ChipFind - документация

Электронный компонент: GA250TD120U

Скачать:  PDF   ZIP
4/24/2000
GA250TD120U
"HALF-BRIDGE" IGBT DOUBLE INT-A-PAK
Features
Parameter
Typ.
Max.
Units
R
JC
Thermal Resistance, Junction-to-Case - IGBT
--
0.10
R
JC
Thermal Resistance, Junction-to-Case - Diode
--
0.20
C/W
R
CS
Thermal Resistance, Case-to-Sink - Module
0.1
--
Mounting Torque, Case-to-Heatsink
--
4.0
N m
Mounting Torque, Case-to-Terminal 1, 2 & 3
S
--
3.0
Weight of Module
400
--
g
Thermal / Mechanical Characteristics
Absolute Maximum Ratings
Parameter
Max.
Units
V
CES
Collector-to-Emitter Voltage
1200
V
I
C
@ T
C
= 25C
Continuous Collector Current
250
I
CM
Pulsed Collector Current
Q
500
A
I
LM
Peak Switching Current
R
500
I
FM
Peak Diode Forward Current
500
V
GE
Gate-to-Emitter Voltage
20
V
V
ISOL
RMS Isolation Voltage, Any Terminal To Case, t = 1 min
2500
P
D
@ T
C
= 25C
Maximum Power Dissipation
1250
W
P
D
@ T
C
= 85C
Maximum Power Dissipation
650
T
J
Operating Junction Temperature Range
-40 to +150
C
T
STG
Storage Temperature Range
-40 to +125
Standard: Optimized for minimum saturation
voltage and operating frequencies up to 10kHz
Very low conduction and switching losses
HEXFRED
TM
antiparallel diodes with ultra- soft
recovery
Industry standard package
UL approved
Benefits
Increased operating efficiency
Direct mounting to heatsink
Performance optimized for power conversion: UPS,
SMPS, Welding
Lower EMI, requires less snubbing
PD - 50054A
Generation 4 IGBT technology
.
www.irf.com
1
Ultra-Fast
TM
Speed IGBT
V
CES
=
1200
V
V
CE
(on) typ.
= 2.4V
@V
GE
=
15V
,
I
C
=
250A
V
CES
=
1200
V
GA250TD120U
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
Q
g
Total Gate Charge (turn-on)
--
1979 2968
V
CC
= 400V, V
GE
= 15V
Q
ge
Gate - Emitter Charge (turn-on)
--
334
501
nC
I
C
= 297A
Q
gc
Gate - Collector Charge (turn-on)
--
655
983
T
J
= 25C
t
d(on)
Turn-On Delay Time
--
731
--
R
G1
= 15
, R
G2
= 0
t
r
Rise Time
--
227
--
ns
I
C
= 250A
t
d(off)
Turn-Off Delay Time
--
653
--
V
CC =
720V
t
f
Fall Time
--
343
--
V
GE
= 15V
E
on
Turn-On Switching Energy
--
54
--
mJ
See Fig.17 through Fig.21
E
off
Turn-Off Switching Energy
--
54
--
E
ts
Total Switching Energy
--
108
162
C
ies
Input Capacitance
--
44517
--
V
GE
= 0V
C
oes
Output Capacitance
--
1979
--
pF
V
CC
= 30V
C
res
Reverse Transfer Capacitance
--
383
--
= 1 MHz
t
rr
Diode Reverse Recovery Time
--
214
--
ns
I
C
= 250A
I
rr
Diode Peak ReverseCurrent
--
155
--
A
R
G1
= 15
Q
r r
Diode Recovery Charge
--
16540 --
nC
R
G2
= 0
di
(rec)
M
/dt
Diode Peak Rate of Fall of Recovery
--
1970
--
A/s
V
CC =
720V
During t
b
di/dt=1368A/s
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage 1200
--
--
V
GE
= 0V, I
C
= 1mA
V
CE(on)
Collector-to-Emitter Voltage
--
2.4
2.9
V
GE
= 15V, I
C
= 250A
--
2.1
--
V
V
GE
= 15V, I
C
= 250A, T
J
= 125C
V
GE(th)
Gate Threshold Voltage
3.0
--
6.0
V
CE
= 6V, I
C
= 3 mA
V
GE(th)
/
T
J
Temperature Coeff. of Threshold Voltage --
-11
--
mV/C V
CE
= 6V, I
C
= 3mA
g
fe
Forward Transconductance
T
--
323
--
S
V
CE
= 25V, I
C
= 250A
I
CES
Collector-to-Emitter Leaking Current
--
--
2.0
mA
V
GE
= 0V, V
CE
= 1200V
--
--
20
V
GE
= 0V, V
CE
= 1200V, T
J
= 125C
V
FM
Diode Forward Voltage - Maximum
--
3.0
4.0
V
I
F
= 250A, V
GE
= 0V
--
2.9
--
I
F
= 250A, V
GE
= 0V, T
J
= 125C
I
GES
Gate-to-Emitter Leakage Current
--
--
500
nA
V
GE
= 20V
Dynamic Characteristics - T
J
= 125C (unless otherwise specified)
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
Details of note
Q
through
T
are on the last page
GA250TD120U
www.irf.com
3
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = I
RMS
of fundamental)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
10
100
1000
1.0
1.5
2.0
2.5
3.0
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
CE
C
V = 15V
80s PULSE WIDTH
GE
T = 125 C
J
T = 25 C
J
1
10
100
1000
5.0
6.0
7.0
8.0
V , Gate-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
GE
C
V = 25V
80s PULSE WIDTH
CE
T = 25 C
J
T = 125 C
J
0.1
1
10
100
0
20
40
60
80
100
120
140
f, Frequency (KHz)
LOAD CURRENT (A)
F o r b o th :
D u ty c y c le : 5 0 %
T = 1 2 5 C
T = 9 0 C
G a te d riv e a s s p e c ifie d
sink
J
P o w e r D is s ip a tio n = W
60 % of ra ted
vo ltag e
I
Id e a l d io d e s
S q u a re w a v e :
175
GA250TD120U
4
www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
25
50
75
100
125
150
0
50
100
150
200
250
300
T , Case Temperature ( C)
Maximum DC Collector Current(A)
C
-60 -40 -20
0
20
40
60
80 100 120 140 160
1.0
2.0
3.0
4.0
T , Junction Temperature ( C)
V , Collector-to-Emitter Voltage(V)
J
CE
V = 15V
80 us PULSE WIDTH
GE
I = A
500
C
I = A
250
C
I = A
125
C
0 . 0 1
0 . 1
1
0 . 0 0 0 1
0 . 0 0 1
0 . 0 1
0 . 1
1
1 0
1
th
J
C
D = 0.5 0
0.0 1
0.0 2
0 .05
0.10
0.2 0
SING L E PU LS E
(T H ER M A L RE SP O N SE )
T
h
e
r
m
a
l
R
e
sp
o
n
se
(
Z



)
t , R ectangu la r P ulse Du ra tion (se c)
A
P
t
2
1
t
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1
2
J
DM
thJC
C
GA250TD120U
www.irf.com
5
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
R
G
, Gate Resistance
( )
0
500
1000
1500
2000
2500
0
5
10
15
20
Q , Total Gate Charge (nC)
V , Gate-to-Emitter Voltage (V)
G
GE
V
= 400V
I
= 297A
CC
C
0
10
20
30
40
50
80
100
120
140
160
180
200
R , Gate Resistance (Ohm)
Total Switching Losses (mJ)
G
V = 720V
V = 15V
T = 25 C
I = 250A
CC
GE
J
C
15
125
1
10
100
0
20000
40000
60000
80000
V , Collector-to-Emitter Voltage (V)
C, Capacitance (pF)
CE
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GE
ies
ge
gc ,
ce
res
gc
oes
ce
gc
Cies
Coes
Cres
-60 -40 -20
0
20
40
60
80 100 120 140 160
10
100
1000
T , Junction Temperature ( C )
Total Switching Losses (mJ)
J
R = 15Ohm
V = 15V
V = 720V
G
GE
CC
I = A
500
C
I = A
250
C
I = A
125
C
R
G1
=15
;R
G2
= 0
(
)
( C)