ChipFind - документация

Электронный компонент: HDSP2000LP

Скачать:  PDF   ZIP
2000 Infineon Technologies Corp. Optoelectronics Division San Jose, CA
www.infineon.com/opto 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178
1
April 4, 2000-11
FEATURES
Four 0.150" Dot Matrix Characters
Four Colors: Red, Yellow, High Efficiency
Red, Green
Wide Viewing Angle: X Axis +50
, Y Axis +75
Built-in CMOS Shift Registers with Constant
Current LED Row Drivers
Custom Fonts from Shift Registers
Easily Cascaded for Multiple Displays
TTL Compatible
End Stackable
Extended Operating Temperature Range:
40
C to + 85
C
Categorized for Luminous Intensity
All Displays Color Matched
Compact Plastic Package
100% Burned-in and Tested
RED
HDSP2000LP
YELLOW
HDSP2001LP
HIGH EFFICIENCY RED
HDSP2002LP
GREEN
HDSP2003LP
0.150"
4-Character 5 x 7 Dot Matrix
Serial Input Alphanumeric Display
DESCRIPTION
The HDSP200XLP are four digit 5 x 7 dot matrix serial input alphanu-
meric displays. The displays are available in red, yellow, high efficiency
red, or bright green. The package is a standard twelve-pin DIP with a
flat plastic lens. The display can be stacked horizontally or vertically to
form messages of any length.
The HDSP200XLP has two fourteen-bit CMOS shift registers with
built-in row drivers. These shift registers drive twenty-eight rows and
enable the design of customized fonts. Cascading multiple displays is
possible because of the Data In and Data Out pins. Data In and Out
are easily input with the clock signal and displayed in parallel on the
row drivers. Data Out represents the output of the 7th bit of digit
number four shift register The shift register is level triggered. The like
columns of each character in a display cluster are tied to a single pin
(see Block Diagram). High true data in the shift register enables the
output current mirror driver stage associated with each row of LEDs
in the 5 x 7 diode array.
.146
(3.71)
Part No.
.170
(4.32)
.020 (.51)
.003 (.08)
12 pl.
EIA Date Code
Luminous Intensity Code
or Color Code for Yellow
HDSP2000LP
OSRAM
YYWW
Z
.699 (17.75) max.
.175 (4.44)
.005 (.13)
.200
(5.08)
.100 (2.54)
.005 (.13)
non-cum.10 pl.
.083
(2.11)
.200
(5.08)
.300 (7.62)
.010 (.25)
.012 (.3)
.002 (.05)
.150
(3.81)
.350
(8.89)
1 2 3 4 5 6
12 11 10 9 8 7
Pin 1
Indicator
Tolerance:
.015 (.38)
Pin Function
1
Column 1
2
Column 2
3
Column 3
4
Column 4
5
Column 5
6
No Connection
7
Data Out
8
V
B
9
V
CC
10
Clock
11
Ground
12
Data In
Dimensions in inches (mm)
See Appnote 44 at www.infineon.com/opto.
2000 Infineon Technologies Corp. Optoelectronics Division San Jose, CA
HDSP200LP/1LP/2LP/3LP
www.infineon.com/opto 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178
2
April 4, 2000-11
DESCRIPTION
(continued)
The TTL compatible V
B
input may either be tied to
V
CC
for max-
imum display intensity or pulse width modulated to achieve
intensity control and reduce power consumption.
In the normal mode of operation, input data for digit four, column
one is loaded into the seven on-board shift register locations one
through seven. Column one data for digits 3, 2, and 1 is shifted
into the display shift register locations. Then column one input is
enabled for an appropriate period of time, T. A similar process is
repeated for columns 2, 3, 4, and 5. If the decode time and load
data time into the shift register is t, then with five columns, each
column of the display is operating at a duty factor of:
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the mini-
mum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the display
should be refreshed (turned on) at a minimum rate of 100
times per second.
With columns to be addressed, this refresh rate then gives a value
for the time T+t of: 1/ [5 x (100)] =2.0 msec. If the device is oper-
ated at 5.0 MHz clock rate maximum, it is possible to maintain t
<
T.
For short display strings, the duty factor will then approach 20%.
Maximum Ratings
Supply Voltage
V
CC
to GND .............................. 0.5 V to +7.0 V
Inputs, Data Out and V
B
.............................0.5 V to
V
CC
+0.5 V
Column Input Voltage, V
COL
............................. 0.5 V to +6.0 V
Operating Temperature Range .......................... 40
C to +85
C
Storage Temperature Range............................ 40
C to +100
C
Maximum Solder Temperature 0.063" (1.59 mm)
below Seating Plane, t
<
5.0 s......................................... 260
C
Maximum Allowable Power Dissipation
at
T
A
=25
C
(1)
...............................................................0.86 W
Note:
1)
Maximum allowable dissipation is derived from
V
CC
=5.25 V,
V
B
=2.4 V,
V
COL
=3.5 V, 20 LEDs on per character, 20% DF.
Figure 1. Timing Characteristics
DF
T
5 T
t
+
(
)
--------------------
=
T
WL
l/f
CLOCK
T
PLH
, T
PHL
T
THL
CLOCK
DATA IN
DATA OUT
T
HOLD
T
SETUP
T
WH
T
ON
T
OFF
2.4 V
0.4 V
2.0 V
0.8 V
2.0 V
0.8 V
2.0 V
0.8 V
V
IH
V
IL
V
IH
V
IL
V
IH
V
IL
V
B
V
OH
V
OL
DISPLAY
ON (illuminated)
OFF (not illuminated)
90%
10%
Figure 2. Maximum Allowable Power Dissipation
vs. Temperature
AC Electrical Characteristics
(
V
CC
=4.75 to 5.25 V,
T
A
=40
C to 85
C)
Note:
1)
V
B
Pulse Width Modulation Frequency--50 kHz (max).
Cleaning the Displays
IMPORTANT--Do not use cleaning agents containing alcohol
of any type with this display. The least offensive cleaning solu-
tion is hot D.l. water (60
C) for less than 15 minutes. Addition
of mild saponifiers is acceptable. Do not use commercial dish-
washer detergents.
For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning processing or non-alcohol mix-
tures formulated for room temperature cleaning. Nonalcohol
vapor cleaning processing for up to two minutes in vapors at
boiling is permissible. For suggested solvents refer to App-
note 19 at www.infineon.com/opto.
Symbol
Description
Min.
Max.
(1)
Units
Fig.
T
SETUP
Setup Time
50
--
ns
1
T
HOLD
Hold Time
25
--
ns
1
T
WL
Clock Width
Low
75
--
ns
1
T
WH
Clock Width
High
75
--
ns
1
F
(CLK)
Clock
Frequency
0
5.0
MHz
1
T
THL,
T
TLH
Clock Transi-
tion Time
--
200
ns
1
T
PHL,
T
PLH
Propagation
Delay Clock to
Data Out
--
125
ns
1
120
100
80
60
40
20
0
-20
-40
-60
0.0
0.2
0.4
0.6
0.8
1.0
Tamb - Ambient Temperature - C
PD - Max. Allowable
Socket Thermal
Resistance
Power Dissipation - W
Tj(Max) = 100C
0C/W
10C/W
20C/W
40C/W
2000 Infineon Technologies Corp. Optoelectronics Division San Jose, CA
HDSP200LP/1LP/2LP/3LP
www.infineon.com/opto 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178
3
April 4, 2000-11
Recommended Operating Conditions
Note:
1)
See Figure 3: Peak column current versus column voltage
Optical Characteristics
Red HDSP2000LP
Yellow HDSP2001LP
High Efficiency Red HDSP2002LP
Green HDSP2003LP
Notes:
1)
The displays are categorized for luminous intensity with the intensity category designated by a letter code on the bottom of the package.
2)
Dominant wavelength (
dom
) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color
of the device.
3)
The luminous sterance of the LED may be calculated using the following relationships:
L
V
(cd/m
2
)=
I
V
(Candela)/A (Meter)
2
L
V
(Footlamberts)=
I
V
(Candela)/A (Foot)
2
HDSP2000LP, A=5 58 x 10
-8
m
2
=6 x 10
-7
ft.
2
HDSP2001/2/3LP, A=7.8 x 10
-8
m
2
=8.4 x 10
-7
ft.
2
4)
All typical values specified at
V
CC
=5.0 V and
T
A
=25
C unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Units
Supply Voltage
V
CC
4.75
5.0
5.25
V
Data Out Current, Low State
I
OL
--
--
1.6
mA
Data Out Current, High State
I
OH
0.5
--
--
mA
Column Input Voltage, Column On HDSP2000LP
(1)
V
COL
2.4
--
3.5
V
Column Input Voltage, Column On, HDSP2001LP/2002LP/2003LP
(1)
V
COL
2.75
--
3.5
V
Setup Time
T
SETUP
70
--
--
ns
Hold Time
T
HOLD
30
--
--
ns
Width of Clock
T
W(CLK)
75
--
--
ns
Clock Frequency
T
CLK
--
--
5.0
MHz
Clock Transition Time
T
THL
--
--
200
ns
Description
Symbol
Min.
Typ.
(4)
Units
Test Conditions
Peak Luminous Intensity per LED
(1,3)
(Character Average)
I
Vpeak
105
200
cd
V
CC
=5.0 V, V
COL
=3.5 V
T
A
=25
C, V
B
=2.4 V
Peak Wavelength
Vpeak
--
655
nm
--
Dominant Wavelength
(2)
dom
--
639
nm
--
Description
Symbol
Min.
Typ.
(4)
Units
Test Conditions
Peak Luminous Intensity per LED
(1,3)
(Character Average)
I
Vpeak
400
1140
cd
V
CC
=5.0 V,
V
COL
=3.5 V
T
A
=25
C, V
B
=2.4 V
Peak Wavelength
Vpeak
--
583
nm
--
Dominant Wavelength
(2)
dom
--
585
nm
--
Description
Symbol
Min.
Typ.
(4)
Units
Test Conditions
Peak Luminous Intensity per LED
(1,3)
(Character Average)
I
Vpeak
400
1430
cd
V
CC
=5.0 V,
V
COL
=3.5 V
T
A
=25
C, V
B
=2.4 V
Peak Wavelength
Vpeak
--
635
nm
--
Dominant Wavelength
(2)
dom
--
626
nm
--
Description
Symbol
Min.
Typ.
(4)
Units
Test Conditions
Peak Luminous Intensity per LED
(1,3)
(Character Average)
I
Vpeak
650
1550
cd
V
CC
=5.0 V,
V
COL
=3.5 V
T
A
=25
C, V
B
=2.4 V
Peak Wavelength
Vpeak
--
565
nm
--
Dominant Wavelength
(2)
dom
--
569
nm
--
2000 Infineon Technologies Corp. Optoelectronics Division San Jose, CA
HDSP200LP/1LP/2LP/3LP
www.infineon.com/opto 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178
4
April 4, 2000-11
Electrical characteristics (40
C to +85
C, unless otherwise specified)
Notes:
1)
All typical values specified at V
CC
=5.0 V and T
A
=25
C unless otherwise noted.
2)
See Figure 3: Peak column current versus column voltage.
Figure 3. Peak Column Current vs. Column Voltage
Description
Symbol
Min.
Typ.
(1)
Max.
Units
Test Conditions
Supply Current (quiescent)
V
CC
--
1
5
mA
V
B
=0.4 V
V
CC
=5.25 V
V
CLK
=V
DATA
=2.4 V
All SR Stages=Logical 1
--
1
5
mA
V
B
=2.4 V
Supply Current (operating)
V
CC
--
1.5
10.0
mA
F
CLK
=5.0 MHz
Column Current at any Column Input
(2)
i
COL
(All)
--
--
10
A
V
B
=0.4 V
V
CC
=5.25 V
V
COL
=3.5 V
All SR Stages=Logical 1
I
COL
--
335
410
mA
V
B
=2.4 V
V
B
, Clock or Data Input, Threshold Low
V
B
, Clock or Data Input, Threshold High
V
IL
V
IH
2.0
--
0.8
V
V
V
CC
= 4.75 V5.25 V
Data Out Voltage
V
OH
2.4
--
--
V
I
OH
=0.5 mA
V
CC
=4.75 V
I
COL
=0 mA
V
OL
--
--
0.4
V
I
OL
=1.6 mA
Input Current Logical 0, V
B
only
I
IL
30
110
300
A
V
CC
=4.75 V5.25 V, V
IL
=0.8 V
Input Current Logical 0 Data, Clock
I
IL
--
1
10
A
Power Dissipation per Package
(2)
P
D
--
0.4
--
W
V
CC
=5.0, V
COL
=3.5 V, 17.5% DF
15 LEDs on per character, V
B
=2.4 V
Thermal Resistance IC
Junction-to-Ambient
R
J-A
--
85
--
C/W/
Device
V
COL
Column Voltage Volts
I
COL
Peak Column Current
mA
600
500
400
300
200
100
0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
T
amb
= 25
C, V
CC
= 5.25V
All SR Stages = Logical 1
HDSP2001/2/3
HDSP2000
2000 Infineon Technologies Corp. Optoelectronics Division San Jose, CA
HDSP200LP/1LP/2LP/3LP
www.infineon.com/opto 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178
5
April 4, 2000-11
Figure 4. Block Diagram
Contrast Enhancement Filters
Note:
1. Optically coated circular polarized filters, such as Polaroid HNCP10.
*Polaroid Corp.
**Marks Polarized Corp.
1 Upland Rd., Bldg. #2
25-B Jefryn Blvd. W
Norwood, MA 02062
Deer Park, NY 11729
800/225-2770
516/242-1300
FAX 516/242-1347
Marks Polarized Corp. manufactures
to MIL-1-45208 inspection system.
General Quality Assurance Levels
Generic data available.
Display Color
Ambient Lighting
Dim
Moderate
Bright
Red
HDSP2000LP
Panelgraphic Dark Red 63
Panelgraphic Ruby Red 60
Chequers Red 118
Plexiglass 2423
Polaroid HNCP37
3M Light Control Film
Panelgraphic Gray 10
Chequers Gray 105
--
Yellow
HDSP2001LP
Panelgraphic Yellow 27
Polaroid HNCP 10-Glass*
Marks Polarized MPC 30-25C**
HER
HDSP2002LP
Panelgraphic Ruby Red 60
Chequers Red 112
Note 1
Polaroid HNCP 10-Glass*
Marks Polarized MPC 20-15C**
Green
HDSP20013P
Panelgraphic Green 48
Chequers Green 107
Polaroid HNCP 10-Glass*
Marks Polarized MPC 50-12C**
1 2 3 4 5 6 7 Rows 8-14 Rows 15-21 Rows 22-28
28-Bit SIPO Shift Register
1 2 3 4 5 6 7 Rows 1-7 Rows 1-7 Rows 1-7
Constant Current Sinking LED Drivers
Blanking
Control, V
B
Column Drive Inputs
Column
1 2 3 4 5
LED
Matrix
2
LED
Matrix
3
LED
Matrix
4
Serial
Data
Input
Clock
Serial
Data
Output
Rows
2000 Infineon Technologies Corp. Optoelectronics Division San Jose, CA
HDSP200LP/1LP/2LP/3LP
www.infineon.com/opto 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178
6
April 4, 2000-11
Thermal Considerations
The small alphanumeric displays are hybrid LED and CMOS
assemblies that are designed for reliable operation in commer-
cial, industrial, and military environments. Optimum reliability
and optical performance will result when the junction tempera-
ture of the LEDs and CMOS ICs are kept as low as possible.
Thermal Modeling
HDSP200XLP displays consist of two driver ICs and four 5 x 7
LED matrixes. A thermal model of the display is shown in Fig-
ure 5. It illustrates that the junction temperature of the semi-
conductor = junction self heating + the case temperature rise +
the ambient temperature. Equation 1 shows this relationship.
Figure 5. Thermal model
See Equation 1 below.
The junction rise within the LED is the product of the thermal
impedance of an individual LED (37
C/W, DF=20%, F=200 Hz),
times the forward voltage, V
F(LED),
and forward current I
F(LED),
of 1314.5 mA. This rise averages T
J(LED)
=1
C. The table below
shows the V
F(LED)
for the respective displays.
The junction rise within the LED driver IC is the combination of
the power dissipated by the IC quiescent current and the 28
row driver current sinks. The IC junction rise is given in
Equation 2.
A thermal resistance of 28
C/W results in a typical junction
rise of 6
C.
Model Number
VF
Min.
Typ.
Max.
HDSP2000LP
1.6
1.7
2.0
HDSP2001/2/3LP
1.9
2.2
3.0
LED
T
1
IC
T
2
LED
T
1
LED
T
1
IC
T
2
LED
T
1
LED Power IC Power LED Power
LED Power
IC Power
LED Power
R
CA
R
1
R
1
R
1
R
1
R
2
R
2
For ease of calculations the maximum allowable electrical oper-
ating condition is dependent upon the aggregate thermal resis-
tance of the LED matrixes and the two driver ICs. All of the
thermal management calculations are based upon the parallel
combination of these two networks which is 15
C/W. Maxi-
mum allowable power dissipation is given in Equation 3.
Equation 3.
For further reference see Figures 2, 7, 8, 9, 10 and 11.
Key to equation symbols
DF
Duty factor
I
CC
Quiescent IC current
I
COL
Column current
n
Number of LEDs on in a 5 x 7 array
P
CASE
Package power dissipation excluding LED
under consideration
P
COL
Power dissipation of a column
P
DISPLAY
Power dissipation of the display
P
LED
Power dissipation of a LED
R
CA
Thermal resistance case to ambient
R
JC
Thermal resistance junction to case
T
A
Ambient temperature
T
J(IC)
Junction temperature of an IC
T
J(LED)
Junction temperature of a LED
T
J(MAX)
Maximum junction temperature
V
CC
IC voltage
V
COL
Column voltage
V
F(LED)
Forward voltage of LED
Z
JC
Thermal impedance junction to case
Optical Considerations
The light output of the LEDs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For opti-
mum light output, keep the thermal resistance of the socket or
PC board as low as possible.
P
DISPLAY
T
J MAX
(
)
T
A
R
JC
R
CA
+
---------------------------------
=
P
DISPLAY
5V
COL
I
COL
n 35
/
(
)
DF
V
CC
I
CC
+
=
See Equation 2 below.
Equation 1.
Equation 2.
T
J LED
(
)
P
LED
Z
J C
P
CASE
R
JC
R
CA
+
(
)
T
A
+
+
=
T
J LED
(
)
I
COL
28
/
(
)
V
F LED
(
)
Z
JC
[
]
n 35
/
(
)
I
COL
DF 5V
COL
(
)
V
CC
I
CC
+
[
]
R
JC
R
CA
+
[
]
T
A
+
+
=
T
J IC
( )
P
COL
R
JC
R
CA
+
(
)
T
A
+
=
T
J IC
( )
5 V
COL
V
F LED
(
)
(
)
I
COL
2
/
(
)
n 35
/
(
)
DF
V
CC
I
CC
+
[
]
R
JC
R
CA
+
[
]
T
A
+
=
2000 Infineon Technologies Corp. Optoelectronics Division San Jose, CA
HDSP200LP/1LP/2LP/3LP
www.infineon.com/opto 1-888-Infineon (1-888-463-4636)
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany
www.osram-os.com +49-941-202-7178
7
April 4, 2000-11
Figure 6. Normalized Luminous Intensity vs.
Junction Temperature
When mounted in a 10
C/W socket and operated at Absolute
Maximum Electrical conditions, the HDSP200XLP will show an
LED junction rise of 17
C. lf T
A
=40
C, then the LED's T
J
will be
57
C. Under these conditions Figure 7 shows that the I
V
will be
75% of its 25
C value.
Figure 7. Maximum LED Junction Temperature vs.
Socket Thermal Resistance
Figure 8. Maximum Package Power Dissipation
140
120
100
80
60
40
20
0
-20
-40
-60
.1
1
10
Tj - LED Junction Temperature - C
Normalized
Normalized to:
Ta = 25C
Luminous Intensity
50
45
40
35
30
25
20
15
10
5
0
0
5
10
15
20
25
30
35
40
45
50
Socket Thermal Resistance - C/W
Tj - Delta LED Junction
Vcol = 3.5V, Icol = 410mA
Vcc =5.25V, Icc = 10mA
n = 20 LEDs, DF= 20%
P = 0.87W
Temperature -

C
40
35
30
25
20
15
10
5
0
0.0
0.5
1.0
1.5
LEDs on per Character
Max. Package Power Dissipation - W
Vcc = 5.25V, Icc = 10mA
Vcol = 3.5, Icol = 410mA
DF = 20%, Ta = 25C
Figure 9. Package Power Dissipation
Figure 10. Maximum Character Power Dissipation
Figure 11. Character Power Dissipation
40
35
30
25
20
15
10
5
0
0.0
0.5
1.0
1.5
LEDs on per Character
Max. Package Power Dissipation - W
Vcc = 5.25V, Icc = 10mA
Vcol = 3.5, Icol = 410mA
DF = 20%, Ta = 25C
40
35
30
25
20
15
10
5
0
0.0
0.5
1.0
1.5
LEDs on per Character
Max. Package Power Dissipation - W
Vcc = 5.25V, Icc = 10mA
Vcol = 3.5, Icol = 410mA
DF = 20%, Ta = 25C
40
35
30
25
20
15
10
5
0
0.00
0.50
1.00
1.50
2.00
20%
17%
10%
5%
LEDs on per Character
Character Power Dissipation - W
Duty Factor
Vcc = 5V, Icc = 5mA
Vcol = 3.5V, Icol = 335mA