ChipFind - документация

Электронный компонент: Q67040-S4340

Скачать:  PDF   ZIP
SKP06N60,
SKB06N60
SKA06N60
1
Jul-02
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
75% lower E
off
compared to previous generation
combined with low conduction losses
Short circuit withstand time 10
s
Designed for:
- Motor controls
- Inverter
NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
Very soft, fast recovery anti-parallel EmCon diode
Isolated TO-220, 2.5kV, 60s
Complete product spectrum and PSpice Models :
http://www.infineon.com/igbt/
Type
V
CE
I
C
V
CE(sat)
T
j
Package
Ordering Code
SKP06N60
600V
6A
2.3V
150
C
TO-220AB
Q67040-S4230
SKB06N60
TO-263AB
Q67040-S4231
SKA06N60
5A
TO-220-3-31
Q67040-S4340
Maximum Ratings
Value
Parameter
Symbol
SKP06N60
SKB06N60
SKA06N60
Unit
Collector-emitter voltage
V
C E
600
600
V
DC collector current
T
C
= 25
C
T
C
= 100
C
I
C
12
6.9
9
5.0
Pulsed collector current, t
p
limited by T
jmax
I
C p u l s
24
24
Turn off safe operating area
V
CE
600V, T
j
150
C
-
24
24
Diode forward current
T
C
= 25
C
T
C
= 100
C
I
F
12
6
12
6
Diode pulsed current, t
p
limited by T
jmax
I
F p u l s
24
24
A
Gate-emitter voltage
V
G E
20
20
V
Short circuit withstand time
1)
V
GE
= 15V, V
CC
600V, T
j
150
C
t
S C
10
10
s
Power dissipation
T
C
= 25
C
P
t o t
68
32
W
Mounting Torque, M3 Screw
2)
M
1.0
Nm
Operating junction and storage temperature
T
j
, T
s t g
-55...+150 -55...+150
C
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2)
Maximum mounting processes: 3
P-TO-220-3-1
(TO-220AB)
P-TO-220-3-31
(FullPAK)
P-TO-263-3-2 (D-PAK)
(TO-263AB)
G
C
E
SKP06N60,
SKB06N60
SKA06N60
2
Jul-02
Thermal Resistance
Max. Value
Parameter
Symbol
Conditions
SKP06N60
SKB06N60
SKA06N60
Unit
Characteristic
IGBT thermal resistance,
junction case
R
t h J C
1.85
3.9
Diode thermal resistance,
junction case
R
t h J C D
3.5
5.0
Thermal resistance,
junction ambient
R
t h J A
TO-220AB
TO220-3-31
62
65
SMD version, device on PCB
1)
R
t h J A
TO-263AB
40
K/W
Electrical Characteristic, at T
j
= 25
C, unless otherwise specified
Value
Parameter
Symbol
Conditions
min.
Typ.
max.
Unit
Static Characteristic
Collector-emitter breakdown voltage
V
( B R ) C E S
V
G E
=0V, I
C
=500
A
600
-
-
Collector-emitter saturation voltage
V
C E ( s a t )
V
G E
= 15V, I
C
=6A
T
j
=25
C
T
j
=150
C
1.7
-
2.0
2.3
2.4
2.8
Diode forward voltage
V
F
V
G E
=0V, I
F
=6A
T
j
=25
C
T
j
=150
C
1.2
-
1.4
1.25
1.8
1.65
Gate-emitter threshold voltage
V
G E ( t h )
I
C
=250
A,V
C E
=V
G E
3
4
5
V
Zero gate voltage collector current
I
C E S
V
C E
=600V,V
G E
=0V
T
j
=25
C
T
j
=150
C
-
-
-
-
20
700
A
Gate-emitter leakage current
I
G E S
V
C E
=0V,V
G E
=20V
-
-
100
nA
Transconductance
g
f s
V
C E
=20V, I
C
=6A
-
4.2
-
S
Dynamic Characteristic
Input capacitance
C
i s s
-
350
420
Output capacitance
C
o s s
-
38
46
Reverse transfer capacitance
C
r s s
V
C E
=25V,
V
G E
=0V,
f=1MHz
-
23
28
pF
Gate charge
Q
G a t e
V
C C
=480V, I
C
=6A
V
G E
=15V
-
32
42
nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
L
E
T O-220AB
-
7
-
nH
Short circuit collector current
2)
I
C ( S C )
V
G E
=15V,t
S C
10
s
V
C C
600V,
T
j
150
C
-
60
-
A
1)
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm
2
(one layer, 70
m thick) copper area for
collector connection. PCB is vertical without blown air.
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
SKP06N60,
SKB06N60
SKA06N60
3
Jul-02
Switching Characteristic, Inductive Load, at T
j
=25
C
Value
Parameter
Symbol
Conditions
min.
typ.
max.
Unit
IGBT Characteristic
Turn-on delay time
t
d ( o n )
-
25
30
Rise time
t
r
-
18
22
Turn-off delay time
t
d ( o f f )
-
220
264
Fall time
t
f
-
54
65
ns
Turn-on energy
E
o n
-
0.110
0.127
Turn-off energy
E
o f f
-
0.105
0.137
Total switching energy
E
t s
T
j
=25
C,
V
C C
=400V,I
C
=6A,
V
G E
=0/15V,
R
G
=50
,
L
1 )
=180nH,
C
1 )
=250pF
Energy losses include
"tail" and diode
reverse recovery.
-
0.215
0.263
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
t
r r
t
S
t
F
-
-
-
200
17
183
-
-
-
ns
Diode reverse recovery charge
Q
r r
-
200
-
nC
Diode peak reverse recovery current
I
r r m
-
2.8
-
A
Diode peak rate of fall of reverse
recovery current during t
b
di
r r
/dt
T
j
=25
C,
V
R
=200V, I
F
=6A,
di
F
/dt=200A/
s
-
180
-
A/
s
Switching Characteristic, Inductive Load, at T
j
=150
C
Value
Parameter
Symbol
Conditions
min.
typ.
max.
Unit
IGBT Characteristic
Turn-on delay time
t
d ( o n )
-
24
29
Rise time
t
r
-
17
20
Turn-off delay time
t
d ( o f f )
-
248
298
Fall time
t
f
-
70
84
ns
Turn-on energy
E
o n
-
0.167
0.192
Turn-off energy
E
o f f
-
0.153
0.199
Total switching energy
E
t s
T
j
=150
C
V
C C
=400V,I
C
=6A,
V
G E
=0/15V,
R
G
=50
,
L
1 )
=180nH,
C
1 )
=250pF
Energy losses include
"tail" and diode
reverse recovery.
-
0.320
0.391
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
t
r r
t
S
t
F
-
-
-
290
27
263
-
-
-
ns
Diode reverse recovery charge
Q
r r
-
500
-
nC
Diode peak reverse recovery current
I
r r m
-
5.0
-
A
Diode peak rate of fall of reverse
recovery current during t
b
di
r r
/dt
T
j
=150
C
V
R
=200V, I
F
=6A,
di
F
/dt=200A/
s
-
200
-
A/
s
1)
Leakage inductance L
and Stray capacity C
due to dynamic test circuit in Figure E.
SKP06N60,
SKB06N60
SKA06N60
4
Jul-02
I
C
,
COLLE
CT
OR CURRE
NT
10Hz
100Hz
1kHz
10kHz
100kHz
0A
10A
20A
30A
SKP06N60
SKB06N60
SKA06N60
T
C
=110C
T
C
=80C
I
C
,
COLLE
CT
OR CURRE
NT
1V
10V
100V
1000V
0,1A
1A
10A
SKP06N60
SKB06N60
SKA06N60
DC
1ms
200
s
50
s
15
s
t
p
=2
s
f,
SWITCHING FREQUENCY
V
CE
,
COLLECTOR
-
EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(T
j
150
C, D = 0.5, V
CE
= 400V,
V
GE
= 0/+15V, R
G
= 50
)
Figure 2. Safe operating area
(D = 0, T
C
= 25
C, T
j
150
C)
P
tot
,
P
O
WE
R DIS
S
I
P
A
T
I
O
N
25C
50C
75C
100C
125C
0W
20W
40W
60W
80W
SKP06N60
SKB06N60
SKA06N60
I
C
,
COLLE
CT
OR CURRE
N
T
25C
50C
75C
100C
125C
0A
5A
10A
SKA06N60
SKP06N60
SKB06N60
T
C
,
CASE TEMPERATURE
T
C
,
CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(T
j
150
C)
Figure 4. Collector current as a function of
case temperature
(V
GE
15V, T
j
150
C)
I
c
I
c
SKP06N60,
SKB06N60
SKA06N60
5
Jul-02
I
C
,
COLLE
CT
OR CURRE
NT
0V
1V
2V
3V
4V
5V
0A
5A
10A
15A
20A
15V
13V
11V
9V
7V
5V
V
GE
=20V
I
C
,
COLLE
CT
OR CURRE
NT
0V
1V
2V
3V
4V
5V
0A
5A
10A
15A
20A
15V
13V
11V
9V
7V
5V
V
GE
=20V
V
CE
,
COLLECTOR
-
EMITTER VOLTAGE
V
CE
,
COLLECTOR
-
EMITTER VOLTAGE
Figure 5. Typical output characteristics
(T
j
= 25
C)
Figure 6. Typical output characteristics
(T
j
= 150
C)
I
C
,
COLLE
CT
OR CURRE
NT
0V
2V
4V
6V
8V
10V
0A
2A
4A
6A
8A
10A
12A
14A
16A
18A
20A
-55C
+150C
T
j
=+25C
V
CE(sat)
,
COLLE
CT
OR
-
EM
ITT
E
R
SATU
R
ATI
O
N

VO
L
T
AG
E
-50C
0C
50C
100C 150C
1.0V
1.5V
2.0V
2.5V
3.0V
3.5V
4.0V
V
GE
,
GATE
-
EMITTER VOLTAGE
T
j
,
JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(V
CE
= 10V)
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(V
GE
= 15V)
I
C
= 6A
I
C
= 12A
SKP06N60,
SKB06N60
SKA06N60
6
Jul-02
t
,
SW
ITC
H
IN
G
TI
ME
S
0A
3A
6A
9A
12A
15A
10ns
100ns
t
r
t
d(on)
t
f
t
d(off)
t
,
SW
ITC
H
IN
G
TI
ME
S
0
50
100
150
10ns
100ns
t
r
t
d(on)
t
f
t
d(off)
I
C
,
COLLECTOR CURRENT
R
G
,
GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, T
j
= 150
C, V
CE
= 400V,
V
GE
= 0/+15V, R
G
= 50
,
Dynamic test circuit in Figure E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, T
j
= 150
C, V
CE
= 400V,
V
GE
= 0/+15V, I
C
= 6A,
Dynamic test circuit in Figure E)
t
,
SW
ITC
H
IN
G
TI
ME
S
0C
50C
100C
150C
10ns
100ns
t
r
t
d(on)
t
f
t
d(off)
V
GE(th)
,
GA
TE
-
EM
ITT
E
R
TH
R
ESH
O
L
D

VO
L
T
AG
E
-50C
0C
50C
100C
150C
2.0V
2.5V
3.0V
3.5V
4.0V
4.5V
5.0V
5.5V
typ.
min.
max.
T
j
,
JUNCTION TEMPERATURE
T
j
,
JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, V
CE
= 400V, V
GE
= 0/+15V,
I
C
= 6A, R
G
= 50
,
Dynamic test circuit in Figure E)
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(I
C
= 0.25mA)
SKP06N60,
SKB06N60
SKA06N60
7
Jul-02
E
,
SW
ITC
H
I
N
G
EN
ER
G
Y

L
O
SSE
S
0A
3A
6A
9A
12A
15A
0.0mJ
0.2mJ
0.4mJ
0.6mJ
0.8mJ
E
on
*
E
off
E
ts
*
E
,
SW
ITC
H
I
N
G
EN
ER
G
Y

L
O
SSE
S
0
50
100
150
0.0mJ
0.2mJ
0.4mJ
0.6mJ
E
ts
*
E
on
*
E
off
I
C
,
COLLECTOR CURRENT
R
G
,
GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, T
j
= 150
C, V
CE
= 400V,
V
GE
= 0/+15V, R
G
= 50
,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, T
j
= 150
C, V
CE
= 400V,
V
GE
= 0/+15V, I
C
= 6A,
Dynamic test circuit in Figure E)
E
,
SW
ITC
H
IN
G
EN
ER
G
Y

L
O
SSE
S
0C
50C
100C
150C
0.0mJ
0.1mJ
0.2mJ
0.3mJ
0.4mJ
E
ts
*
E
on
*
E
off
T
j
,
JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, V
CE
= 400V, V
GE
= 0/+15V,
I
C
= 6A, R
G
= 50
,
Dynamic test circuit in Figure E)
*) E
on
and E
ts
include losses
due to diode recovery.
*) E
on
and E
ts
include losses
due to diode recovery.
*) E
on
and E
ts
include losses
due to diode recovery.
SKP06N60,
SKB06N60
SKA06N60
8
Jul-02
V
GE
,
GA
TE
-
E
M
IT
TER
VO
L
T
AG
E
0nC
15nC
30nC
45nC
0V
5V
10V
15V
20V
25V
480V
120V
C
,
CA
P
A
C
IT
A
N
CE
0V
10V
20V
30V
10pF
100pF
1nF
C
rss
C
oss
C
iss
Q
GE
,
GATE CHARGE
V
CE
,
COLLECTOR
-
EMITTER VOLTAGE
Figure 16. Typical gate charge
(I
C
= 6A)
Figure 17. Typical capacitance as a
function of collector-emitter voltage
(V
GE
= 0V, f = 1MHz)
t
sc
,
S
H
ORT
CI
RCUI
T
WI
T
H
S
T
A
ND T
I
M
E
10V
11V
12V
13V
14V
15V
0
s
5
s
10
s
15
s
20
s
25
s
I
C(sc)
,
S
H
ORT
CI
RCUI
T
COLL
E
C
T
O
R CURRE
NT
10V
12V
14V
16V
18V
20V
0A
20A
40A
60A
80A
100A
V
GE
,
GATE
-
EMITTER VOLTAGE
V
GE
,
GATE
-
EMITTER VOLTAGE
Figure 18. Short circuit withstand time as a
function of gate-emitter voltage
(V
CE
= 600V, start at T
j
= 25
C)
Figure 19. Typical short circuit collector
current as a function of gate-emitter voltage
(V
CE
600V, T
j
= 150
C)
SKP06N60,
SKB06N60
SKA06N60
9
Jul-02
t
rr
,
RE
V
E
RSE
R
E
COVE
RY T
I
M
E
50A/
s 150A/
s 250A/
s 350A/
s 450A/
s 550A/
s
0ns
100ns
200ns
300ns
400ns
500ns
I
F
= 3A
I
F
= 6A
I
F
= 12A
Q
rr
,
RE
V
E
R
S
E RE
CO
V
E
RY CHA
RG
E
50A/
s 150A/
s 250A/
s 350A/
s 450A/
s 550A/
s
0nC
200nC
400nC
600nC
800nC
1000nC
I
F
= 3A
I
F
= 6A
I
F
= 12A
di
F
/dt,
DIODE CURRENT SLOPE
di
F
/dt,
DIODE CURRENT SLOPE
Figure 20. Typical reverse recovery time as
a function of diode current slope
(V
R
= 200V, T
j
= 125
C,
Dynamic test circuit in Figure E)
Figure 21. Typical reverse recovery charge
as a function of diode current slope
(V
R
= 200V, T
j
= 125
C,
Dynamic test circuit in Figure E)
I
rr
,
RE
V
E
RSE
R
E
COVE
RY CURRE
NT
50A/
s 150A/
s 250A/
s 350A/
s 450A/
s 550A/
s
0A
2A
4A
6A
8A
10A
12A
I
F
= 3A
I
F
= 12A
I
F
= 6A
di
rr
/d
t
,
DI
O
D
E
PE
AK
R
A
TE
O
F

F
A
L
L
OF
REV
E
R
S
E RE
CO
V
E
R
Y
CURRE
NT
50A/
s
150A/
s 250A/
s 350A/
s 450A/
s 550A/
s
0A/
s
100A/
s
200A/
s
300A/
s
400A/
s
500A/
s
600A/
s
di
F
/dt,
DIODE CURRENT SLOPE
di
F
/dt,
DIODE CURRENT SLOPE
Figure 22. Typical reverse recovery current
as a function of diode current slope
(V
R
= 200V, T
j
= 125
C,
Dynamic test circuit in Figure E)
Figure 23. Typical diode peak rate of fall of
reverse recovery current as a function of
diode current slope
(V
R
= 200V, T
j
= 125
C,
Dynamic test circuit in Figure E)
SKP06N60,
SKB06N60
SKA06N60
10
Jul-02
I
F
,
F
O
RWA
R
D CURRE
N
T
0.0V
0.5V
1.0V
1.5V
2.0V
0A
2A
4A
6A
8A
10A
12A
100C
-55C
25C
150C
V
F
,
F
O
RWA
R
D V
O
LT
AGE
-40C
0C
40C
80C 120C
1.0V
1.5V
2.0V
V
F
,
FORWARD VOLTAGE
T
j
,
JUNCTION TEMPERATURE
Figure 24. Typical diode forward current as
a function of forward voltage
Figure 25. Typical diode forward voltage as
a function of junction temperature
Z
thJCD
,
TR
AN
SIEN
T
TH
ER
MAL
IMP
E
D
AN
C
E
1s
10s
100s
1ms
10ms 100ms
1s
10
-2
K/W
10
-1
K/W
10
0
K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
Z
thJCD
,
TR
AN
SIEN
T
TH
ER
MAL
IMP
E
D
AN
C
E
10s
100s
1ms
10ms 100ms
1s
10s
10
-2
K/W
10
-1
K/W
10
0
K/W
10
1
K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
t
p
,
PULSE WIDTH
t
p
,
PULSE WIDTH
Figure 26. Diode transient thermal
impedance as a function of pulse width
(D = t
p
/ T)
Figure 27. Diode transient thermal
impedance as a function of pulse width
(D = t
p
/ T)
I
F
= 6A
I
F
= 12A
C
1
=
1
/R
1
R
1
R
2
C
2
=
2
/R
2
R
, ( K / W )
,
( s )
=
0.523
7.25*10
-2
0.550
6.44*10
-3
0.835
7.13*10
-4
1.592
7.16*10
-5
C
1
=
1
/R
1
R
1
R
2
C
2
=
2
/R
2
R
, ( K / W )
,
( s )
=
2.852
1.887
0.654
4.64*10
-2
0.665
2.88*10
-3
0.828
3.83*10
-4
SKP06N60
SKB06N60
SKA06N60
SKP06N60,
SKB06N60
SKA06N60
11
Jul-02
Z
thJC
,
TR
AN
SIEN
T TH
ER
M
A
L I
M
P
E
D
A
N
C
E
1s
10s 100s 1ms
10m s 100ms
1s
10
-3
K/W
10
-2
K/W
10
-1
K/W
10
0
K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
t
p
,
PULSE WIDTH
Z
thJC
,
TR
AN
SIEN
T TH
ER
M
A
L I
M
P
E
D
A
N
C
E
1s
10s 100s 1ms 10ms 100ms 1s
10s
10
-3
K/W
10
-2
K/W
10
-1
K/W
10
0
K/W
10
1
K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
t
p
,
PULSE WIDTH
Figure 28. IGBT transient thermal
impedance as a function of pulse width
(D = t
p
/ T)
Figure 29. IGBT transient thermal
impedance as a function of pulse width
(D = t
p
/ T)
SKP06N60
SKB06N60
SKA06N60
C
1
=
1
/R
1
R
1
R
2
C
2
=
2
/R
2
R , ( K / W )
, ( s )
=
0.705
0.0341
0.561
3.74E-3
0.583
3.25E-4
C
1
=
1
/ R
1
R
1
R
2
C
2
=
2
/ R
2
R , ( K / W )
, ( s )
=
2.73
1.83
0.395
2.93*10
-2
0.353
2.46*10
-3
0.323
3.45*10
-4
SKP06N60,
SKB06N60
SKA06N60
12
Jul-02
dimensions
symbol
[mm]
[inch]
min
max
min
max
A
9.70
10.30
0.3819
0.4055
B
14.88
15.95
0.5858
0.6280
C
0.65
0.86
0.0256
0.0339
D
3.55
3.89
0.1398
0.1531
E
2.60
3.00
0.1024
0.1181
F
6.00
6.80
0.2362
0.2677
G
13.00
14.00
0.5118
0.5512
H
4.35
4.75
0.1713
0.1870
K
0.38
0.65
0.0150
0.0256
L
0.95
1.32
0.0374
0.0520
M
2.54 typ.
0.1 typ.
N
4.30
4.50
0.1693
0.1772
P
1.17
1.40
0.0461
0.0551
T
2.30
2.72
0.0906
0.1071
TO-220AB
dimensions
symbol
[mm]
[inch]
min
max
min
max
A
9.80
10.20
0.3858
0.4016
B
0.70
1.30
0.0276
0.0512
C
1.00
1.60
0.0394
0.0630
D
1.03
1.07
0.0406
0.0421
E
2.54 typ.
0.1 typ.
F
0.65
0.85
0.0256
0.0335
G
5.08 typ.
0.2 typ.
H
4.30
4.50
0.1693
0.1772
K
1.17
1.37
0.0461
0.0539
L
9.05
9.45
0.3563
0.3720
M
2.30
2.50
0.0906
0.0984
N
15 typ.
0.5906 typ.
P
0.00
0.20
0.0000
0.0079
Q
4.20
5.20
0.1654
0.2047
R
8 max
8 max
S
2.40
3.00
0.0945
0.1181
T
0.40
0.60
0.0157
0.0236
U
10.80
0.4252
V
1.15
0.0453
W
6.23
0.2453
X
4.60
0.1811
Y
9.40
0.3701
TO-263AB (D
2
Pak)
Z
16.15
0.6358
SKP06N60,
SKB06N60
SKA06N60
13
Jul-02
Please refer to mounting instructions (application note AN-TO220-3-31-01)
dimensions
symbol
[mm]
[inch]
min
max
min
max
A
10.37
10.63
0.4084
0.4184
B
15.86
16.12
0.6245
0.6345
C
0.65
0.78
0.0256
0.0306
D
2.95 typ.
0.1160 typ.
E
3.15
3.25
0.124
0.128
F
6.05
6.56
0.2384
0.2584
G
13.47
13.73
0.5304
0.5404
H
3.18
3.43
0.125
0.135
K
0.45
0.63
0.0177
0.0247
L
1.23
1.36
0.0484
0.0534
M
2.54 typ.
0.100 typ.
N
4.57
4.83
0.1800
0.1900
P
2.57
2.83
0.1013
0.1113
T
2.51
2.62
0.0990
0.1030
P-TO220-3-31
SKP06N60,
SKB06N60
SKA06N60
14
Jul-02
Figure A. Definition of switching times
Figure B. Definition of switching losses
I
r r m
90% I
r r m
10% I
r r m
di /dt
F
t
r r
I
F
i,v
t
Q
S
Q
F
t
S
t
F
V
R
di /dt
r r
Q =Q
Q
r r
S
F
+
t =t
t
r r
S
F
+
Figure C. Definition of diodes
switching characteristics
p(t)
1
2
n
T (t)
j
1
1
2
2
n
n
T
C
r
r
r
r
r
r
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance L
=180nH
and Stray capacity C
=250pF.
SKP06N60,
SKB06N60
SKA06N60
15
Jul-02
Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 Mnchen
Infineon Technologies AG 2000
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.