A
(M), X
X + 1
10
LDM dp,#imm
E4
3
5
Load memory with immediate data : (M)
imm
- - - - - - - -
11
LDX #imm
1E
2
2
Load X-register
N - - - - - Z -
12
LDX dp
CC
2
3
X
(M)
13
LDX dp + Y
CD
2
4
14
LDX !abs
DC
3
4
15
LDY #imm
3E
2
2
Load X-register
N - - - - - Z -
16
LDY dp
C9
2
3
Y
(M)
17
LDY dp + Y
D9
2
4
18
LDY !abs
D8
3
4
19
STA dp
E5
2
3
Store accumulator contents in memory
- - - - - - - -
20
STA dp + X
E6
2
4
(M)
A
21
STA !abs
E7
3
4
22
STA !abs + Y
F5
3
5
23
STA [dp + X]
F6
2
6
24
STA [dp] + Y
F7
2
6
25
STA {X}
F4
1
3
26
STA {X}+
FB
1
4
X-register auto-increment : (M)
A, X
X + 1
27
STX dp
EC
2
4
Store X-register contents in memory
- - - - - - - -
28
STX dp + Y
ED
2
5
(M)
X
29
STX !abs
FC
3
5
30
STY dp
E9
2
4
Store Y-register contents in memory
- - - - - - - -
31
STY dp + X
F9
2
5
(M)
Y
32
STY !abs
F8
3
5
33
TAX
E8
1
2
Transfer accumulator contents to X-register : X
A
N - - - - - Z -
34
TAY
9F
1
2
Transfer accumulator contents to Y-register : Y
A
N - - - - - Z -
35
TSPX
AE
1
2
Transfer stack-pointer contents to X-register : X
SP
N - - - - - Z -
36
TXA
C8
1
2
Transfer X-register contents to accumulator : A
X
N - - - - - Z -
37
TXSP
8E
1
2
Transfer X-register contents to stack-pointer : SP
X
N - - - - - Z -
38
TYA
BF
1
2
Transfer Y-register contents to accumulator : A
Y
N - - - - - Z -
39
XAX
EE
1
4
Exchange X-register contents with accumulator : X
f
A
- - - - - - - -
40
XAY
DE
1
4
Exchange Y-register contents with accumulator : Y
f
A
- - - - - - - -
41
XMA dp
BC
2
5
Exchange memory contents with accumulator
N - - - - - Z -
42
XMA dp + X
AD
2
6
(M)
f
A
43
XMA {X}
BB
1
5
44
XYX
FE
1
4
Exchange X-register contents with Y-register : X
f
Y
- - - - - - - -
Appendix A. GMS800 Series Instruction
A-10
3. 16-Bit Operation
4. Bit Manipulation
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
1
ADDW dp
1D
2
5
16-bits add without carry : YA
YA + (dp+1)(dp)
NV - - H - ZC
2
CMPW dp
5D
2
4
Compare YA contents with memory pair contents :
N - - - - - ZC
YA - (dp+1)(dp)
3
DECW dp
BD
2
6
Decrement memory pair : (dp+1)(dp)
{(dp+1)(dp)} - 1
N - - - - - Z -
4
INCW dp
9D
2
6
Increment memory pair : (dp+1)(dp)
{(dp+1)(dp)} + 1
N - - - - - Z -
5
LDYA dp
7D
2
5
Load YA : YA
(dp+1)(dp)
N - - - - - Z -
6
STYA dp
DD
2
5
Store YA : (dp+1)(dp)
YA
- - - - - - - -
7
SUBW dp
3D
2
5
16-bits substract without carry : YA
YA - (dp+1)(dp)
NV - - H - ZC
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
1
AND1 M.bit
8B
3
4
Bit AND C-flag : C
C ^ (M.bit)
- - - - - - - C
2
AND1B M.bit
8B
3
4
Bit AND C-flag and NOT : C
C ^ ~(M.bit)
- - - - - - - C
3
BIT dp
0C
2
4
Bit test A with memory :
MM - - - - Z -
4
BIT !abs
1C
3
5
Z
A ^ M, N
(M
7
), V
(M
6
)
5
CLR1 dp.bit
y1
2
4
Clear bit : (M.bit)
"0"
- - - - - - - -
6
CLR1A A.bit
2B
2
2
Clear A.bit : (A.bit)
"0"
- - - - - - - -
7
CLRC
20
1
2
Clear C-flag : C
"0"
- - - - - - - 0
8
CLRG
40
1
2
Clear G-flag : G
"0"
- - 0 - - - - -
9
CLRV
80
1
2
Clear V-flag : V
"0"
- 0 - - 0 - - -
10
EOR1 M.bit
AB
3
5
Bit exclusive-OR C-flag : C
C
(M.bit)
- - - - - - - C
11
EOR1B M.bit
AB
3
5
Bit exclusive-OR C-flag and NOT : C
C
(M.bit)
- - - - - - - C
12
LDC M.bit
CB
3
4
Load C-flag : C
(M.bit)
- - - - - - - C
13
LDCB M.bit
CB
3
4
Load C-flag with NOT : C
~(M.bit)
- - - - - - - C
14
NOT1 M.bit
4B
3
5
Bit complement : (M.bit)
~(M.bit)
- - - - - - - -
15
OR1 M.bit
6B
3
5
Bit OR C-flag : C
C V (M.bit)
- - - - - - - C
16
OR1B M.bit
6B
3
5
Bit OR C-flag and NOT : C
C V ~(M.bit)
- - - - - - - C
17
SET1 dp.bit
x1
2
4
Set bit : (M.bit)
"1"
- - - - - - - -
18
SETA1 A.bit
0B
2
2
Set A.bit : (A.bit)
"1"
- - - - - - - -
19
SETC
A0
1
2
Set C-flag : C
"1"
- - - - - - - 1
20
SETG
C0
1
2
Set G-flag : G
"1"
- - 1 - - - - -
21
STC M.bit
EB
3
6
Store C-flag : (M.bit)
C
- - - - - - - -
22
TCLR1 !abs
5C
3
6
Test and clear bits with A :
N - - - - - Z -
A - (M), (M)
(M) ^ ~(A)
23
TSET1 !abs
3C
3
6
Test and set bits with A :
N - - - - - Z -
A - (M), (M)
(M) V (A)
Appendix A. GMS800 Series Instruction
A-11
5. Branch / Jump Operation
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
1
BBC A.bit,rel
y2
2
4/6
Branch if bit clear :
- - - - - - - -
2
BBC dp.bit,rel
y3
3
5/7
if(bit) = 0, then PC
PC + rel
3
BBS A.bit,rel
x2
2
4/6
Branch if bit clear :
- - - - - - - -
4
BBS dp.bit,rel
x3
3
5/7
if(bit) = 1, then PC
PC + rel
5
BCC rel
50
2
2/4
Branch if carry bit clear :
if(C) = 0, then PC
PC + rel
MM - - - - Z -
6
BCS rel
D0
2
2/4
Branch if carry bit set : If (C) =1, then PC
PC + rel
- - - - - - - -
7
BEQ rel
F0
2
2/4
Branch if equal : if (Z) = 1, then PC
PC + rel
- - - - - - - -
8
BMI rel
90
2
2/4
Branch if munus : if (N) = 1, then PC
PC + rel
- - - - - - - -
9
BNE rel
70
2
2/4
Branch if not equal : if (Z) = 0, then PC
PC + rel
- - - - - - - -
10
BPL rel
10
2
2/4
Branch if not minus : if (N) = 0, then PC
PC + rel
- - - - - - - -
11
BRA rel
2F
2
4
Branch always : PC
PC + rel
- - - - - - - -
12
BVC rel
30
2
2/4
Branch if overflow bit clear :
- - - - - - - -
If (V) = 0, then PC
PC + rel
13
BVS rel
B0
2
2/4
Branch if overflow bit set :
- - - - - - - -
If (V) = 1, then PC
PC + rel
14
CALL !abs
3B
3
8
Subroutine call
- - - - - - - -
15
CALL [dp]
5F
2
8
M(SP)
(PC
H
), SP
SP-1, M(SP)
(PC
L
), SP
SP-1
if !abs, PC
abs ; if [dp], PC
L
(dp), PC
H
(dp+1)
16
CBNE dp,rel
FD
3
5/7
Compare and branch if not equal ;
- - - - - - - -
17
CBNE dp + X, rel
8D
3
6/8
If A
(M), then PC
PC + rel.
18
DBNE dp,rel
AC
3
5/7
Decrement and branch if not equal :
- - - - - - - -
19
DBNE Y,rel
7B
2
4/6
if (M)
0, then PC
PC + rel.
20
JMP !abs
1B
3
3
Unconditional jump
- - - - - - - -
21
JMP [!abs]
1F
3
5
PC
jump address
22
JMP [dp]
3F
2
4
23
PCALL
4F
2
6
U-page call : M(SP)
(PC
H
), SP
SP -1,
- - - - - - - -
M(SP)
(PC
L
), SP
SP -1,
PC
L
(upage), PC
H
"OFF
H
"
24
TCALL n
nA
1
8
Table call :
- - - - - - - -
M(SP)
(PC
H
), SP
SP -1,
M(SP)
(PC
L
), SP
SP -1
PC
L
(Table vector L), PC
H
(Table vector H)
Appendix A. GMS800 Series Instruction
A-12
6. Control Operation & etc.
NO.
MNENONIC
OP
CODE
BYTE
NO.
CYCLE
NO
OPERATION
FLAG
NVGBHIZC
1
BRK
0F
1
8
Software interrupt:
- - - 1 - 0 - -
B
"1", M(SP)
(PC
H
), SP
SP - 1,
M(s)
(PC
L
), SP
S - 1, M(SP)
PSW,
SP
SP - 1, PC
L
(0FFDE
H
), PC
H
(0FFDF
H
)
2
DI
60
1
3
Disable interrupts : I
"0"
- - - - - 0 - -
3
EI
E0
1
3
Enable interrupts : I
"1"
- - - - - 1 - -
4
NOP
FF
1
2
No operation
- - - - - - - -
5
POP A
0D
1
4
Pop from stack
- - - - - - - -
6
POP X
2D
1
4
SP
SP + 1, Reg.
M(SP)
7
POP Y
4D
1
4
8
POP PSW
6D
1
4
(restored)
9
PUSH A
0E
1
4
Push to stack
- - - - - - - -
10
PUSH X
2E
1
4
M(SP)
Reg. SP
SP - 1
11
PUSH Y
4E
1
4
12
PUSH PSW
6E
1
4
13
RET
6F
1
5
Return from subroutine :
- - - - - - - -
SP
SP+1, PC
L
M(SP), SP
SP+1, PC
H
M(SP)
14
RETI
7F
1
6
Return from interrupt :
(restored)
SP
SP+1, PSW
M(SP), SP
SP+1,PC
L
M(SP),
SP
SP+1, PC
H
M(SP)
15
STOP
EF
1
3
Stop mode (halt CPU, stop oscillator)
- - - - - - - -
Appendix B. Programmer's guide
B-1
1. General Circuit Diagram of GMS81C50 series
OSC
TR1
GMS 81
C50
XX
1
2
40
39
GND
0.1uF
2
20u
F
0.1
u
F
In
d
i
c
a
to
r L
E
D
VCC
vcc
Infrared LED
4MHz
Filter for Vcc-GND
noise
3
4
38
37
5
6
36
35
7
8
34
33
9
10
32
31
11
12
30
29
13
14
28
27
15
16
26
25
17
18
24
23
19
20
22
21
R00
R01
R02
R03
R04
R05
R06
R07
XIN
R10
R11
R12
R13
TEST
R34
R35
VDD
R36
R37
XOUT
R27
R26
R25
R24
R23
R22
R21
R20
R16
R40
REMOUT
R15
R14
RESET
R33
VSS
R32
R31
R30
R17
VCC
17
9
1
18
10
2
19
11
3
20
12
4
21
13
5
22
14
6
23
15
7
24
16
8
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
R15
R14
R13
R12
R10
R30
R00
R01
R02
R03
R04
R05
R06
R07
49
50
51
52
53
54
55
56
R16
73
65
57
74
66
58
75
67
59
76
68
60
77
69
61
78
70
62
79
71
63
80
72
64
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
R23
R22
R21
R20
R17
113
114
115
116
117
118
119
120
R26
121
122
123
124
125
126
127
128
R27
97
98
99
100
101
102
103
104
R24
105
106
107
108
109
110
111
112
R25
Appendix B. Programmer's guide
B-2
Figure B-1. Circuit Diagram
Note: Normally use the above 100uF capacitor for prevent power drop during pulse is transmitted. If you use the SRAM back-
up, use at least 220uF.
We recommend to use ALKALINE battery.
Note: Figure B-1, Circuit Description:
device : GMS81C5016
package : 40PIN PDIP
port R0x : All input port with pull-up resistor
port R1x : All output port with N-MOS Open drain
port R11 : LED Drive port
KEY MATRIX
= KEY
Appendix B. Programmer's guide
B-3
2. Mask Option List Example Refer to Circuit B-1
Note: Caution: When the power to the MCU would be de-
creased under LVD, all I/O ports are changed to input ports
with pull up resistor. In below cases, you must take care of
selecting the pull up in LVD.. You must detach the pull up
of I/O port at thease cases.
Case1 : When any I/O port is connected to GND, the cur-
rent will flow from the Pull up to GND. It cause the large
power consumption and RAM would not be retained
enough to satisfy your want.
Case2 : The case of using any I/O port for controlling PNP
TR., The TR is always turn on by the Pull up of I/O port in
LVD mode
< Case 1 >
< Case 2 >
GMS81C50 MASK OPTION LIST
LG Semicon Co., Ltd.
M/L Application Team.
Code Name : GMS81C5016 - Uxxx
1. Device & Package
Date :
Company Name :
Section Name :
Signature :
28PIN : SOP 28 PIN : Skinny DIP
40PIN : PDIP
44PIN : MQFP
Y : Yes N : No
- R0 PORT
< NOTICE >
. *1 : is not available for 28PIN & 40PIN. So, Default option is Pull-Up.
. *2 : is not available for 28PIN. So, Default Option is Pull-Up.
. *3 : is for selecting Pull-up in LVD mode.
GMS81C5008
GMS81C5016
GMS81C5004
GMS81C5032
GMS81C5024
44PIN : PLCC
3. Low Voltage Detection
(Means RAM retention)
Y/N
Y
Port
R00
Y/N
y
R01
y
R02
y
R03
y
R04
y
R05
y
R06
y
R07
y
- R1 PORT
Port
R10
Y/N
y
R11
y
R12
y
R13
y
R14
y
R15
y
R16
y
R17
y
- R2 PORT
Port
R20
Y/N
y
R21
y
R22
y
R23
y
R24
y
R25 *2
y
R26 *2
y
R27 *2
y
- R3 PORT
Port
R30 *2
Y/N
y
R31 *2
y
R32 *2
y
R33 *2
y
R34 *2
y
R35 *2
y
R36 *2
y
R37 *2
y
- R4 PORT
Port
R40 *2
Y/N
y
Y : Yes N : No
Y : Yes N : No
Y : Yes N : No
Y : Yes N : No
Y/N*3
y
y
y
y
y
y
y
y
Y/N*3
y
y
y
y
y
y
y
y
Y/N*3
y
y
y
y
y
y
y
y
Y/N*3
y
y
y
y
y
y
y
y
Y/N*3
y
R00
R00
Indi
c
a
tor LED
PNP
Appendix B. Programmer's guide
B-4
3. Key Scan
To secure the key board scanning , read the input port after
minimum 60uS delay time from output port set to `Low `.
This time delay is for the port rising time depend on the in-
put pull-up resistor .
; program example ,See the Figure B-1 circuit.
ldm R1,#1111_1110b ;R10 port set to LOW
call delay_60uS ;60uS time delay routine
lda R0 ;R0 port Read
< Fig B-2 , Input with pull-up port read time method >
* Current Consumption
The current consumption during the Pulse transmission de-
pends on the external circuit and each Protocol. Normally
, if you used Fig B-1 circuit., the operation current is 15mA
~ 25mA (Max 45mA). But this value is normal case. Some
special protocol can be possible to consume more larger
current.
R10
R11
60uS
60uS
R0 port Read timing