ChipFind - документация

Электронный компонент: 80CPQ020

Скачать:  PDF   ZIP
SCHOTTKY RECTIFIER
80CPQ020
PD-20711 rev. B 11/99
1
80 Amp
I
F(AV)
Rectangular
80
A
waveform
V
RRM
20
V
I
FSM
@ tp = 5 s sine
2200
A
V
F
@
40 Apk, T
J
= 150C
0.32
V
(per leg)
T
J
range
- 55 to 150
C
Characteristics
Values
Units
Major Ratings and Characteristics
Description/Features
Dimensions in millimeters and inches
Conform to JEDEC outline TO-247AC (TO-3P)
1 5 .9 0 ( 0 . 6 2 6 )
1 5 .3 0 ( 0 . 6 0 2 )
1 4 . 2 0 ( 0 . 5 5 9 )
1 4 . 8 0 ( 0 .5 8 3 )
3 . 7 0 ( 0 . 1 4 5 )
4 . 3 0 ( 0 . 1 7 0 )
5 .3 0 ( 0 .2 0 8 )
5 . 7 0 ( 0 .2 2 5 )
5 .5 0 ( 0 .2 1 7 )
4 . 5 0 ( 0 . 1 7 7 )
( 2 P L C S .)
3. 5 5 ( 0 .1 3 9 )
3 . 6 5 ( 0 . 14 4 )
2 . 20 ( 0 .0 8 7 )
M A X .
1 . 0 0 ( 0 .0 3 9 )
1 . 4 0 ( 0 . 0 5 6 )
0 . 4 0 ( 0 . 2 1 3 )
0 .8 0 ( 0. 0 3 2 )
4 . 7 0 ( 0 .1 8 5 )
5 . 3 0 ( 0 .2 0 9 )
1 . 5 ( 0 . 0 5 9 )
2 . 5 ( 0 . 09 8 )
2 . 4 0 ( 0 . 0 9 5 )
M A X .
1 0 .8 6 ( 0 . 4 2 7 )
1 0 . 9 4 ( 0 . 4 3 0 )
2 0 . 30 ( 0 .8 0 0 )
1 9 . 70 ( 0 .7 7 5 )
D IA .
1
2
3
2
BASE
COMMON
CATHODE
1
2
3
ANODE
COMMON
CATHODE
ANODE
1
2
TO-247AC
This center tap Schottky rectifier has been optimized for ultra
low forward voltage drop specifically for 3.3V output power
supplies. The proprietary barrier technology allows for reliable
operation up to 150 C junction temperature. Typical
applications are in parallel switching power supplies,
converters, reverse battery protection, and redundant power
subsystems.
150 C T
J
operation
Center tap configuration
Optimized for 3.3V application
Ultra low forward voltage drop
High frequency operation
Guard ring for enhanced ruggedness and long term
reliability
High purity, high temperature epoxy encapsulation for
enhanced mechanical strength and moisture resistance
80CPQ020
PD-20711 rev. B 11/99
2
Part number
80CPQ020
V
R
Max. DC Reverse Voltage (V)
20
Voltage Ratings
V
FM
Max. Forward Voltage Drop
0.46
V
@ 40A
(Per Leg)
(1)
0.55
V
@ 80A
0.36
V
@ 40A
0.46
V
@ 80A
0.32
V
@ 40A
0.43
V
@ 80A
I
RM
Max. Reverse Leakage Current
5.5
mA
T
J
= 25 C
(Per Leg)
(1)
1100
mA
T
J
= 125 C
110
mA
T
J
= 125 C
V
R
= 5V
600
mA
T
J
= 150 C
V
R
= 10V
V
F(TO)
Threshold Voltage
0.185
V
T
J
= T
J
max.
r
t
Forward Slope Resistance
3.2
m
C
T
Max. Junction Capacitance (Per Leg)
6500
pF
V
R
= 5V
DC
, (test signal range 100Khz to 1Mhz) 25C
L
S
Typical Series Inductance (Per Leg)
7.5
nH
Measured lead to lead 5mm from package body
dv/dt Max. Voltage Rate of Change
10,000
V/ s
(Rated V
R
)
T
J
Max. Junction Temperature Range
-55 to 150
C
T
stg
Max. Storage Temperature Range
-55 to 150
C
R
thJC
Max. Thermal Resistance Junction
0.6
C/W
DC operation
to Case (Per Leg)
R
thJC
Max. Thermal Resistance Junction
0.3
C/W
DC operation
to Case (Per Package)
R
thCS
Typical Thermal Resistance, Case
0.25
C/W
Mounting surface , smooth and greased
to Heatsink
wt
Approximate Weight
6 (0.21)
g (oz.)
T
Mounting Torque
Min.
6 (5)
Max.
12 (10)
Case Style
TO-247AC(TO-3P) JEDEC
Thermal-Mechanical Specifications
Kg-cm
(Ibf-in)
T
J
= 25 C
T
J
= 125 C
Electrical Specifications
(1) Pulse Width < 300s, Duty Cycle <2%
V
R
= rated V
R
Absolute Maximum Ratings
Parameters
Values
Units
Conditions
I
F(AV)
Max. Average Forward
(Per Leg)
80
A
50% duty cycle @ T
C
= 138C, rectangular wave form
Current
(Per Device)
40
I
FSM
Max. Peak One Cycle Non-Repetitive
2200
5s Sine or 3s Rect. pulse
Surge Current (Per Leg)
500
10ms Sine or 6ms Rect. pulse
E
AS
Non-Repetitive Avalanche Energy
27
mJ
T
J
= 25 C, I
AS
= 6 Amps, L = 1.5 mH
(Per Leg)
I
AR
Repetitive Avalanche Current
6
A
Current decaying linearly to zero in 1 sec
(Per Leg)
Frequency limited by T
J
max. V
A
= 1.5 x V
R
typical
A
Parameters
Values
Units
Conditions
T
J
= 150 C
Parameters
Values
Units
Conditions
Following any rated
load condition and with
rated V
RRM
applied
80CPQ020
PD-20711 rev. B 11/99
3
Fig. 2 - Typical Values Of Reverse Current
Vs. Reverse Voltage (Per Leg)
Fig. 3 - Typical Junction Capacitance
Vs. Reverse Voltage (Per Leg)
Fig. 4 - Max. Thermal Impedance Z
thJC
Characteristics (Per Leg)
Fig. 1 - Max. Forward Voltage Drop Characteristics
(Per Leg)
1
1 0
1 0 0
1 0 0 0
0
0 .2
0 .4
0 .6
0 .8
1
1 .2
F
F M
T = 1 5 0 C
T = 1 2 5 C
T = 2 5 C
J
J
J
Fo rw a rd V o lt a g e D r o p - V ( V )
I
n
s
t
a
n
t
a
n
e
o
u
s

F
o
rw
a
r
d
C
u
rre
n
t
-

I
(
A
)
0 .0 1
0 . 1
1
1 0
1 0 0
1 0 0 0
1 0 0 0 0
0
4
8
1 2
1 6
2 0
R
R
1 2 5 C
1 0 0 C
7 5 C
5 0 C
2 5 C
R
e
v
e
rs
e
C
u
rre
n
t

-
I

(
m
A
)
R e v e rse V o lt a g e - V ( V )
T = 1 5 0 C
J
1 0 0 0
1 0 0 0 0
0
5
1 0
1 5
2 0
2 5
R
T
J
u
n
c
ti
o
n
C
a
p
a
c
i
ta
n
c
e
-

C

(
p
F
)
R e v e rse V o lta g e - V ( V )
T = 2 5 C
J
0 . 0 1
0 . 1
1
0 . 0 0 0 0 1
0 . 0 0 0 1
0 . 0 0 1
0 . 0 1
0 . 1
1
1 0
th
J
C
t , R ecta ngu lar Pulse Du ra tio n (Seco nd s)
Sing le Pu lse
(Ther m al Res istan c e)
1
T
h
e
r
m
a
l

I
m
p
e
d
a
n
c
e
Z

(

C
/
W
)
N o t e s:
1 . D u ty f ac t o r D = t / t
2 . P e a k T = P x Z + T
1
2
J
thJ C
C
DM
D = 0 .75
D = 0 .50
D = 0 .33
D = 0 .25
D = 0 .2 0
2
t
1
t
P
D M
80CPQ020
PD-20711 rev. B 11/99
4
Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)
Fig. 5 - Max. Allowable Case Temperature
Vs. Average Forward Current (Per Leg)
Fig. 8 - Unclamped Inductive Test Circuit
Fig. 6 - Forward Power Loss Characteristics
(Per Leg)
FR E E - W H E E L
D IO D E
40 HFL4 0 S02
C U R R E N T
M O N IT O R
H IG H - SP E E D
SW IT C H
IRFP4 60
L
D U T
Rg = 25 ohm
V d = 2 5 V o lt
+
(2) Formula used: T
C
= T
J
- (Pd + Pd
REV
) x R
thJC
;
Pd = Forward Power Loss = I
F(AV)
x V
FM
@ (I
F(AV)
/
D) (see Fig. 6);
Pd
REV
= Inverse Power Loss = V
R1
x I
R
(1 - D); I
R
@ V
R1
= 10V
0
5
1 0
1 5
2 0
2 5
0
1 0
2 0
3 0
4 0
5 0
6 0
D C
A
v
e
r
a
g
e

P
o
w
e
r
L
o
ss -

(
W
a
t
t
s
)
F (A V)
R M S L im it
D = 0 .2 0
D = 0 .2 5
D = 0 .3 3
D = 0 .5 0
D = 0 .7 5
A v e ra g e F o r w a rd C u rre n t - I ( A )
10 0
1 0 00
10 0 00
1 0
10 0
1 00 0
10 0 00
FS
M
No
n
-
R
e
p
e
ti
ti
v
e
S
u
r
g
e

C
u
r
r
e
n
t -
I


(
A
)
p
A t A n y R a te d L o a d C o n d it io n
A n d W it h Ra t e d V A p p lie d
Fo llo w in g Su r g e
RRM
S q u a re W a v e P ulse D u ra t io n - t ( m ic ro se c )
1 2 0
1 2 5
1 3 0
1 3 5
1 4 0
1 4 5
1 5 0
0
1 0
2 0
3 0
4 0
5 0
6 0
D C
A
l
l
o
w
a
b
l
e
C
a
s
e
T
e
m
p
er
a
t
u
r
e
-

(

C
)
F (A V)
s ee no te (2 )
A v e ra g e F o r w a rd C u rre n t - I ( A )
S q u a re w a v e ( D = 0 .5 0 )
1 0 V a p p lie d
80CPQ020
PD-20711 rev. B 11/99
5
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 U.S.A. Tel: (310) 322 3331. Fax: (310) 322 3332.
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, U.K. Tel: ++ 44 1883 732020. Fax: ++ 44 1883 733408.
IR CANADA: 15 Lincoln Court, Brampton, Markham, Ontario L6T3Z2. Tel: (905) 453 2200. Fax: (905) 475 8801.
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg. Tel: ++ 49 6172 96590. Fax: ++ 49 6172 965933.
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino. Tel: ++ 39 11 4510111. Fax: ++ 39 11 4510220.
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171. Tel: 81 3 3983 0086.
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower,13-11, Singapore 237994. Tel: ++ 65 838 4630.
IR TAIWAN: 16 Fl. Suite D.207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan. Tel: 886 2 2377 9936.
http://www.irf.com
Fax-On-Demand: +44 1883 733420 Data and specifications subject to change without notice.
This model
***************************************************
This model has been developed by
Wizard SPICE MODEL GENERATOR (1999)
( International Rectifier Corporation )
contains Proprietary Information
***************************************************
SPICE Model Diode is composed by a
simple diode plus paralled VCG2T
***************************************************
.SUBCKT 80CPQ20 ANO CAT
D1 ANO 1 DMOD (0.24404)
*Define diode model
. MODEL DMOD D ( IS=1.94526715293228E-04A, N=1.08257328308575, BV=24V,
+ IBV=0.180500335087473A,RS= 0.0002879672,CJO=7.1186179026719E-08,
+VJ=0.647017772282128,XTI=2, EG=0.696457884628633)
*****************************************************
* Implementation of VCG2T
VX 1 2 DC 0V
R1 2 CAT TRES 1E-6
.MODEL TRES RES (R=1, TC1=5.05442614166715)
GP1 ANO CAT VALUE= {-ABS (I(VX)) *(EXP((((-2.336086E-03/
5.054426)*((V(2,CAT)*1E6) / (I(VX)+1E-6)-1))+1)*0.1610795*ABS(V(ANO,CAT)))-1)}
*****************************************************
.ENDS 80CPQ20
Thermal Model Subcircuit
.SUBCKT 80CPQ20T 5 1
CTHERM1
5
4
1.10E-2
CTHERM2
4
3
1.38E-2
CTHERM3
3
2
1.36E-1
CTHERM4
2
1
1.86E+2
RTHERM1
5
4
9.27E-2
RTHERM2
4
3
7.39E-2
RTHERM3
3
2
2.54E-1
RTHERM4
2
1
1.12E-5
.ENDS 80CPQ20T