ChipFind - документация

Электронный компонент: SGW30N60

Скачать:  PDF   ZIP
SGP30N60,
SGB30N60
SGW30N60
1
Jul-02
Fast IGBT in NPT-technology
75% lower E
off
compared to previous generation
combined with low conduction losses
Short circuit withstand time 10
s
Designed for:
- Motor controls
- Inverter
NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
Complete product spectrum and PSpice Models :
http://www.infineon.com/igbt/
Type
V
CE
I
C
V
CE(sat)
T
j
Package
Ordering Code
SGP30N60
SGB30N60
SGW30N60
600V
30A
2.5V
150
C
TO-220AB
TO-263AB
TO-247AC
Q67040-A4463
Q67041-A4713
Q67040-S4237
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
V
C E
600
V
DC collector current
T
C
= 25
C
T
C
= 100
C
I
C
41
30
Pulsed collector current, t
p
limited by T
jmax
I
C p u l s
112
Turn off safe operating area
V
CE
600V, T
j
150
C
-
112
A
Gate-emitter voltage
V
G E
20
V
Avalanche energy, single pulse
I
C
= 30 A, V
CC
= 50 V, R
GE
= 25
,
start at T
j
= 25
C
E
A S
165
mJ
Short circuit withstand time
1)
V
GE
= 15V, V
CC
600V, T
j
150
C
t
S C
10
s
Power dissipation
T
C
= 25
C
P
t o t
250
W
Operating junction and storage temperature
T
j
, T
s t g
-55...+150
C
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
G
C
E
P-TO-220-3-1
(TO-220AB)
P-TO-247-3-1
(TO-247AC)
P-TO-263-3-2 (D-PAK)
(TO-263AB)
SGP30N60,
SGB30N60
SGW30N60
2
Jul-02
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
Characteristic
IGBT thermal resistance,
junction case
R
t h J C
0.5
Thermal resistance,
junction ambient
R
t h J A
TO-220AB
TO-247AC
62
40
SMD version, device on PCB
1)
R
t h J A
TO-263AB
40
Electrical Characteristic, at T
j
= 25
C, unless otherwise specified
Value
Parameter
Symbol
Conditions
min.
Typ.
max.
Unit
Static Characteristic
Collector-emitter breakdown voltage
V
( B R ) C E S
V
G E
=0V, I
C
=500
A
600
-
-
Collector-emitter saturation voltage
V
C E ( s a t )
V
G E
= 15V, I
C
=30A
T
j
=25
C
T
j
=150
C
1.7
-
2.1
2.5
2.4
3.0
Gate-emitter threshold voltage
V
G E ( t h )
I
C
=700
A,V
C E
=V
G E
3
4
5
V
Zero gate voltage collector current
I
C E S
V
C E
=600V,V
G E
=0V
T
j
=25
C
T
j
=150
C
-
-
-
-
40
3000
A
Gate-emitter leakage current
I
G E S
V
C E
=0V,V
G E
=20V
-
-
100
nA
Transconductance
g
f s
V
C E
=20V, I
C
=30A
-
20
-
S
Dynamic Characteristic
Input capacitance
C
i s s
-
1600
1920
Output capacitance
C
o s s
-
150
180
Reverse transfer capacitance
C
r s s
V
C E
=25V,
V
G E
=0V,
f=1MHz
-
92
110
pF
Gate charge
Q
G a t e
V
C C
=480V, I
C
=30A
V
G E
=15V
-
140
182
nC
Internal emitter inductance
measured 5mm (0.197 in.) from case
L
E
T O-220AB
T O-247AC
-
-
7
13
-
nH
Short circuit collector current
2)
I
C ( S C )
V
G E
=15V,t
S C
10
s
V
C C
600V,
T
j
150
C
-
300
-
A
1)
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm
2
(one layer, 70
m thick) copper area for
collector connection. PCB is vertical without blown air.
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
SGP30N60,
SGB30N60
SGW30N60
3
Jul-02
Switching Characteristic, Inductive Load, at T
j
=25
C
Value
Parameter
Symbol
Conditions
min.
typ.
max.
Unit
IGBT Characteristic
Turn-on delay time
t
d ( o n )
-
44
53
Rise time
t
r
-
34
40
Turn-off delay time
t
d ( o f f )
-
291
349
Fall time
t
f
-
58
70
ns
Turn-on energy
E
o n
-
0.64
0.77
Turn-off energy
E
o f f
-
0.65
0.85
Total switching energy
E
t s
T
j
=25
C,
V
C C
=400V,I
C
=30A,
V
G E
=0/15V,
R
G
=11
,
L
1 )
=180nH,
C
1 )
=900pF
Energy losses include
"tail" and diode
reverse recovery.
-
1.29
1.62
mJ
Switching Characteristic, Inductive Load, at T
j
=150
C
Value
Parameter
Symbol
Conditions
min.
typ.
max.
Unit
IGBT Characteristic
Turn-on delay time
t
d ( o n )
-
44
53
Rise time
t
r
-
34
40
Turn-off delay time
t
d ( o f f )
-
324
389
Fall time
t
f
-
67
80
ns
Turn-on energy
E
o n
-
0.98
1.18
Turn-off energy
E
o f f
-
0.92
1.19
Total switching energy
E
t s
T
j
=150
C
V
C C
=400V,I
C
=30A,
V
G E
=0/15V,
R
G
= 11
,
L
1 )
=180nH,
C
1 )
=900pF
Energy losses include
"tail" and diode
reverse recovery.
-
1.90
2.38
mJ
1)
Leakage inductance L
and Stray capacity C
due to dynamic test circuit in Figure E.
SGP30N60,
SGB30N60
SGW30N60
4
Jul-02
I
C
,
COLLE
CT
OR CURRE
N
T
10Hz
100Hz
1kHz
10kHz
100kHz
0A
20A
40A
60A
80A
100A
120A
140A
160A
T
C
=110C
T
C
=80C
I
C
,
COLLE
CT
OR CURRE
N
T
1V
10V
100V
1000V
0.1A
1A
10A
100A
DC
1ms
200
s
50
s
15
s
t
p
=4
s
f,
SWITCHING FREQUENCY
V
CE
,
COLLECTOR
-
EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(T
j
150
C, D = 0.5, V
CE
= 400V,
V
GE
= 0/+15V, R
G
= 11
)
Figure 2. Safe operating area
(D = 0, T
C
= 25
C, T
j
150
C)
P
tot
,
PO
W
E
R
D
I
SS
IP
AT
IO
N
25C
50C
75C
100C
125C
0W
50W
100W
150W
200W
250W
300W
I
C
,
COLLE
CT
OR CURRE
N
T
25C
50C
75C
100C
125C
0A
10A
20A
30A
40A
50A
60A
Limited by bond wire
T
C
,
CASE TEMPERATURE
T
C
,
CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(T
j
150
C)
Figure 4. Collector current as a function of
case temperature
(V
GE
15V, T
j
150
C)
I
c
I
c
SGP30N60,
SGB30N60
SGW30N60
5
Jul-02
I
C
,
COLLE
CT
OR CURRE
N
T
0V
1V
2V
3V
4V
5V
0A
10A
20A
30A
40A
50A
60A
70A
80A
90A
15V
13V
11V
9V
7V
5V
V
GE
=20V
I
C
,
COLLE
CT
OR CURRE
N
T
0V
1V
2V
3V
4V
5V
0A
10A
20A
30A
40A
50A
60A
70A
80A
90A
15V
13V
11V
9V
7V
5V
V
GE
=20V
V
CE
,
COLLECTOR
-
EMITTER VOLTAGE
V
CE
,
COLLECTOR
-
EMITTER VOLTAGE
Figure 5. Typical output characteristics
(T
j
= 25
C)
Figure 6. Typical output characteristics
(T
j
= 150
C)
I
C
,
COLLE
CT
OR CURRE
NT
0V
2V
4V
6V
8V
10V
0A
10A
20A
30A
40A
50A
60A
70A
80A
90A
100A
-55C
+150C
T
j
=+25C
V
CE(sat)
,
COLLE
CT
OR
-
EM
ITT
E
R
SATU
R
A
TI
O
N

VO
L
T
AG
E
-50C
0C
50C
100C
150C
1.0V
1.5V
2.0V
2.5V
3.0V
3.5V
4.0V
V
GE
,
GATE
-
EMITTER VOLTAGE
T
j
,
JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(V
CE
= 10V)
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(V
GE
= 15V)
I
C
= 30A
I
C
= 60A
SGP30N60,
SGB30N60
SGW30N60
6
Jul-02
t
,
SW
ITC
H
IN
G
TI
ME
S
10A
20A
30A
40A
50A
60A
10ns
100ns
1000ns
t
r
t
d(on)
t
f
t
d(off)
t
,
SW
ITC
H
IN
G
TI
ME
S
0
10
20
30
40
10ns
100ns
1000ns
t
r
t
d(on)
t
f
t
d(off)
I
C
,
COLLECTOR CURRENT
R
G
,
GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, T
j
= 150
C, V
CE
= 400V,
V
GE
= 0/+15V, R
G
= 11
,
Dynamic test circuit in Figure E)
Figure
10. Typical switching times as a
function of gate resistor
(inductive load, T
j
= 150
C, V
CE
= 400V,
V
GE
= 0/+15V, I
C
= 30A,
Dynamic test circuit in Figure E)
t
,
SW
ITC
H
IN
G
TI
ME
S
0C
50C
100C
150C
10ns
100ns
1000ns
t
r
t
d(on)
t
f
t
d(off)
V
GE(th)
,
GA
TE
-
EM
ITT
E
R
TH
R
ESH
O
L
D

VO
L
T
AG
E
-50C
0C
50C
100C
150C
2.0V
2.5V
3.0V
3.5V
4.0V
4.5V
5.0V
5.5V
typ.
min.
max.
T
j
,
JUNCTION TEMPERATURE
T
j
,
JUNCTION TEMPERATURE
Figure
11. Typical switching times as a
function of junction temperature
(inductive load, V
CE
= 400V, V
GE
= 0/+15V,
I
C
= 30A, R
G
= 11
,
Dynamic test circuit in Figure E)
Figure
12. Gate-emitter threshold voltage
as a function of junction temperature
(I
C
= 0.7mA)
SGP30N60,
SGB30N60
SGW30N60
7
Jul-02
E
,
SW
ITC
H
IN
G
EN
ER
G
Y

L
O
SSE
S
10A
20A
30A
40A
50A
60A
70A
0.0mJ
0.5mJ
1.0mJ
1.5mJ
2.0mJ
2.5mJ
3.0mJ
3.5mJ
4.0mJ
4.5mJ
5.0mJ
E
on
*
E
off
E
ts
*
E
,
SW
ITC
H
IN
G
EN
ER
G
Y

L
O
SSE
S
0
10
20
30
40
0.0mJ
0.5mJ
1.0mJ
1.5mJ
2.0mJ
2.5mJ
3.0mJ
3.5mJ
4.0mJ
E
ts
*
E
on
*
E
off
I
C
,
COLLECTOR CURRENT
R
G
,
GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, T
j
= 150
C, V
CE
= 400V,
V
GE
= 0/+15V, R
G
= 11
,
Dynamic test circuit in Figure E)
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, T
j
= 150
C, V
CE
= 400V,
V
GE
= 0/+15V, I
C
= 30A,
Dynamic test circuit in Figure E)
E
,
SW
ITC
H
I
N
G
EN
ER
G
Y

L
O
SSE
S
0C
50C
100C
150C
0.0mJ
0.5mJ
1.0mJ
1.5mJ
2.0mJ
2.5mJ
3.0mJ
E
ts
*
E
on
*
E
off
Z
thJC
,
TR
AN
SIEN
T TH
ER
M
A
L I
M
P
E
D
A
N
C
E
1s
10s
100s
1ms
10ms 100ms
1s
10
-4
K/W
10
-3
K/W
10
-2
K/W
10
-1
K/W
10
0
K/W
0.01
0.02
0.05
0.1
0.2
single pulse
D=0.5
T
j
,
JUNCTION TEMPERATURE
t
p
,
PULSE WIDTH
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, V
CE
= 400V, V
GE
= 0/+15V,
I
C
= 30A, R
G
= 11
,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = t
p
/ T)
*) E
on
and E
ts
include losses
due to diode recovery.
*) E
on
and E
ts
include losses
due to diode recovery.
*) E
on
and E
ts
include losses
due to diode recovery.
C
1
=
1
/ R
1
R
1
R
2
C
2
=
2
/ R
2
R , ( 1 / W )
, ( s )
=
0.3681
0.0555
0.0938
1.26*10
-3
0.0380
1.49*10
-4
SGP30N60,
SGB30N60
SGW30N60
8
Jul-02
V
GE
,
GA
TE
-
E
M
IT
TER
VO
L
T
AG
E
0nC
50nC
100nC
150nC
200nC
0V
5V
10V
15V
20V
25V
480V
120V
C
,
CA
P
A
CIT
A
NCE
0V
10V
20V
30V
10pF
100pF
1nF
C
rss
C
oss
C
iss
Q
GE
,
GATE CHARGE
V
CE
,
COLLECTOR
-
EMITTER VOLTAGE
Figure 17. Typical gate charge
(I
C
= 30A)
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(V
GE
= 0V, f = 1MHz)
t
sc
,
S
H
ORT
CI
RCUI
T
WI
T
H
S
T
A
ND T
I
M
E
10V
11V
12V
13V
14V
15V
0
s
5
s
10
s
15
s
20
s
25
s
I
C(sc)
,
S
H
ORT
CI
RCUI
T
COLL
E
C
T
O
R CURRE
N
T
10V
12V
14V
16V
18V
20V
0A
50A
100A
150A
200A
250A
300A
350A
400A
450A
500A
V
GE
,
GATE
-
EMITTER VOLTAGE
V
GE
,
GATE
-
EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(V
CE
= 600V, start at T
j
= 25
C)
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(V
CE
600V, T
j
= 150
C)
SGP30N60,
SGB30N60
SGW30N60
9
Jul-02
dimensions
symbol
[mm]
[inch]
min
max
min
max
A
9.70
10.30
0.3819
0.4055
B
14.88
15.95
0.5858
0.6280
C
0.65
0.86
0.0256
0.0339
D
3.55
3.89
0.1398
0.1531
E
2.60
3.00
0.1024
0.1181
F
6.00
6.80
0.2362
0.2677
G
13.00
14.00
0.5118
0.5512
H
4.35
4.75
0.1713
0.1870
K
0.38
0.65
0.0150
0.0256
L
0.95
1.32
0.0374
0.0520
M
2.54 typ.
0.1 typ.
N
4.30
4.50
0.1693
0.1772
P
1.17
1.40
0.0461
0.0551
T
2.30
2.72
0.0906
0.1071
TO-220AB
dimensions
symbol
[mm]
[inch]
min
max
min
max
A
9.80
10.20
0.3858
0.4016
B
0.70
1.30
0.0276
0.0512
C
1.00
1.60
0.0394
0.0630
D
1.03
1.07
0.0406
0.0421
E
2.54 typ.
0.1 typ.
F
0.65
0.85
0.0256
0.0335
G
5.08 typ.
0.2 typ.
H
4.30
4.50
0.1693
0.1772
K
1.17
1.37
0.0461
0.0539
L
9.05
9.45
0.3563
0.3720
M
2.30
2.50
0.0906
0.0984
N
15 typ.
0.5906 typ.
P
0.00
0.20
0.0000
0.0079
Q
4.20
5.20
0.1654
0.2047
R
8 max
8 max
S
2.40
3.00
0.0945
0.1181
T
0.40
0.60
0.0157
0.0236
U
10.80
0.4252
V
1.15
0.0453
W
6.23
0.2453
X
4.60
0.1811
Y
9.40
0.3701
TO-263AB (D
2
Pak)
Z
16.15
0.6358
SGP30N60,
SGB30N60
SGW30N60
10
Jul-02
dimensions
symbol
[mm]
[inch]
min
max
min
max
A
4.78
5.28
0.1882
0.2079
B
2.29
2.51
0.0902
0.0988
C
1.78
2.29
0.0701
0.0902
D
1.09
1.32
0.0429
0.0520
E
1.73
2.06
0.0681
0.0811
F
2.67
3.18
0.1051
0.1252
G
0.76 max
0.0299 max
H
20.80
21.16
0.8189
0.8331
K
15.65
16.15
0.6161
0.6358
L
5.21
5.72
0.2051
0.2252
M
19.81
20.68
0.7799
0.8142
N
3.560
4.930
0.1402
0.1941
P
3.61
0.1421
Q
6.12
6.22
0.2409
0.2449
TO-247AC
SGP30N60,
SGB30N60
SGW30N60
11
Jul-02
Figure A. Definition of switching times
Figure B. Definition of switching losses
p(t)
1
2
n
T (t)
j
1
1
2
2
n
n
T
C
r
r
r
r
r
r
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance L
=180nH
and Stray capacity C
=900pF.
SGP30N60,
SGB30N60
SGW30N60
12
Jul-02
Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 Mnchen
Infineon Technologies AG 2000
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.