ChipFind - документация

Электронный компонент: 853054AG

Скачать:  PDF   ZIP

Document Outline

Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
1
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
G
ENERAL
D
ESCRIPTION
The ICS853054 is an 4:1 Differential-to-3.3V or
2.5V LVPECL/ECL Clock Multiplexer which
can operate up to 2.5GHz and is a member of
the HiPerClockSTM family of High Performance
Clock Solutions from ICS. The ICS853054 has 4
selectable differential clock inputs. The PCLKx, nPCLKx in-
put pairs can accept LVPECL, LVDS, CML or SSTL levels.
The fully differential architecture and low propagation
delay make it ideal for use in clock distribution circuits. The
select pins have internal pulldown resistors. The SEL1 pin is
the most significant bit and the binary number applied to the
select pins will select the same numbered data input (i.e., 00
selects PCLK0, nPCLK0).
F
EATURES
High speed 4:1 differential multiplexer
One differential 3.3V or 2.5V LVPECL output
Four selectable differential PCLK, nPCLK inputs
PCLKx, nPCLKx pairs can accept the following
differential input levels: LVPECL, LVDS, CML, SSTL
Maximum output frequency: 3.2GHz
Translates any single ended input signal to
LVPECL levels with resistor bias on nPCLKx input
Part-to-part skew: TBD
Propagation delay: 465ps (typical)
Additive phase jitter, RMS: 0.238ps (typical)
LVPECL mode operating voltage supply range:
V
CC
= 2.375V to 3.465V, V
EE
= 0V
ECL mode operating voltage supply range:
V
CC
= 0V, V
EE
= -3.465V to -2.375V
-40C to 85C ambient operating temperature
Available in both standard and lead-free RoHS-compliant
packages
B
LOCK
D
IAGRAM
P
IN
A
SSIGNMENT
HiPerClockSTM
ICS
PCLK0
nPCLK0
PCLK1
nPCLK1
V
CC
SEL0
SEL1
V
EE
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
V
CC
Q
nQ
V
EE
nPCLK3
PCLK3
nPCLK2
PCLK2
ICS853054
16-Lead TSSOP
4.4mm x 5.0mm x 0.92mm package body
G Package
Top View
PCLK0
nPCLK0
PCLK1
nPCLK1
PCLK2
nPCLK2
PCLK3
nPCLK3
00
11
01
10
SEL1
SEL0
Q
nQ
The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial
product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
2
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
T
ABLE
1. P
IN
D
ESCRIPTIONS
T
ABLE
2. P
IN
C
HARACTERISTICS
r
e
b
m
u
N
e
m
a
N
e
p
y
T
n
o
i
t
p
i
r
c
s
e
D
1
0
K
L
C
P
t
u
p
n
I
n
w
o
d
ll
u
P
.
t
u
p
n
i
k
c
o
l
c
L
C
E
P
V
L
l
a
i
t
n
e
r
e
f
f
i
d
g
n
i
t
r
e
v
n
i
-
n
o
N
2
0
K
L
C
P
n
t
u
p
n
I
n
w
o
d
ll
u
P
/
p
u
ll
u
P
.
t
u
p
n
i
k
c
o
l
c
L
C
E
P
V
L
l
a
i
t
n
e
r
e
f
f
i
d
g
n
i
t
r
e
v
n
I
V
C
C
.
g
n
i
t
a
o
l
f
t
f
e
l
n
e
h
w
t
l
u
a
f
e
d
2
/
3
1
K
L
C
P
t
u
p
n
I
n
w
o
d
ll
u
P
.
t
u
p
n
i
k
c
o
l
c
L
C
E
P
V
L
l
a
i
t
n
e
r
e
f
f
i
d
g
n
i
t
r
e
v
n
i
-
n
o
N
4
1
K
L
C
P
n
t
u
p
n
I
n
w
o
d
ll
u
P
/
p
u
ll
u
P
.
t
u
p
n
i
k
c
o
l
c
L
C
E
P
V
L
l
a
i
t
n
e
r
e
f
f
i
d
g
n
i
t
r
e
v
n
I
V
C
C
.
g
n
i
t
a
o
l
f
t
f
e
l
n
e
h
w
t
l
u
a
f
e
d
2
/
6
1
,
5
V
C
C
r
e
w
o
P
.
s
n
i
p
y
l
p
p
u
s
e
v
i
t
i
s
o
P
7
,
6
1
L
E
S
,
0
L
E
S
t
u
p
n
I
n
w
o
d
ll
u
P
.
s
l
e
v
e
l
e
c
a
f
r
e
t
n
i
L
T
T
V
L
/
S
O
M
C
V
L
.
s
n
i
p
t
u
p
n
i
t
c
e
l
e
s
k
c
o
l
C
3
1
,
8
V
E
E
r
e
w
o
P
.
n
i
p
y
l
p
p
u
s
e
v
i
t
a
g
e
N
9
2
K
L
C
P
t
u
p
n
I
n
w
o
d
ll
u
P
.
t
u
p
n
i
k
c
o
l
c
L
C
E
P
V
L
l
a
i
t
n
e
r
e
f
f
i
d
g
n
i
t
r
e
v
n
i
-
n
o
N
0
1
2
K
L
C
P
n
t
u
p
n
I
n
w
o
d
ll
u
P
/
p
u
ll
u
P
.
t
u
p
n
i
k
c
o
l
c
L
C
E
P
V
L
l
a
i
t
n
e
r
e
f
f
i
d
g
n
i
t
r
e
v
n
I
V
C
C
.
g
n
i
t
a
o
l
f
t
f
e
l
n
e
h
w
t
l
u
a
f
e
d
2
/
1
1
3
K
L
C
P
t
u
p
n
I
n
w
o
d
ll
u
P
.
t
u
p
n
i
k
c
o
l
c
L
C
E
P
V
L
l
a
i
t
n
e
r
e
f
f
i
d
g
n
i
t
r
e
v
n
i
-
n
o
N
2
1
3
K
L
C
P
n
t
u
p
n
I
n
w
o
d
ll
u
P
/
p
u
ll
u
P
.
t
u
p
n
i
k
c
o
l
c
L
C
E
P
V
L
l
a
i
t
n
e
r
e
f
f
i
d
g
n
i
t
r
e
v
n
I
V
C
C
.
g
n
i
t
a
o
l
f
t
f
e
l
n
e
h
w
t
l
u
a
f
e
d
2
/
5
1
,
4
1
Q
,
Q
n
t
u
p
t
u
O
.
s
l
e
v
e
l
e
c
a
f
r
e
t
n
i
L
C
E
P
V
L
.
r
i
a
p
t
u
p
t
u
o
l
a
i
t
n
e
r
e
f
f
i
D
:
E
T
O
N
n
w
o
d
ll
u
P
d
n
a
p
u
ll
u
P
.
s
e
u
l
a
v
l
a
c
i
p
y
t
r
o
f
,
s
c
i
t
s
i
r
e
t
c
a
r
a
h
C
n
i
P
,
2
e
l
b
a
T
e
e
S
.
s
r
o
t
s
i
s
e
r
t
u
p
n
i
l
a
n
r
e
t
n
i
o
t
r
e
f
e
r
T
ABLE
3. C
LOCK
I
NPUT
F
UNCTION
T
ABLE
l
o
b
m
y
S
r
e
t
e
m
a
r
a
P
s
n
o
i
t
i
d
n
o
C
t
s
e
T
m
u
m
i
n
i
M
l
a
c
i
p
y
T
m
u
m
i
x
a
M
s
t
i
n
U
R
N
W
O
D
L
L
U
P
r
o
t
s
i
s
e
R
n
w
o
d
ll
u
P
t
u
p
n
I
5
7
k
R
2
/
D
D
V
r
s
o
t
s
i
s
e
R
n
w
o
d
ll
u
P
/
p
u
ll
u
P
0
5
k
s
t
u
p
n
I
s
t
u
p
t
u
O
1
L
E
S
0
L
E
S
Q
n
/
Q
0
0
0
K
L
C
P
n
/
0
K
L
C
P
0
1
1
K
L
C
P
n
/
1
K
L
C
P
1
0
2
K
L
C
P
n
/
2
K
L
C
P
1
1
3
K
L
C
P
n
/
3
K
L
C
P
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
3
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
T
ABLE
4A. P
OWER
S
UPPLY
DC C
HARACTERISTICS
,
V
CC
= 2.375
TO
3.465V; V
EE
= 0V
l
o
b
m
y
S
r
e
t
e
m
a
r
a
P
s
n
o
i
t
i
d
n
o
C
t
s
e
T
m
u
m
i
n
i
M
l
a
c
i
p
y
T
m
u
m
i
x
a
M
s
t
i
n
U
V
C
C
e
g
a
t
l
o
V
y
l
p
p
u
S
e
v
i
t
i
s
o
P
5
7
3
.
2
3
.
3
5
6
4
.
3
V
I
C
C
t
n
e
r
r
u
C
y
l
p
p
u
S
r
e
w
o
P
1
6
A
m
T
ABLE
4C. LVPECL DC C
HARACTERISTICS
,
V
CC
= 2.375
TO
3.465V; V
EE
= 0V
l
o
b
m
y
S
r
e
t
e
m
a
r
a
P
s
n
o
i
t
i
d
n
o
C
t
s
e
T
m
u
m
i
n
i
M
l
a
c
i
p
y
T
m
u
m
i
x
a
M
s
t
i
n
U
I
H
I
t
n
e
r
r
u
C
h
g
i
H
t
u
p
n
I
3
K
L
C
P
:
0
K
L
C
P
3
K
L
C
P
n
:
0
K
L
C
P
n
V
C
C
V
=
N
I
V
5
6
4
.
3
=
0
5
1
A
I
L
I
t
n
e
r
r
u
C
w
o
L
t
u
p
n
I
3
K
L
C
P
:
0
K
L
C
P
V
C
C
V
,
V
5
6
4
.
3
=
N
I
V
0
=
0
1
-
A
3
K
L
C
P
n
:
0
K
L
C
P
n
V
C
C
V
,
V
5
6
4
.
3
=
N
I
V
0
=
0
5
1
-
A
V
P
P
e
g
a
t
l
o
V
t
u
p
n
I
k
a
e
P
-
o
t
-
k
a
e
P
5
1
.
0
V
V
R
M
C
;
e
g
a
t
l
o
V
t
u
p
n
I
e
d
o
M
n
o
m
m
o
C
2
,
1
E
T
O
N
2
.
1
3
.
3
V
V
H
O
3
E
T
O
N
;
e
g
a
t
l
o
V
e
g
a
t
l
o
V
h
g
i
H
t
u
p
t
u
O
V
C
C
5
0
0
.
1
-
V
V
L
O
3
E
T
O
N
;
e
g
a
t
l
o
V
w
o
L
t
u
p
t
u
O
V
C
C
8
7
.
1
-
V
V
G
N
I
W
S
g
n
i
w
S
e
g
a
t
l
o
V
t
u
p
t
u
O
k
a
e
P
-
o
t
-
k
a
e
P
8
.
0
V
V
s
a
d
e
n
i
f
e
d
s
i
e
g
a
t
l
o
v
e
d
o
m
n
o
m
m
o
C
:
1
E
T
O
N
H
I
.
V
s
i
x
K
L
C
P
n
,
x
K
L
C
P
r
o
f
e
g
a
t
l
o
v
t
u
p
n
i
m
u
m
i
x
a
m
e
h
t
,
s
n
o
i
t
a
c
il
p
p
a
d
e
d
n
e
e
l
g
n
i
s
r
o
F
:
2
E
T
O
N
C
C
.
V
3
.
0
+
0
5
h
t
i
w
d
e
t
a
n
i
m
r
e
t
s
t
u
p
t
u
O
:
3
E
T
O
N
V
o
t
C
C
.
V
2
-
T
ABLE
4B. LVCMOS/LVTTL DC C
HARACTERISTICS
,
V
CC
= 2.375
TO
3.465V; V
EE
= 0V
Supply Voltage, V
CC
4.6V (LVPECL mode, V
EE
= 0)
Negative Supply Voltage, V
EE
-4.6V (ECL mode, V
CC
= 0)
Inputs, V
I
(LVPECL mode)
-0.5V to V
CC
+ 0.5V
Inputs, V
I
(ECL mode)
0.5V to V
EE
- 0.5V
Outputs, I
O
Continuous Current
50mA
Surge Current
100mA
Operating Temperature Range, TA -40C to +85C
Storage Temperature, T
STG
-65C to 150C
Package Thermal Impedance,
JA
89C/W (0 lfpm)
(Junction-to-Ambient)
NOTE: Stresses beyond those listed under Absolute
Maximum Ratings may cause permanent damage
to the device. These ratings are stress specifi-
cations only. Functional operation of product at
these conditions or any conditions beyond those
listed in the
DC Characteristics
or
AC Character-
istics
is not implied. Exposure to absolute maxi-
mum rating conditions for extended periods may
affect product reliability.
A
BSOLUTE
M
AXIMUM
R
ATINGS
l
o
b
m
y
S
r
e
t
e
m
a
r
a
P
s
n
o
i
t
i
d
n
o
C
t
s
e
T
m
u
m
i
n
i
M
l
a
c
i
p
y
T
m
u
m
i
x
a
M
s
t
i
n
U
V
H
I
e
g
a
t
l
o
V
h
g
i
H
t
u
p
n
I
V
C
C
V
3
.
3
=
2
V
C
C
3
.
0
+
V
V
C
C
V
5
.
2
=
7
.
1
V
C
C
3
.
0
+
V
V
L
I
e
g
a
t
l
o
V
w
o
L
t
u
p
n
I
V
C
C
V
3
.
3
=
3
.
0
-
8
.
0
V
V
C
C
V
5
.
2
=
3
.
0
-
7
.
0
V
I
H
I
t
n
e
r
r
u
C
h
g
i
H
t
u
p
n
I
1
L
E
S
,
0
L
E
S
V
C
C
V
=
N
I
,
V
5
6
4
.
3
=
V
C
C
V
=
N
I
V
5
2
6
.
2
=
0
5
1
A
I
L
I
t
n
e
r
r
u
C
w
o
L
t
u
p
n
I
1
L
E
S
,
0
L
E
S
V
C
C
V
,
V
5
6
4
.
3
=
N
I
,
V
0
=
V
C
C
V
,
V
5
2
6
.
2
=
N
I
V
0
=
0
5
1
-
A
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
4
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
T
ABLE
4D. ECL DC C
HARACTERISTICS
,
V
CC
= 0V; V
EE
= -3.465V
TO
-2.375V
l
o
b
m
y
S
r
e
t
e
m
a
r
a
P
s
n
o
i
t
i
d
n
o
C
t
s
e
T
m
u
m
i
n
i
M
l
a
c
i
p
y
T
m
u
m
i
x
a
M
s
t
i
n
U
V
H
O
1
E
T
O
N
;
e
g
a
t
l
o
V
h
g
i
H
t
u
p
t
u
O
5
0
0
.
1
-
V
V
L
O
1
E
T
O
N
;
e
g
a
t
l
o
V
w
o
L
t
u
p
t
u
O
8
7
.
1
-
V
V
H
I
e
g
a
t
l
o
V
h
g
i
H
t
u
p
n
I
5
2
2
.
1
-
4
9
.
0
-
V
V
L
I
e
g
a
t
l
o
V
w
o
L
t
u
p
n
I
7
8
.
1
-
5
3
5
.
1
-
V
V
P
P
e
g
a
t
l
o
V
t
u
p
n
I
k
a
e
P
-
o
t
-
k
a
e
P
0
0
8
V
m
V
R
M
C
e
g
a
t
l
o
V
h
g
i
H
t
u
p
n
I
3
,
2
E
T
O
N
;
e
g
n
a
R
e
d
o
M
n
o
m
m
o
C
V
E
E
2
.
1
+
0
V
I
H
I
t
u
p
n
I
t
n
e
r
r
u
C
h
g
i
H
3
K
L
C
P
:
0
K
L
C
P
3
K
L
C
P
n
:
0
K
L
C
P
n
0
5
1
A
I
L
I
w
o
L
t
u
p
n
I
t
n
e
r
r
u
C
3
K
L
C
P
:
0
K
L
C
P
0
1
-
A
3
K
L
C
P
n
:
0
K
L
C
P
n
0
5
1
-
A
0
5
h
t
i
w
d
e
t
a
n
i
m
r
e
t
s
t
u
p
t
u
O
:
1
E
T
O
N
V
o
t
C
C
.
V
2
-
V
s
a
d
e
n
i
f
e
d
s
i
e
g
a
t
l
o
v
e
d
o
m
n
o
m
m
o
C
:
2
E
T
O
N
H
I
.
V
s
i
x
K
L
C
P
n
,
x
K
L
C
P
r
o
f
e
g
a
t
l
o
v
t
u
p
n
i
m
u
m
i
x
a
m
e
h
t
,
s
n
o
i
t
a
c
il
p
p
a
d
e
d
n
e
-
e
l
g
n
i
s
r
o
F
:
3
E
T
O
N
C
C
.
V
3
.
0
+
T
ABLE
5. AC C
HARACTERISTICS
,
V
CC
= 0V; V
EE
= -3.465V
TO
-2.375V
OR
V
CC
= 2.375
TO
3.465V; V
EE
= 0V
l
o
b
m
y
S
r
e
t
e
m
a
r
a
P
s
n
o
i
t
i
d
n
o
C
t
s
e
T
m
u
m
i
n
i
M
l
a
c
i
p
y
T
m
u
m
i
x
a
M
s
t
i
n
U
f
X
A
M
y
c
n
e
u
q
e
r
F
t
u
p
t
u
O
2
.
3
z
H
G
t
t
ij
;
S
M
R
,
r
e
t
t
i
J
e
s
a
h
P
e
v
i
t
i
d
d
A
r
e
f
f
u
B
n
o
i
t
c
e
S
r
e
t
t
i
J
e
s
a
h
P
e
v
i
t
i
d
d
A
o
t
r
e
f
e
r
,
z
H
M
2
5
.
5
5
1
z
H
M
0
2
-
z
H
k
2
1
8
3
2
.
0
s
p
t
D
P
1
E
T
O
N
;
y
a
l
e
D
n
o
i
t
a
g
a
p
o
r
P
5
6
4
s
p
t
)
p
p
(
k
s
3
,
2
E
T
O
N
;
w
e
k
S
t
r
a
P
-
o
t
-
t
r
a
P
D
B
T
s
p
t
R
t
/
F
e
m
i
T
ll
a
F
/
e
s
i
R
t
u
p
t
u
O
%
0
8
o
t
%
0
2
0
0
2
s
p
X
U
M
N
O
I
T
A
L
O
S
I
n
o
i
t
a
l
o
s
I
X
U
M
V
N
I
,
V
4
.
2
o
t
V
6
.
1
z
H
M
2
5
.
5
5
1
5
5
-
B
d
.
e
s
i
w
r
e
h
t
o
d
e
t
o
n
s
s
e
l
n
u
z
H
G
3
.
1
o
t
p
u
d
e
r
u
s
a
e
m
s
r
e
t
e
m
a
r
a
p
ll
A
.
t
n
i
o
p
g
n
i
s
s
o
r
c
t
u
p
t
u
o
l
a
i
t
n
e
r
e
f
f
i
d
e
h
t
o
t
t
n
i
o
p
g
n
i
s
s
o
r
c
t
u
p
n
i
l
a
i
t
n
e
r
e
f
f
i
d
e
h
t
m
o
r
f
d
e
r
u
s
a
e
M
:
1
E
T
O
N
s
e
g
a
t
l
o
v
y
l
p
p
u
s
e
m
a
s
e
h
t
t
a
g
n
i
t
a
r
e
p
o
s
e
c
i
v
e
d
t
n
e
r
e
f
f
i
d
n
o
s
t
u
p
t
u
o
n
e
e
w
t
e
b
w
e
k
s
s
a
d
e
n
i
f
e
D
:
2
E
T
O
N
d
e
r
u
s
a
e
m
e
r
a
s
t
u
p
t
u
o
e
h
t
,
e
c
i
v
e
d
h
c
a
e
n
o
s
t
u
p
n
i
f
o
e
p
y
t
e
m
a
s
e
h
t
g
n
i
s
U
.
s
n
o
i
t
i
d
n
o
c
d
a
o
l
l
a
u
q
e
h
t
i
w
d
n
a
.
s
t
n
i
o
p
s
s
o
r
c
l
a
i
t
n
e
r
e
f
f
i
d
e
h
t
t
a
.
5
6
d
r
a
d
n
a
t
S
C
E
D
E
J
h
t
i
w
g
n
i
d
r
o
c
c
a
d
e
n
i
f
e
d
s
i
r
e
t
e
m
a
r
a
p
s
i
h
T
:
3
E
T
O
N
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
5
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
A
DDITIVE
P
HASE
J
ITTER
Additive Phase Jitter, RMS
@ 155.52MHz = <0.238ps typical
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
-190
1k
10k
100k
1M
10M
100M
The spectral purity in a band at a specific offset from the funda-
mental compared to the power of the fundamental is called the
dBc Phase Noise.
This value is normally expressed using a
Phase noise plot and is most often the specified plot in many
applications. Phase noise is defined as the ratio of the noise
power present in a 1Hz band at a specified offset from the fun-
damental frequency to the power value of the fundamental. This
ratio is expressed in decibels (dBm) or a ratio of the power in
As with most timing specifications, phase noise measurements
have issues. The primary issue relates to the limitations of the
equipment. Often the noise floor of the equipment is higher than
the noise floor of the device. This is illustrated above. The de-
the 1Hz band to the power in the fundamental. When the re-
quired offset is specified, the phase noise is called a
dBc
value,
which simply means dBm at a specified offset from the funda-
mental. By investigating jitter in the frequency domain, we get a
better understanding of its effects on the desired application over
the entire time record of the signal. It is mathematically possible
to calculate an expected bit error rate given a phase noise plot.
vice meets the noise floor of what is shown, but can actually be
lower. The phase noise is dependant on the input source and
measurement equipment.
O
FFSET
F
ROM
C
ARRIER
F
REQUENCY
(H
Z
)
SSB P
HASE
N
OISE
dBc/H
Z
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
6
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
P
ARAMETER
M
EASUREMENT
I
NFORMATION
P
ROPAGATION
D
ELAY
D
IFFERENTIAL
I
NPUT
L
EVEL
O
UTPUT
L
OAD
AC T
EST
C
IRCUIT
P
ART
-
TO
-P
ART
S
KEW
O
UTPUT
R
ISE
/F
ALL
T
IME
nQx
Qx
nQy
Qy
PART 1
PART 2
t
sk(pp)
V
CMR
Cross Points
V
PP
V
EE
V
CC
Clock
Outputs
20%
80%
80%
20%
t
R
t
F
V
OD
t
PD
nPCLK0:3
PCLK0:3
nQ
Q
SCOPE
Qx
nQx
LVPECL
2V
V
CC
V
EE
nPCLK0:3
PCLK0:3
-1.465V to -0.375V
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
7
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
A
PPLICATION
I
NFORMATION
W
IRING
THE
D
IFFERENTIAL
I
NPUT
TO
A
CCEPT
S
INGLE
E
NDED
L
EVELS
Figure 1
shows how the differential input can be wired to accept
single ended levels. The reference voltage V_REF = V
CC
/2 is
generated by the bias resistors R1, R2 and C1. This bias circuit
should be located as close as possible to the input pin. The ratio
F
IGURE
1. S
INGLE
E
NDED
S
IGNAL
D
RIVING
D
IFFERENTIAL
I
NPUT
of R1 and R2 might need to be adjusted to position the V_REF in
the center of the input voltage swing. For example, if the input
clock swing is only 2.5V and V
CC
= 3.3V, V_REF should be 1.25V
and R2/R1 = 0.609.
VCC
R2
1K
V_REF
C1
0.1u
R1
1K
Single Ended Clock Input
PCLK
nPCLK
I
NPUTS
:
PCLK/nPCLK I
NPUT
:
For applications not requiring the use of a differential input, both
the PCLK and nPCLK pins can be left floating. Though not
required, but for additional protection, a 1k
resister can be tied
from PCLK to ground.
R
ECOMMENDATIONS
FOR
U
NUSED
I
NPUT
P
INS
S
ELECT
P
INS
:
All select pins have internal pull-ups and pull-downs;
additional resistance is not required but can be added for
additional protection. A 1k
resister can be used.
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
8
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
LVPECL C
LOCK
I
NPUT
I
NTERFACE
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other
differential signals. Both V
SWING
and V
OH
must meet the V
PP
and V
CMR
input requirements.
Figures 2A to 2E
show inter-
face examples for the HiPerClockS PCLK/nPCLK input driven
by the most common driver types. The input interfaces sug-
gested here are examples only. If the driver is from another
vendor, use their termination recommendation. Please con-
sult with the vendor of the driver component to confirm the
driver termination requirements.
F
IGURE
2A. H
I
P
ER
C
LOCK
S PCLK/nPCLK I
NPUT
D
RIVEN
BY
A
CML D
RIVER
F
IGURE
2B. H
I
P
ER
C
LOCK
S PCLK/nPCLK I
NPUT
D
RIVEN
BY
AN
SSTL
IN
D
RIVER
F
IGURE
2C. H
I
P
ER
C
LOCK
S PCLK/nPCLK I
NPUT
D
RIVEN
BY
A
3.3V LVPECL D
RIVER
F
IGURE
2D. H
I
P
ER
C
LOCK
S PCLK/nPCLK I
NPUT
D
RIVEN
BY
A
3.3V LVDS D
RIVER
HiPerClockS
PCLK
nPCLK
PCLK/nPCLK
3.3V
R2
50
R1
50
3.3V
Zo = 50 Ohm
CML
3.3V
Zo = 50 Ohm
PCLK/nPCLK
2.5V
Zo = 60 Ohm
SSTL
HiPerClockS
PCLK
nPCLK
R2
120
3.3V
R3
120
Zo = 60 Ohm
R1
120
R4
120
2.5V
F
IGURE
2E. H
I
P
ER
C
LOCK
S PCLK/nPCLK I
NPUT
D
RIVEN
BY
A
3.3V LVPECL D
RIVER
WITH
AC C
OUPLE
3.3V
R5
100 - 200
3.3V
3.3V
HiPerClockS
PCLK
nPCLK
R1
125
PCLK/nPCLK
R2
125
R3
84
C1
C2
Zo = 50 Ohm
R4
84
Zo = 50 Ohm
R6
100 - 200
3.3V LVPECL
3.3V
HiPerClockS
PCLK
nPCLK
R2
84
R3
125
Input
Zo = 50 Ohm
R4
125
R1
84
LVPECL
3.3V
3.3V
Zo = 50 Ohm
C2
R2
1K
R5
100
Zo = 50 Ohm
3.3V
3.3V
C1
R3
1K
LVDS
R4
1K
HiPerClockS
PCLK
nPCLK
R1
1K
Zo = 50 Ohm
3.3V
PC L K /n PC LK
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
9
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
V
CC
- 2V
50
50
RTT
Z
o
= 50
Z
o
= 50
FOUT
FIN
RTT =
Z
o
1
((V
OH
+ V
OL
) / (V
CC
2)) 2
3.3V
125
125
84
84
Z
o
= 50
Z
o
= 50
FOUT
FIN
The clock layout topology shown below is a typical termi-
nation for LVPECL outputs. The two different layouts men-
tioned are recommended only as guidelines.
FOUT and nFOUT are low impedance follower outputs that
generate ECL/LVPECL compatible outputs. Therefore, termi-
nating resistors (DC current path to ground) or current sources
must be used for functionality. These outputs are designed to
drive 50
transmission lines. Matched impedance techniques
should be used to maximize operating frequency and mini-
mize signal distortion.
Figures 3A and 3B
show two different
layouts which are recommended only as guidelines. Other
suitable clock layouts may exist and it would be recommended
that the board designers simulate to guarantee compatibility
across all printed circuit and clock component process varia-
tions.
F
IGURE
3B. LVPECL O
UTPUT
T
ERMINATION
F
IGURE
3A. LVPECL O
UTPUT
T
ERMINATION
T
ERMINATION
FOR
3.3V LVPECL O
UTPUTS
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
10
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
T
ERMINATION
FOR
2.5V LVPECL O
UTPUT
Figure 4A
and
Figure 4B
show examples of termination for
2.5V LVPECL driver. These terminations are equivalent to ter-
minating 50
to V
CC
- 2V. For V
CC
= 2.5V, the V
CC
- 2V is very
close to ground level. The R3 in Figure 4B can be eliminated
and the termination is shown in
Figure 4C.
F
IGURE
4C. 2.5V LVPECL T
ERMINATION
E
XAMPLE
F
IGURE
4B. 2.5V LVPECL D
RIVER
T
ERMINATION
E
XAMPLE
F
IGURE
4A. 2.5V LVPECL D
RIVER
T
ERMINATION
E
XAMPLE
R2
62.5
Zo = 50 Ohm
R1
250
+
-
2.5V
2,5V LVPECL
Driv er
R4
62.5
R3
250
Zo = 50 Ohm
2.5V
VCC=2.5V
R1
50
R3
18
Zo = 50 Ohm
Zo = 50 Ohm
+
-
2,5V LVPECL
Driv er
VCC=2.5V
2.5V
R2
50
2,5V LVPECL
Driv er
VCC=2.5V
R1
50
R2
50
2.5V
Zo = 50 Ohm
Zo = 50 Ohm
+
-
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
11
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
P
OWER
C
ONSIDERATIONS
This section provides information on power dissipation and junction temperature for the ICS853054.
Equations and example calculations are also provided.
1. Power Dissipation.
The total power dissipation for the ICS853054 is the sum of the core power plus the power dissipated in the load(s).
The following is the power dissipation for V
CC
= 3.3V 5% =
3.465V
, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.
Power (core)
MAX
= V
CC_MAX
* I
EE_MAX
=
3.465V
* 61mA = 211.37mW
Power (outputs)
MAX
= 27.83mW/Loaded Output pair
Total Power
_MAX
(
3.465V
, with all outputs switching) = 211.37mW + 27.83mW = 239.2mW
2. Junction Temperature.
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the
device. The maximum recommended junction temperature for HiPerClockS
TM
devices is 125C.
The equation for Tj is as follows: Tj =
JA
* Pd_total + T
A
Tj = Junction Temperature
JA
= junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
T
A
= Ambient Temperature
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance
JA
must be used. Assuming a
moderate air flow of 200 meters per second and a multi-layer board, the appropriate value is 81.8C/W per Table 6 below.
Therefore, Tj for an ambient temperature of 85C with all outputs switching is:
85C + 0.239W * 81.8C/W = 104.6C. This is well below the limit of 125C.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,
and the type of board (single layer or multi-layer).


JA
by Velocity (Meters per Second)
T
ABLE
6. T
HERMAL
R
ESISTANCE


JA
FOR
16-P
IN
TSSOP F
ORCED
C
ONVECTION
0
200
500
Single-Layer PCB, JEDEC Standard Test Boards
137.1C/W
118.2C/W
106.8C/W
Multi-Layer PCB, JEDEC Standard Test Boards
89.0C/W
81.8C/W
78.1C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
12
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
3. Calculations and Equations.
The purpose of this section is to derive the power dissipated into the load.
LVPECL output driver circuit and termination are shown in
Figure 5.
T
o calculate worst case power dissipation into the load, use the following equations which assume a 50
load, and a termination
voltage of V
CC
- 2V.
For logic high, V
OUT
= V
OH_MAX
= V
CC_MAX
1.005V
(V
CC_MAX
- V
OH_MAX
) = 1.005
For logic low, V
OUT
= V
OL_MAX
= V
CC_MAX
1.78V
(V
CC_MAX
- V
OL_MAX
) = 1.78V
Pd_H is power dissipation when the output drives high.
Pd_L is the power dissipation when the output drives low.
Pd_H = [(V
OH_MAX
(V
CC_MAX
- 2V))/R
L
] * (V
CC_MAX
- V
OH_MAX
) = [(2V - (V
CC_MAX
- V
OH_MAX
))/R
L
] * (V
CC_MAX
- V
OH_MAX
) =
[(2V - 1.005V)/50
] * 1.005V = 20mW
Pd_L = [(V
OL_MAX
(V
CC_MAX
- 2V))/R
L
] * (V
CC_MAX
- V
OL_MAX
) = [(2V - (V
CC_MAX
- V
OL_MAX
))/R
L
] * (V
CC_MAX
- V
OL_MAX
) =
[(2V - 1.78V)/50
] * 1.78V = 7.83mW
Total Power Dissipation per output pair = Pd_H + Pd_L = 27.83mW
F
IGURE
5. LVPECL D
RIVER
C
IRCUIT
AND
T
ERMINATION
VOUT
Q1
VCC - 2V
RL
50
VCC
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
13
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
R
ELIABILITY
I
NFORMATION
T
RANSISTOR
C
OUNT
The transistor count for ICS853054 is: 326
T
ABLE
7.
JA
VS
. A
IR
F
LOW
T
ABLE
FOR
16 L
EAD
TSSOP


JA
by Velocity (Linear Feet per Minute)
0
200
500
Single-Layer PCB, JEDEC Standard Test Boards
137.1C/W
118.2C/W
106.8C/W
Multi-Layer PCB, JEDEC Standard Test Boards
89.0C/W
81.8C/W
78.1C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
14
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
T
ABLE
8. P
ACKAGE
D
IMENSIONS
P
ACKAGE
O
UTLINE
- G S
UFFIX
FOR
16 L
EAD
TSSOP
Reference Document: JEDEC Publication 95, MO-153
L
O
B
M
Y
S
s
r
e
t
e
m
i
l
l
i
M
m
u
m
i
n
i
M
m
u
m
i
x
a
M
N
6
1
A
-
-
0
2
.
1
1
A
5
0
.
0
5
1
.
0
2
A
0
8
.
0
5
0
.
1
b
9
1
.
0
0
3
.
0
c
9
0
.
0
0
2
.
0
D
0
9
.
4
0
1
.
5
E
C
I
S
A
B
0
4
.
6
1
E
0
3
.
4
0
5
.
4
e
C
I
S
A
B
5
6
.
0
L
5
4
.
0
5
7
.
0
0
8
a
a
a
-
-
0
1
.
0
Integrated
Circuit
Systems, Inc.
853054AG
www.icst.com/products/hiperclocks.html
REV. A JANUARY 5, 2006
15
ICS853054
4:1, D
IFFERENTIAL
-
TO
-3.3V
OR
2.5V
LVPECL/ECL C
LOCK
M
ULTIPLEXER
PRELIMINARY
T
ABLE
9. O
RDERING
I
NFORMATION
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use
in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product
for use in life support devices or critical medical instruments.
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.
r
e
b
m
u
N
r
e
d
r
O
/
t
r
a
P
g
n
i
k
r
a
M
e
g
a
k
c
a
P
g
n
i
g
a
k
c
a
P
g
n
i
p
p
i
h
S
e
r
u
t
a
r
e
p
m
e
T
G
A
4
5
0
3
5
8
S
C
I
G
A
4
5
0
3
5
8
P
O
S
S
T
d
a
e
L
6
1
e
b
u
t
C
5
8
o
t
C
0
4
-
T
G
A
4
5
0
3
5
8
S
C
I
G
A
4
5
0
3
5
8
P
O
S
S
T
d
a
e
L
6
1
l
e
e
r
&
e
p
a
t
0
0
5
2
C
5
8
o
t
C
0
4
-
F
L
G
A
4
5
0
3
5
8
S
C
I
L
A
4
5
0
3
5
8
P
O
S
S
T
"
e
e
r
F
-
d
a
e
L
"
d
a
e
L
6
1
e
b
u
t
C
5
8
o
t
C
0
4
-
T
F
L
G
A
4
5
0
3
5
8
S
C
I
L
A
4
5
0
3
5
8
P
O
S
S
T
"
e
e
r
F
-
d
a
e
L
"
d
a
e
L
6
1
l
e
e
r
&
e
p
a
t
0
0
5
2
C
5
8
o
t
C
0
4
-
.
t
n
a
il
p
m
o
c
S
H
o
R
e
r
a
d
n
a
n
o
i
t
a
r
u
g
i
f
n
o
c
e
e
r
F
-
b
P
e
h
t
e
r
a
r
e
b
m
u
n
t
r
a
p
e
h
t
o
t
x
i
f
f
u
s
"
F
L
"
n
a
h
t
i
w
d
e
r
e
d
r
o
e
r
a
t
a
h
t
s
t
r
a
P
:
E
T
O
N