ChipFind - документация

Электронный компонент: HIP6006

Скачать:  PDF   ZIP
2-121
HIP6006
Buck and Synchronous-Rectifier
Pulse-Width Modulator (PWM) Controller
The HIP6006 provides complete control and protection for a
DC-DC converter optimized for high-performance
microprocessor applications. It is designed to drive two
N Channel MOSFETs in a synchronous-rectified buck
topology. The HIP6006 integrates all of the control, output
adjustment, monitoring and protection functions into a single
package.
The output voltage of the converter can be precisely
regulated to as low as 1.27V, with a maximum tolerance of
1% over temperature and line voltage variations.
The HIP6006 provides simple, single feedback loop, voltage-
mode control with fast transient response. It includes a
200kHz free-running triangle-wave oscillator that is
adjustable from below 50kHz to over 1MHz. The error
amplifier features a 15MHz gain-bandwidth product and
6V/
s slew rate which enables high converter bandwidth for
fast transient performance. The resulting PWM duty ratio
ranges from 0% to 100%.
The HIP6006 protects against over-current conditions by
inhibiting PWM operation. The HIP6006 monitors the current
by using the r
DS(ON)
of the upper MOSFET which eliminates
the need for a current sensing resistor.
Pinout
HIP6006
(SOIC)
TOP VIEW
Features
Drives Two N-Channel MOSFETs
Operates From +5V or +12V Input
Simple Single-Loop Control Design
- Voltage-Mode PWM Control
Fast Transient Response
- High-Bandwidth Error Amplifier
- Full 0% to 100% Duty Ratio
Excellent Output Voltage Regulation
- 1.27V Internal Reference
-
1% Over Line Voltage and Temperature
Over-Current Fault Monitor
- Does Not Require Extra Current Sensing Element
- Uses MOSFETs r
DS(ON)
Small Converter Size
- Constant Frequency Operation
- 200kHz Free-Running Oscillator Programmable from
50kHz to Over 1MHz
14 Pin, SOIC Package
Applications
Power Supply for Pentium, Pentium Pro, PowerPCTM and
AlphaTM Microprocessors
High-Power 5V to 3.xV DC-DC Regulators
Low-Voltage Distributed Power Supplies
PowerPCTM is a trademark of IBM.
AlphaTM is a trademark of Digital Equipment Corporation.
Pentium is a registered trademark of Intel Corporation.
8
9
10
11
12
13
14
7
6
5
4
3
2
1
OCSET
SS
EN
COMP
FB
RT
VCC
LGATE
PGND
BOOT
UGATE
PHASE
GND
PVCC
Ordering Information
PART NUMBER
TEMP.
RANGE (
o
C)
PACKAGE
PKG.
NO.
HIP6006CB
0 to 70
14 Ld SOIC
M14.15
Data Sheet
September 1997
File Number
4306.1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207
|
Copyright
Intersil Corporation 1999
2-122
Typical Application
Block Diagram
12V
+V
O
PGND
HIP6006
RT
FB
COMP
SS
GND
OSC
LGATE
UGATE
OCSET
PHASE
BOOT
EN
VCC
+5V OR +12V
PVCC
+12V
MONITOR AND
PROTECTION
REF
+
-
+
-
OSCILLATOR
SOFT-
START
POWER-ON
RESET (POR)
INHIBIT
PWM
COMPARATOR
ERROR
AMP
VCC
SS
PWM
RT
GND
OCSET
FB
COMP
EN
1.27 VREF
OVER-
CURRENT
GATE
CONTROL
LOGIC
BOOT
UGATE
LGATE
PHASE
PGND
200
A
PVCC
10
A
4V
REFERENCE
+
-
+
-
+
-
HIP6006
2-123
Absolute Maximum Ratings
Thermal Information
Supply Voltage, V
CC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +15.0V
Boot Voltage, V
BOOT
- V
PHASE
. . . . . . . . . . . . . . . . . . . . . . . +15.0V
Input, Output or I/O Voltage . . . . . . . . . . . . GND -0.3V to V
CC
+0.3V
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 2
Operating Conditions
Supply Voltage, V
CC
. . . . . . . . . . . . . . . . . . . . . . . . . . . +12V
10%
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . 0
o
C to 70
o
C
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . 0
o
C to 125
o
C
Thermal Resistance (Typical, Note 1)
JA
(
o
C/W)
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
115
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . 150
o
C
Maximum Storage Temperature Range . . . . . . . . . . -65
o
C to 150
o
C
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300
o
C
(Lead tips only)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1.
JA
is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
Recommended Operating Conditions, Unless Otherwise Noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
VCC SUPPLY CURRENT
Nominal Supply
I
CC
EN = V
CC
; UGATE and LGATE Open
-
5
-
mA
Shutdown Supply
EN = 0V
-
50
100
A
POWER-ON RESET
Rising V
CC
Threshold
V
OCSET
= 4.5VDC
-
-
10.4
V
Falling V
CC
Threshold
V
OCSET
= 4.5VDC
8.2
-
-
V
Enable - Input threshold Voltage
V
OCSET
= 4.5VDC
0.8
-
2.0
V
Rising V
OCSET
Threshold
-
1.27
-
V
OSCILLATOR
Free Running Frequency
R
T
= OPEN, V
CC
= 12
185
200
215
kHz
Total Variation
6k
< R
T
to GND < 200k
-15
-
+15
%
Ramp Amplitude
V
OSC
R
T
= OPEN
-
1.9
-
V
P-P
REFERENCE
Reference Voltage
1.258
1.270
1.282
V
ERROR AMPLIFIER
DC Gain
-
88
-
dB
Gain-Bandwidth Product
GBW
-
15
-
MHz
Slew Rate
SR
COMP = 10pF
-
6
-
V/
s
GATE DRIVERS
Upper Gate Source
I
UGATE
V
BOOT
- V
PHASE
= 12V, V
UGATE
= 6V
350
500
-
mA
Upper Gate Sink
R
UGATE
I
LGATE
= 0.3A
-
5.5
10
Lower Gate Source
I
LGATE
V
CC
= 12V, V
LGATE
= 6V
300
450
-
mA
Lower Gate Sink
R
LGATE
I
LGATE
= 0.3A
-
3.5
6.5
PROTECTION
OCSET Current Source
I
OCSET
V
OCSET
= 4.5VDC
170
200
230
A
Soft Start Current
I
SS
-
10
-
A
HIP6006
2-124
Functional Pin Description
RT (Pin 1)
This pin provides oscillator switching frequency adjustment.
By placing a resistor (R
T
) from this pin to GND, the nominal
200kHz switching frequency is increased according to the
following equation:
Conversely, connecting a pull-up resistor (R
T
) from this pin
to V
CC
reduces the switching frequency according to the
following equation.:
OCSET (Pin 2)
Connect a resistor (R
OCSET
) from this pin to the drain of the
upper MOSFET. R
OCSET
, an internal 200
A current source
(I
OCS
), and the upper MOSFET on-resistance (r
DS(ON)
) set
the converter over-current (OC) trip point according to the
following equation:
An over-current trip cycles the soft-start function.
SS (Pin 3)
Connect a capacitor from this pin to ground. This capacitor,
along with an internal 10
A current source, sets the soft-
start interval of the converter.
COMP (Pin 4) and FB (Pin 5)
COMP and FB are the available external pins of the error
amplifier. The FB pin is the inverting input of the error
amplifier and the COMP pin is the error amplifier output.
These pins are used to compensate the voltage-control
feedback loop of the converter.
EN (Pin 6)
This pin is the open-collector enable pin. Pull this pin below
1V to disable the converter. In shutdown, the soft start pin is
discharged and the UGATE and LGATE pins are held low.
GND (Pin 7)
Signal ground for the IC. All voltage levels are measured with
respect to this pin.
PHASE (Pin 8)
Connect the PHASE pin to the upper MOSFET source. This
pin is used to monitor the voltage drop across the MOSFET
for over-current protection. This pin also provides the return
path for the upper gate drive.
UGATE (Pin 9)
Connect UGATE to the upper MOSFET gate. This pin
provides the gate drive for the upper MOSFET.
BOOT (Pin 10)
This pin provides bias voltage to the upper MOSFET driver.
A bootstrap circuit may be used to create a BOOT voltage
suitable to drive a standard N-Channel MOSFET.
PGND (Pin 11)
This is the power ground connection. Tie the lower MOSFET
source to this pin.
Typical Performance Curves
FIGURE 1. R
T
RESISTANCE vs FREQUENCY
FIGURE 2. BIAS SUPPLY CURRENT vs FREQUENCY
10
100
1000
SWITCHING FREQUENCY (kHz)
RESIST
ANCE (k
)
10
100
1000
R
T
PULLUP
TO +12V
R
T
PULLDOWN
TO V
SS
100
200
300
400
500
600
700
800
900
1000
80
70
60
50
40
30
20
10
0
I
VCC
(mA)
SWITCHING FREQUENCY (kHz)
C
GATE
= 1000pF
C
GATE
= 3300pF
C
GATE
= 10pF
8
9
10
11
12
13
14
7
6
5
4
3
2
1
OCSET
SS
EN
COMP
FB
RT
VCC
LGATE
PGND
BOOT
UGATE
PHASE
GND
PVCC
Fs
200kHz
5
10
6
R
T
k
(
)
---------------------
+
(R
T
to GND)
Fs
200kHz
4
10
7
R
T
k
(
)
---------------------
(R
T
to 12V)
I
PEAK
I
OCS
R
OCSET
r
DS ON
(
)
--------------------------------------------
=
HIP6006
2-125
LGATE (Pin 12)
Connect LGATE to the lower MOSFET gate. This pin
provides the gate drive for the lower MOSFET.
PVCC (Pin 13)
Provide a bias supply for the lower gate drive to this pin.
VCC (Pin 14)
Provide a 12V bias supply for the chip to this pin.
Functional Description
Initialization
The HIP6006 automatically initializes upon receipt of power.
Special sequencing of the input supplies is not necessary.
The Power-On Reset (POR) function continually monitors
the input supply voltages and the enable (EN) pin. The POR
monitors the bias voltage at the VCC pin and the input
voltage (V
IN
) on the OCSET pin. The level on OCSET is
equal to V
IN
Less a fixed voltage drop (see over-current
protection). With the EN pin held to V
CC
, the POR function
initiates soft start operation after both input supply voltages
exceed their POR thresholds. For operation with a single
+12V power source, V
IN
and V
CC
are equivalent and the
+12V power source must exceed the rising V
CC
threshold
before POR initiates operation.
The Power-On Reset (POR) function inhibits operation with
the chip disabled (EN pin low). With both input supplies
above their POR thresholds, transitioning the EN pin high
initiates a soft start interval.
Soft Start
The POR function initiates the soft start sequence. An internal
10
A current source charges an external capacitor (C
SS
) on
the SS pin to 4V. Soft start clamps the error amplifier output
(COMP pin) and reference input (+ terminal of error amp) to
the SS pin voltage. Figure 3 shows the soft start interval with
C
SS
= 0.1
F. Initially the clamp on the error amplifier (COMP
pin) controls the converter's output voltage. At t1 in Figure 3,
the SS voltage reaches the valley of the oscillator's triangle
wave. The oscillator's triangular waveform is compared to the
ramping error amplifier voltage. This generates PHASE
pulses of increasing width that charge the output capacitor(s).
This interval of increasing pulse width continues to t2. With
sufficient output voltage, the clamp on the reference input
controls the output voltage. This is the interval between t2 and
t3 in Figure 3. At t3 the SS voltage exceeds the reference
voltage and the output voltage is in regulation. This method
provides a rapid and controlled output voltage rise.
Over-Current Protection
The over-current function protects the converter from a
shorted output by using the upper MOSFETs on-resistance,
r
DS(ON)
to monitor the current. This method enhances the
converter's efficiency and reduces cost by eliminating a
current sensing resistor.
The over-current function cycles the soft-start function in a
hiccup mode to provide fault protection. A resistor (R
OCSET
)
programs the over-current trip level. An internal 200
A
(typical) current sink develops a voltage across R
OCSET
that
is reference to V
IN
. When the voltage across the upper
MOSFET (also referenced to V
IN
) exceeds the voltage
across R
OCSET
, the over-current function initiates a soft-
start sequence. The soft-start function discharges C
SS
with
a 10
A current sink and inhibits PWM operation. The soft-
start function recharges C
SS
, and PWM operation resumes
with the error amplifier clamped to the SS voltage. Should an
overload occur while recharging C
SS
, the soft start function
inhibits PWM operation while fully charging C
SS
to 4V to
TIME (5ms/DIV)
SOFT-START
(1V/DIV)
0V
0V
t1
t2
t3
OUTPUT
(1V/DIV)
VOLTAGE
FIGURE 3. SOFT-START INTERVAL
OUTPUT INDUCT
OR
SOFT
-ST
AR
T
0A
0V
TIME (20ms/DIV)
5A
10A
15A
2V
4V
FIGURE 4. OVER-CURRENT OPERATION
HIP6006
2-126
complete its cycle. Figure 4 shows this operation with an
overload condition. Note that the inductor current increases
to over 15A during the C
SS
charging interval and causes an
over-current trip. The converter dissipates very little power
with this method. The measured input power for the
conditions of Figure 4 is 2.5W.
The over-current function will trip at a peak inductor current
(I
PEAK)
determined by:
where I
OCSET
is the internal OCSET current source (200
A
- typical). The OC trip point varies mainly due to the
MOSFETs r
DS(ON)
variations. To avoid over-current tripping
in the normal operating load range, find the R
OCSET
resistor
from the equation above with:
1. The maximum r
DS(ON)
at the highest junction tempera-
ture.
2. The minimum I
OCSET
from the specification table.
3. Determine
,
where
I is the output inductor ripple current.
For an equation for the ripple current see the section under
component guidelines titled `Output Inductor Selection'.
A small ceramic capacitor should be placed in parallel with
R
OCSET
to smooth the voltage across R
OCSET
in the
presence of switching noise on the input voltage.
Application Guidelines
Layout Considerations
As in any high frequency switching converter, layout is very
important. Switching current from one power device to
another can generate voltage transients across the
impedances of the interconnecting bond wires and circuit
traces. These interconnecting impedances should be
minimized by using wide, short printed circuit traces. The
critical components should be located as close together as
possible using ground plane construction or single point
grounding.
Figure 5 shows the critical power components of the
converter. To minimize the voltage overshoot the
interconnecting wires indicated by heavy lines should be
part of ground or power plane in a printed circuit board. The
components shown in Figure 6 should be located as close
together as possible. Please note that the capacitors C
IN
and C
O
each represent numerous physical capacitors.
Locate the HIP6006 within 3 inches of the MOSFETs, Q1
and Q2. The circuit traces for the MOSFETs' gate and
source connections from the HIP6006 must be sized to
handle up to 1A peak current.
Figure 6 shows the circuit traces that require additional
layout consideration. Use single point and ground plane
construction for the circuits shown. Minimize any leakage
current paths on the SS PIN and locate the capacitor, C
ss
close to the SS pin because the internal current source is
only 10
A. Provide local V
CC
decoupling between VCC and
GND pins. Locate the capacitor, C
BOOT
as close as practical
to the BOOT and PHASE pins.
Feedback Compensation
Figure 7 highlights the voltage-mode control loop for a
synchronous-rectified buck converter.The output voltage
(Vout) is regulated to the Reference voltage level. The error
amplifier (Error Amp) output (V
E/A
) is compared with the
oscillator (OSC) triangular wave to provide a pulse-width
modulated (PWM) wave with an amplitude of V
IN
at the
PHASE node. The PWM wave is smoothed by the output filter
(L
O
and C
O
).
The modulator transfer function is the small-signal transfer
function of Vout/V
E/A
. This function is dominated by a DC
Gain and the output filter (L
O
and C
O
), with a double pole
break frequency at F
LC
and a zero at F
ESR
. The DC Gain of
the modulator is simply the input voltage (V
IN
) divided by the
peak-to-peak oscillator voltage
V
OSC
.
I
PEAK
I
OCSET
R
OCSET
r
DS ON
(
)
---------------------------------------------------
=
I
PEAK
for I
PEAK
I
OUT MAX
(
)
I
( )
2
/
+
>
PGND
L
O
C
O
LGATE
UGATE
PHASE
Q1
Q2
D2
FIGURE 5. PRINTED CIRCUIT BOARD POWER AND
GROUND PLANES OR ISLANDS
V
IN
V
OUT
RETURN
HIP6006
C
IN
LO
AD
FIGURE 6. PRINTED CIRCUIT BOARD SMALL SIGNAL
LAYOUT GUIDELINES
+12V
HIP6006
SS
GND
VCC
BOOT
D1
L
O
C
O
V
OUT
LO
AD
Q1
Q2
PHASE
+V
IN
C
BOOT
C
VCC
C
SS
HIP6006
2-127
Modulator Break Frequency Equations
The compensation network consists of the error amplifier
(internal to the HIP6006) and the impedance networks Z
IN
and Z
FB
. The goal of the compensation network is to provide
a closed loop transfer function with the highest 0dB crossing
frequency (f
0dB
) and adequate phase margin. Phase margin
is the difference between the closed loop phase at f
0dB
and
180
o
.
The equations below relate the compensation
network's poles, zeros and gain to the components (R1, R2,
R3, C1, C2, and C3) in Figure 8. Use these guidelines for
locating the poles and zeros of the compensation network:
Compensation Break Frequency Equations
1. Pick Gain (R2/R1) for desired converter bandwidth
2. Place 1
ST
Zero Below Filter's Double Pole
(~75% F
LC
)
3. Place 2
ND
Zero at Filter's Double Pole
4. Place 1
ST
Pole at the ESR Zero
5. Place 2
ND
Pole at Half the Switching Frequency
6. Check Gain against Error Amplifier's Open-Loop Gain
7. Estimate Phase Margin - Repeat if Necessary
Figure 8 shows an asymptotic plot of the DC-DC converter's
gain vs frequency. The actual Modulator Gain has a high
gain peak do to the high Q factor of the output filter and is
not shown in Figure 8. Using the above guidelines should
give a Compensation Gain similar to the curve plotted. The
open loop error amplifier gain bounds the compensation
gain. Check the compensation gain at F
P2
with the
capabilities of the error amplifier. The Closed Loop Gain is
constructed on the log-log graph of Figure 8 by adding the
Modulator Gain (in dB) to the Compensation Gain (in dB).
This is equivalent to multiplying the modulator transfer
function to the compensation transfer function and plotting
the gain.
The compensation gain uses external impedance networks
Z
FB
and Z
IN
to provide a stable, high bandwidth (BW) overall
loop. A stable control loop has a gain crossing with -
20dB/decade slope and a phase margin greater than 45
o
.
Include worst case component variations when determining
phase margin.
Component Selection Guidelines
Output Capacitor Selection
An output capacitor is required to filter the output and supply
the load transient current. The filtering requirements are a
function of the switching frequency and the ripple current.
The load transient requirements are a function of the slew
rate (di/dt) and the magnitude of the transient load current.
These requirements are generally met with a mix of
capacitors and careful layout.
FIGURE 7. VOLTAGE - MODE BUCK CONVERTER
COMPENSATION DESIGN
V
OUT
OSC
REFERENCE
L
O
C
O
ESR
V
IN
V
OSC
ERROR
AMP
PWM
DRIVER
(PARASITIC)
-
REF
R1
R3
R2
C3
C2
C1
COMP
V
OUT
FB
Z
FB
HIP6006
Z
IN
COMPARATOR
DRIVER
DETAILED COMPENSATION COMPONENTS
PHASE
V
E/A
+
-
+
-
Z
IN
Z
FB
+
F
LC
1
2
L
O
C
O
---------------------------------------
=
F
ESR
1
2
ESR
C
O
(
)
---------------------------------------------
=
F
Z1
1
2
R
2
C1
----------------------------------
=
F
Z2
1
2
R1
R3
+
(
)
C3
------------------------------------------------------
=
F
P1
1
2
R2
C1
C2
C1
C2
+
----------------------
-------------------------------------------------------
=
F
P2
=
1
2
R3
C3
----------------------------------
100
80
60
40
20
0
-20
-40
-60
F
P1
F
Z2
10M
1M
100K
10K
1K
100
10
OPEN LOOP
ERROR AMP GAIN
F
Z1
F
P2
F
LC
F
ESR
COMPENSATION
GAIN (dB)
FREQUENCY (Hz)
GAIN
20LOG
(V
IN
/
V
OSC
)
MODULATOR
GAIN
20LOG
(R2/R1)
CLOSED LOOP
GAIN
FIGURE 8. ASYMPTOTIC BODE PLOT OF CONVERTER GAIN
HIP6006
2-128
Modern microprocessors produce transient load rates above
1A/ns. High frequency capacitors initially supply the
transient and slow the current load rate seen by the bulk
capacitors. The bulk filter capacitor values are generally
determined by the ESR (effective series resistance) and
voltage rating requirements rather than actual capacitance
requirements.
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
careful not to add inductance in the circuit board wiring that
could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load on
specific decoupling requirements. For example, Intel
recommends that the high frequency decoupling for the
Pentium Pro be composed of at least forty (40) 1.0
F
ceramic capacitors in the 1206 surface-mount package.
Use only specialized low-ESR capacitors intended for
switching-regulator applications for the bulk capacitors. The
bulk capacitor's ESR will determine the output ripple
voltage and the initial voltage drop after a high slew-rate
transient. An aluminum electrolytic capacitor's ESR value is
related to the case size with lower ESR available in larger
case sizes. However, the equivalent series inductance
(ESL) of these capacitors increases with case size and can
reduce the usefulness of the capacitor to high slew-rate
transient loading. Unfortunately, ESL is not a specified
parameter. Work with your capacitor supplier and measure
the capacitor's impedance with frequency to select a
suitable component. In most cases, multiple electrolytic
capacitors of small case size perform better than a single
large case capacitor.
Output Inductor Selection
The output inductor is selected to meet the output voltage
ripple requirements and minimize the converter's response
time to the load transient. The inductor value determines the
converter's ripple current and the ripple voltage is a function
of the ripple current. The ripple voltage and current are
approximated by the following equations:
Increasing the value of inductance reduces the ripple current
and voltage. However, the large inductance values reduce
the converter's response time to a load transient.
One of the parameters limiting the converter's response to a
load transient is the time required to change the inductor
current. Given a sufficiently fast control loop design, the
HIP6006 will provide either 0% or 100% duty cycle in
response to a load transient. The response time is the time
required to slew the inductor current from an initial current
value to the transient current level. During this interval the
difference between the inductor current and the transient
current level must be supplied by the output capacitor.
Minimizing the response time can minimize the output
capacitance required.
The response time to a transient is different for the
application of load and the removal of load. The following
equations give the approximate response time interval for
application and removal of a transient load:
where: I
TRAN
is the transient load current step, t
RISE
is the
response time to the application of load, and t
FALL
is the
response time to the removal of load. With a +5V input
source, the worst case response time can be either at the
application or removal of load and dependent upon the
output voltage setting. Be sure to check both of these
equations at the minimum and maximum output levels for the
worst case response time.
Input Capacitor Selection
Use a mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use small ceramic
capacitors for high frequency decoupling and bulk capacitors
to supply the current needed each time Q1 turns on. Place
the small ceramic capacitors physically close to the
MOSFETs and between the drain of Q1 and the source of
Q2.
The important parameters for the bulk input capacitor are the
voltage rating and the RMS current rating. For reliable
operation, select the bulk capacitor with voltage and current
ratings above the maximum input voltage and largest RMS
current required by the circuit. The capacitor voltage rating
should be at least 1.25 times greater than the maximum
input voltage and a voltage rating of 1.5 times is a
conservative guideline. The RMS current rating requirement
for the input capacitor of a buck regulator is approximately
1/2 the DC load current.
For a through hole design, several electrolytic capacitors
(Panasonic HFQ series or Nichicon PL series or Sanyo MV-
GX or equivalent) may be needed. For surface mount
designs, solid tantalum capacitors can be used, but caution
must be exercised with regard to the capacitor surge current
rating. These capacitors must be capable of handling the
surge-current at power-up. The TPS series available from
AVX, and the 593D series from Sprague are both surge
current tested.
MOSFET Selection/Considerations
The HIP6006 requires 2 N-Channel power MOSFETs.
These should be selected based upon r
DS(ON)
, gate supply
requirements, and thermal management requirements.
In high-current applications, the MOSFET power dissipation,
package selection and heatsink are the dominant design
factors. The power dissipation includes two loss
components; conduction loss and switching loss. The
V
OUT
=
I x ESR
I =
V
IN
- V
OUT
Fs x L
--------------------------------
V
OUT
V
IN
----------------
t
FALL
L
O
I
TRAN
V
OUT
-------------------------------
=
t
RISE
L
O
I
TRAN
V
IN
V
OUT
--------------------------------
=
HIP6006
2-129
conduction losses are the largest component of power
dissipation for both the upper and the lower MOSFETs.
These losses are distributed between the two MOSFETs
according to duty factor (see the equations below). Only the
upper MOSFET has switching losses, since the Schottky
rectifier clamps the switching node before the synchronous
rectifier turns on.
These equations assume linear voltage-current transitions
and do not adequately model power loss due the reverse-
recovery of the lower MOSFETs body diode. The
gate-charge losses are dissipated by the HIP6006 and don't
heat the MOSFETs. However, large gate-charge increases
the switching interval, t
SW
which increases the upper
MOSFET switching losses. Ensure that both MOSFETs are
within their maximum junction temperature at high ambient
temperature by calculating the temperature rise according to
package thermal-resistance specifications. A separate
heatsink may be necessary depending upon MOSFET
power, package type, ambient temperature and air flow.
Standard-gate MOSFETs are normally recommended for
use with the HIP6006. However, logic-level gate MOSFETs
can be used under special circumstances. The input voltage,
upper gate drive level, and the MOSFETs absolute gate-to-
source voltage rating determine whether logic-level
MOSFETs are appropriate.
Figure 9 shows the upper gate drive (BOOT pin) supplied by
a bootstrap circuit from V
CC
. The boot capacitor, C
BOOT
develops a floating supply voltage referenced to the PHASE
pin. This supply is refreshed each cycle to a voltage of V
CC
less the boot diode drop (V
D
) when the lower MOSFET, Q2
turns on. A logic-level MOSFET can only be used for Q1 if
the MOSFETs absolute gate-to-source voltage rating
exceeds the maximum voltage applied to V
CC
. For Q2, a
logic-level MOSFET can be used if its absolute gate-to-
source voltage rating exceeds the maximum voltage applied
to PVCC.
Figure 10 shows the upper gate drive supplied by a direct
connection to V
CC
. This option should only be used in
converter systems where the main input voltage is +5 VDC
or less. The peak upper gate-to-source voltage is
approximately VCC less the input supply. For +5V main
power and +12 VDC for the bias, the gate-to-source voltage
of Q1 is 7V. A logic-level MOSFET is a good choice for Q1
and a logic-level MOSFET can be used for Q2 if its absolute
gate-to-source voltage rating exceeds the maximum voltage
applied to PVCC.
Schottky Selection
Rectifier D2 is a clamp that catches the negative inductor
swing during the dead time between turning off the lower
MOSFET and turning on the upper MOSFET. The diode must
be a Schottky type to prevent the lossy parasitic MOSFET
body diode from conducting. It is acceptable to omit the diode
and let the body diode of the lower MOSFET clamp the
negative inductor swing, but efficiency will drop one or two
percent as a result. The diode's rated reverse breakdown
voltage must be greater than the maximum input voltage.
P
UPPER
= I
O
2
x r
DS(ON)
x D + 1
2
Io x V
IN
x t
SW
x Fs
P
LOWER
= I
O
2
x r
DS(ON)
x (1 - D)
Where: D is the duty cycle = V
O
/ V
IN
,
t
SW
is the switching interval, and
Fs is the switching frequency.
+12V
PGND
HIP6006
GND
LGATE
UGATE
PHASE
BOOT
VCC
+5V OR +12V
FIGURE 9. UPPER GATE DRIVE - BOOTSTRAP OPTION
NOTE:
V
G-S
V
CC
- V
D
NOTE:
V
G-S
PVCC
C
BOOT
D
BOOT
Q1
Q2
PVCC
+5V
OR +12V
D2
+
-
V
D
+
-
+12V
PGND
LGATE
UGATE
PHASE
BOOT
VCC
+5V OR LESS
FIGURE 10. UPPER GATE DRIVE - DIRECT V
CC
DRIVE OPTION
NOTE:
V
G-S
V
CC
- 5V
NOTE:
V
G-S
PVCC
Q1
Q2
PVCC
+5V
OR +12V
D2
HIP6006
GND
+
-
HIP6006
2-130
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
HIP6006 DC-DC Converter Application Circuit
The figure below shows an application circuit of a DC-DC
Converter for a microprocessor application. Detailed
information on the circuit, including a complete Bill-of-
Materials and circuit board description, can be found in
application note AN9722. See Intersil's home page on the
web: http://www.intersil.com or Intersil AnswerFAX (407-724-
7800) document # 99722.
HIP6006
RT
FB
COMP
SS
REF
-
+
GND
+
-
OSC
VCC
VIN
C1-3
L1
C6-9
0.1
F
2x 1
F
0.1
F
1
F
15k
1k
3x 680
F
4x 1000
F
UGATE
OCSET
PHASE
BOOT
SPARE
CR1
Q1
3.01k
1000pF
CR2
C13
R1
R3
R4
C15
R5
C14
C12
C17-18
C19
R6
C20
4148
U1
RTN
12VCC
14
2
10
9
8
7
4
5
1
3
SPARE
PGND
LGATE
12
11
PVCC
13
JP1
Q2
1206
1206
MBR
340
V
OUT
RTN
ENABLE
R2
1k
COMP
TP1
PHASE
TP2
6
R7
10k
MONITOR AND
PROTECTION
+
-
+
-
C16
0.01
F
33pF
SPARE
Component Selection Notes:
C1-C3 - 3 each 680
F 25W VDC, Sanyo MV-GX or equivalent
C6-C9 - 4 each 1000
F 6.3W VDC, Sanyo MV-GX or equivalent
L1 - Core: Micrometals T50-52B; Winding: 10 Turns of 17AWG
CR1 - 1N4148 or equivalent
CR2 - 3A, 40V Schottky, Motorola MBR340 or equivalent
Q1, Q2 - Intersil MOSFET; RFP25N05
FIGURE 11. DC-DC CONVERTER APPLICATION CIRCUIT
HIP6006