ChipFind - документация

Электронный компонент: 30TCQ100-1

Скачать:  PDF   ZIP
SCHOTTKY RECTIFIER
30 Amp
Bulletin PD-20606 rev. B 01/04
1
www.irf.com
This center tap Schottky rectifier series has been optimized
for low reverse leakage at high temperature. The proprietary
barrier technology allows for reliable operation up to 175C
junction temperature. Typical applications are in switching
power supplies, converters, free-wheeling diodes, and re-
verse battery protection.
175 C T
J
operation
Center tap configuration
Low forward voltage drop
High purity, high temperature epoxy encapsulation for
enhanced mechanical strength and moisture resistance
High frequency operation
Guard ring for enhanced ruggedness and long term
reliability
Description/ Features
30CTQ...
30CTQ...S
30CTQ...-1
Major Ratings and Characteristics
I
F(AV)
Rectangular
30
A
waveform
V
RRM
80 - 100
V
I
FSM
@ tp = 5 s sine
850
A
V
F
@
15 Apk, T
J
= 125C
0.67
V
(per leg)
T
J
range
- 55 to 175
C
Characteristics
Values
Units
Case Styles
30CTQ... S
TO-220
D
2
PAK
Anode
1
3
2
Base
Common
Cathode
2
Anode
Common
Cathode
TO-262
Anode
1
3
2
Base
Common
Cathode
2
Anode
Common
Cathode
Anode
1
3
2
Base
Common
Cathode
2
Anode
Common
Cathode
30CTQ...
30CTQ... -1
30CTQ..., 30CTQ...S, 30CTQ...-1
2
Bulletin PD-20606 rev. B 01/04
www.irf.com
Voltage Ratings
30CTQ80
30CTQ100
30CTQ80S
30CTQ100S
30CTQ80-1
30CTQ100-1
V
R
Max. DC Reverse Voltage (V)
V
RWM
Max. Working Peak Reverse Voltage (V)
100
Parameters
Absolute Maximum Ratings
Parameters
Values Units
Conditions
I
F(AV)
Max. Average Forward (Per Leg)
15
A
50% duty cycle @ T
C
= 129C, rectangular wave form
Current
* See Fig. 5
(Per Device)
30
I
FSM
Max. Peak One Cycle Non-Repetitive
850
5s Sine or 3s Rect. pulse
Surge Current (Per Leg) * See Fig. 7
275
10ms Sine or 6ms Rect. pulse
E
AS
Non-Repetitive Avalanche Energy
7.50
mJ
T
J
= 25 C, I
AS
= 0.50 Amps, L = 60 mH
(Per Leg)
I
AR
Repetitive Avalanche Current
0.50
A
Current decaying linearly to zero in 1 sec
(Per Leg)
Frequency limited by T
J
max. V
A
= 1.5 x V
R
typical
A
T
J
Max. Junction Temperature Range
-55 to 175
C
T
stg
Max. Storage Temperature Range
-55 to 175
C
R
thJC
Max. Thermal Resistance Junction
3.25
C/W
DC operation
to Case (Per Leg)
R
thJC
Max. Thermal Resistance Junction
1.63
C/W
DC operation
to Case (Per Package)
R
thCS
Typical Thermal Resistance, Case
0.50
C/W
Mounting surface , smooth and greased
to Heatsink
(only for TO-220)
wt
Approximate Weight
2 (0.07)
g (oz.)
T
Mounting Torque
Min.
6 (5)
Max.
12 (10)
Thermal-Mechanical Specifications
Kg-cm
(Ibf-in)
Parameters
Values Units
Conditions
V
FM
Max. Forward Voltage Drop
0.86
V
@ 15A
(Per Leg) * See Fig. 1
(1)
1.05
V
@ 30A
0.67
V
@ 15A
0.82
V
@ 30A
I
RM
Max. Reverse Leakage Current
0.55
mA
T
J
= 25 C
(Per Leg) * See Fig. 2
(1)
7.0
mA
T
J
= 125 C
C
T
Max. Junction Capacitance (Per Leg)
500
pF
V
R
= 5V
DC
(test signal range 100Khz to 1Mhz) 25C
L
S
Typical Series Inductance (Per Leg)
8.0
nH
Measured lead to lead 5mm from package body
dv/dt Max. Voltage Rate of Change
10000
V/ s
(Rated V
R
)
T
J
= 25 C
T
J
= 125 C
Electrical Specifications
(1) Pulse Width < 300s, Duty Cycle <2%
V
R
= rated V
R
Parameters
Values Units
Conditions
Following any rated
load condition and with
rated V
RRM
applied
80
3
Bulletin PD-20606 rev. B 01/04
www.irf.com
30CTQ..., 30CTQ...S, 30CTQ...-1
Fig. 2 - Typical Values Of Reverse Current
Vs. Reverse Voltage (Per Leg)
Fig. 3 - Typical Junction Capacitance
Vs. Reverse Voltage (Per Leg)
Fig. 4 - Max. Thermal Impedance Z
thJC
Characteristics (Per Leg)
Fig. 1 - Max. Forward Voltage Drop Characteristics
(Per Leg)
0.0001
0.001
0.01
0.1
1
10
100
0
20
40
60
80
100
R
R
150C
125C
100C
75C
50C
25C
R
e
v
e
rs
e
C
u
r
r
e
n
t
-
I
(m
A
)
T = 175C
J
Reverse Voltage - V (V)
100
1000
0
20
40
60
80
100
T = 25C
J
R
J
u
n
c
t
i
o
n
C
apac
i
t
an
c
e
-
C
(
p
F
)
T
Reverse Voltage - V (V)
0.001
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
1
10
100
th
J
C
t , Rectangular Pulse Duration (Seconds)
Single Pulse
(Thermal Resistance)
1
T
h
e
r
m
a
l
I
m
p
e
d
a
n
c
e

Z

(

C
/
W
)
D = 0.75
D = 0.50
D = 0.33
D = 0.25
D = 0.20
J
DM
thJC
C
2
t
1
t
P
DM
1
2
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
Forward Voltage Drop - V
FM
(V)
Instantaneous Forward Current - I
F
(A)
1
10
100
1000
0
0.5
1
1.5
2
2.5
Tj = 175C
Tj = 125C
Tj = 25C
30CTQ..., 30CTQ...S, 30CTQ...-1
4
Bulletin PD-20606 rev. B 01/04
www.irf.com
Fig. 8 - Unclamped Inductive Test Circuit
FREE-WHEEL
DIODE
40HFL40S02
CURRENT
MONITOR
HIGH-SPEED
SWITCH
IRFP460
L
DUT
Rg = 25 ohm
Vd = 25 Volt
+
(2) Formula used: T
C
= T
J
- (Pd + Pd
REV
) x R
thJC
;
Pd = Forward Power Loss = I
F(AV)
x V
FM
@ (I
F(AV)
/
D) (see Fig. 6);
Pd
REV
= Inverse Power Loss = V
R1
x I
R
(1 - D); I
R
@ V
R1
= 10 V
Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)
Fig. 5 - Max. Allowable Case Temperature
Vs. Average Forward Current (Per Leg)
Fig. 6 - Forward Power Loss Characteristics
(Per Leg)
100
110
120
130
140
150
160
170
180
0
2
4
6
8
10
12
14
DC
A
l
l
o
w
a
b
l
e

C
a
s
e
T
e
m
p
e
r
at
u
r
e -
(

C
)
F(AV)
see note (2)
Squa re wave (D = 0.50)
80% Ra ted V a pplied
R
Average Forward Current - I (A)
0
1
2
3
4
5
6
7
0
2
4
6
8
10
12
DC
A
v
er
ag
e
P
o
w
e
r
L
o
s
s
-
(
W
a
t
t
s
)
F(AV)
RMS Limit
D = 0.20
D = 0.25
D = 0.33
D = 0.50
D = 0.75
Average Forward Current - I (A)
100
1000
10
100
1000
10000
FS
M
N
o
n
-
R
e
p
e
t
i
t
i
v
e
S
u
rg
e
C
u
rre
n
t

- I



(
A
)
p
At Any Rated Load Condition
And With Rated V Applied
Following Surge
RRM
Square Wave Pulse Duration - t (microsec)
5
Bulletin PD-20606 rev. B 01/04
www.irf.com
30CTQ..., 30CTQ...S, 30CTQ...-1
3.78 (0.15)
3.54 (0.14)
10.54 (0.41)
MAX.
DIA.
15.24 (0.60)
14.84 (0.58)
2.92 (0.11)
2.54 (0.10)
1
TERM 2
14.09 (0.55)
13.47 (0.53)
3.96 (0.16)
3.55 (0.14)
0.94 (0.04)
0.69 (0.03)
4.57 (0.18)
4.32 (0.17)
3
0.61 (0.02) MAX.
5.08 (0.20) REF.
1.32 (0.05)
1.22 (0.05)
6.48 (0.25)
6.23 (0.24)
2
0.10 (0.004)
1.40 (0.05)
1.15 (0.04)
2.89 (0.11)
2.64 (0.10)
1
3
2.04 (0.080) MAX.
2
2
Conform to JEDEC outline TO-220AB
Dimensions in millimeters and (inches)
Outline Table
Conform to JEDEC outline D
2
Pak (SMD-220)
Dimensions in millimeters and (inches)
Anode
1
3
2
Base
Common
Cathode
2
Anode
Common
Cathode
Anode
1
3
2
Base
Common
Cathode
2
Anode
Common
Cathode