ChipFind - документация

Электронный компонент: GA300TD60U

Скачать:  PDF   ZIP
05/14/02
GA300TD60U
"HALF-BRIDGE" IGBT DUAL INT-A-PAK
Features
V
CES
=
600
V
V
CE
(on) typ.
= 1.80V
@V
GE
=
15V
,
I
C
=
300A
Parameter
Typ.
Max.
Units
R
JC
Thermal Resistance, Junction-to-Case - IGBT
--
0.14
R
JC
Thermal Resistance, Junction-to-Case - Diode
--
0.20
C/W
R
CS
Thermal Resistance, Case-to-Sink - Module
0.1
--
Mounting Torque, Case-to-Heatsink
S
--
6.0
N m
Mounting Torque, Case-to-Terminal 1, 2 & 3
S
--
5.0
Weight of Module
400
--
g
Thermal / Mechanical Characteristics
Ultra-Fast
TM
Speed IGBT
Absolute Maximum Ratings
Parameter
Max.
Units
V
CES
Collector-to-Emitter Voltage
600
V
I
C
@ T
C
= 25C
Continuous Collector Current
300
I
CM
Pulsed Collector Current
600
A
I
LM
Peak Switching Current,
600
I
FM
Peak Diode Forward Current
600
V
GE
Gate-to-Emitter Voltage
20
V
V
ISOL
RMS Isolation Voltage, Any Terminal To Case, t = 1 min
2500
P
D
@ T
C
= 25C
Maximum Power Dissipation
880
W
P
D
@ T
C
= 85C
Maximum Power Dissipation
460
T
J
Operating Junction Temperature Range
-40 to +150
C
T
STG
Storage Temperature Range
-40 to +125
UltraFast: Optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
Very low conduction and switching losses
HEXFRED
TM
antiparallel diodes with ultra- soft
recovery
Industry standard package
UL approved
Benefits
Increased operating efficiency
Direct mounting to heatsink
Performance optimized for power conversion: UPS,
SMPS, Welding
Lower EMI, requires less snubbing
Generation 4 IGBT technology
.
www.irf.com
1
PD -50057E
GA300TD60U
2
www.irf.com
Parameter
Min. Typ. Max. Units
Conditions
Q
g
Total Gate Charge (turn-on)
--
1249 1873
V
CC
= 400V
Q
ge
Gate - Emitter Charge (turn-on)
--
173
260
nC
I
C
= 187A
Q
gc
Gate - Collector Charge (turn-on)
--
423
635
T
J
= 25C
t
d(on)
Turn-On Delay Time
--
645
--
R
G1
= 27
, R
G2
= 0
,
t
r
Rise Time
--
282
--
ns
I
C
= 300A
t
d(off)
Turn-Off Delay Time
--
418
--
V
CC =
360V
t
f
Fall Time
--
220
--
V
GE
= 15V
E
on
Turn-On Switching Energy
--
22
--
mJ
See Fig.17 through Fig.19
E
off
Turn-Off Switching Energy
--
25
--
E
ts
Total Switching Energy
--
47
60
C
ies
Input Capacitance
--
27755
--
V
GE
= 0V
C
oes
Output Capacitance
--
1735
--
pF
V
CC
= 30V
C
res
Reverse Transfer Capacitance
--
361
--
= 1 MHz
t
rr
Diode Reverse Recovery Time
--
200
--
ns
I
C
= 300A
I
rr
Diode Peak ReverseCurrent
--
128
--
A
R
G1
= 27
Q
rr
Diode Recovery Charge
--
12771
--
nC
R
G2
= 0
di
(rec)
M
/dt
Diode Peak Rate of Fall of Recovery
--
1691
--
A/s
V
CC =
360V
During t
b
di/dt =1300A/s
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage
600
--
--
V
GE
= 0V, I
C
= 1mA
V
CE(on)
Collector-to-Emitter Voltage
--
1.8
2.3
V
GE
= 15V, I
C
= 300A
--
1.9
--
V
V
GE
= 15V, I
C
= 300A, T
J
= 125C
V
GE(th)
Gate Threshold Voltage
3.0
--
6.0
I
C
= 1.75mA
V
GE(th)
/
T
J
Temperature Coeff. of Threshold Voltage
--
-11
--
mV/C V
CE
= V
GE
, I
C
= 1.75mA
g
fe
Forward Transconductance ,,
--
269
--
S
V
CE
= 25V, I
C
= 300A
I
CES
Collector-to-Emitter Leaking Current
--
--
1.0
mA
V
GE
= 0V, V
CE
= 600V
--
--
10
V
GE
= 0V, V
CE
= 600V, T
J
= 125C
V
FM
Diode Forward Voltage - Maximum
--
3.3
--
V
I
F
= 300A, V
GE
= 0V
--
3.2
--
I
F
= 300A, V
GE
= 0V, T
J
= 125C
I
GES
Gate-to-Emitter Leakage Current
--
--
400
nA
V
GE
= 20V
Dynamic Characteristics - T
J
= 125C (unless otherwise specified)
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
GA300TD60U
www.irf.com
3
0.1
1
10
100
0
40
80
120
160
200
f, Frequency (KHz)
LOAD CURRENT (A)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = I
RMS
of fundamental)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
For both:
D uty cy cle : 5 0 %
T = 12 5 C
T = 90 C
G a te d rive a s sp e cifie d
s in k
J
P ow e r Dis sip ation = W
60 % of ra ted
vo ltag e
I
Id e a l d io d e s
S q u a re w a v e :
150
10
100
1000
0.5
1.0
1.5
2.0
2.5
3.0
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
CE
C
V = 15V
80s PULSE WIDTH
GE
T = 25 C
J
T = 125 C
J
10
100
1000
5.0
6.0
7.0
8.0
9.0
V , Gate-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
GE
C
V = 25V
80s PULSE WIDTH
CE
T = 25 C
J
T = 125 C
J
GA300TD60U
4
www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
-60 -40 -20
0
20
40
60
80 100 120 140 160
1.0
2.0
3.0
T , Junction Temperature ( C)
V , Collector-to-Emitter Voltage(V)
J
CE
V = 15V
80 us PULSE WIDTH
GE
I = A
600
C
I = A
300
C
I = A
150
C
25
50
75
100
125
150
0
100
200
300
400
T , Case Temperature ( C)
Maximum DC Collector Current(A)
C
0 . 0 1
0 . 1
1
0 . 0 0 0 1
0 . 0 0 1
0 . 0 1
0 . 1
1
1 0
1 0 0
1 0 0 0
1
th
J
C
t , R e cta n g u la r P u lse D u ra tio n (S e co n ds )
D = 0.5 0
S in g le P u ls e
(T h e r m a l R e sista n c e )
0.0 1
0 .0 2
0.0 5
0 .1 0
0 .2 0
T
her
m
a
l
I
m
pedanc
e -
Z
P
t2
1
t
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1
2
J
DM
thJC
C
GA300TD60U
www.irf.com
5
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
-60 -40 -20
0
20
40
60
80 100 120 140 160
10
100
1000
T , Junction Temperature ( C )
Total Switching Losses (mJ)
J
R = Ohm
V = 15V
V = 360V
G
GE
CC
I = A
600
C
I = A
300
C
I = A
150
C
R
G1
=27
;R
G2
= 0
0
200
400
600
800
1000
1200
1400
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Emitter Voltage (V)
G
GE
V
= 400V
I
= 187A
CC
C
1
10
100
0
10000
20000
30000
40000
50000
V , Collector-to-Emitter Voltage (V)
C, Capacitance (pF)
CE
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GE
ies
ge
gc ,
ce
res
gc
oes
ce
gc
Cres
Coes
Cies
0
10
20
30
40
50
30
40
50
60
70
R , Gate Resistance (Ohm)
Total Switching Losses (mJ)
G
V = 360V
V = 15V
T = 125 C
I = 300A
CC
GE
J
C
R
G
, Gate Resistance
( )
125C
GA300TD60U
6
www.irf.com
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Reverse Bias SOA
Fig. 13 - Typical Forward Voltage Drop vs.
Instantaneous Forward Current
Fig. 14 - Typical Stored Charge vs. di
f
/dt
0
100
200
300
400
500
600
0
20
40
60
80
100
120
I , Collector-to-emitter Current (A)
Total Switching Losses (mJ)
C
R = Ohm
T = 125 C
V = 360V
V = 15V
G
J
CC
GE
R
G1
=27
;R
G2
= 0
0
2 0 0
4 0 0
6 0 0
8 0 0
0
2 0 0
4 0 0
6 0 0
8 0 0
C E
SAFE OPER AT IN G AR EA
V = 20V
T = 125C
G E
J
V , Collector-to-Em itter V oltage (V)
A
I
C
, Collector-to-Emitter Current ( A )
V
CE
measured at terminal (Peak Voltage)
10
100
1000
1.0
2.0
3.0
4.0
5.0
FM
F
I
n
s
t
ant
ane
ous
F
o
r
w
ar
d C
u
r
r
ent
-

I
(
A
)
F o rwa rd V o lta g e D ro p - V (V )
T = 1 2 5 C
T = 2 5 C
J
J
0
5 0 0 0
1 0 0 0 0
1 5 0 0 0
2 0 0 0 0
2 5 0 0 0
5 0 0
1 0 0 0
1 5 0 0
2 0 0 0
f
d i /dt - (A /s)
RR
Q
-
(
n
C
)
I = 6 00 A
I = 30 0A
I = 15 0A
F
F
F
R
J
J
V = 36 0 V
T = 12 5 C
T = 25 C
GA300TD60U
www.irf.com
7
Fig. 15 - Typical Reverse Recovery vs. di
f
/dt
Fig. 16 - Typical Recovery Current vs. di
f
/dt
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
5 0 0
1 0 0 0
1 5 0 0
2 0 0 0
f
d i /d t - (A / s)
t
-
(
n
s
)
rr
I = 60 0A
I = 15 0 A
I = 3 00 A
F
F
F
R
J
J
V = 36 0 V
T = 12 5 C
T = 25 C
0
5 0
1 0 0
1 5 0
2 0 0
2 5 0
5 0 0
1 0 0 0
1 5 0 0
2 0 0 0
f
d i /d t - (A / s )
I
-
(
A
)
IR
R
M
I = 60 0A
I = 30 0A
I = 1 5 0A
F
F
F
R
J
J
V = 3 6 0 V
T = 1 2 5 C
T = 2 5 C
GA300TD60U
8
www.irf.com
t1
Ic
V c e
t1
t2
9 0 % Ic
1 0 % V c e
td (o ff)
tf
Ic
5 % Ic
t1 + 5 S
V c e ic d t
9 0 % V g e
+ V g e
E o f f =
Fig. 17b -
Test Waveforms for Circuit of Fig. 18a, Defining
E
off
, t
d(off)
, t
f
V ce ie d t
t2
t1
5 % V c e
Ic
Ip k
V c c
1 0 % Ic
V c e
t1
t2
D U T V O L T A G E
A N D C U R R E N T
G A T E V O L T A G E D .U .T .
+ V g
1 0 % +V g
9 0 % Ic
tr
td (o n )
D IO D E R E V E R S E
R E C O V E R Y E N E R G Y
tx
E o n =
E re c =
t4
t3
V d id d t
t4
t3
D IO D E R E C O V E R Y
W A V E F O R M S
Ic
V p k
1 0 % V c c
Irr
1 0 % Irr
V cc
trr
Q rr =
trr
tx
id d t
Fig. 17a -
Test Circuit for Measurement of
I
LM
, E
on
, E
off(diode)
, t
rr
, Q
rr
, I
rr
, t
d(on)
, t
r
, t
d(off)
, t
f
Fig. 17c -
Test Waveforms for Circuit of Fig. 18a,
Defining E
on
, t
d(on)
, t
r
Fig. 17d -
Test Waveforms for Circuit of Fig. 18a,
Defining E
rec
, t
rr
, Q
rr
, I
rr
Vd Ic dt
Vce Ic dt
Ic dt
Vce Ic dt
GA300TD60U
www.irf.com
9
V g
G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
D . U . T .
V *
c
5 0 V
L
1 0 0 0 V
6 0 0 0 F
1 0 0 V
Figure 18. Clamped Inductive Load Test Circuit
Figure 19. Pulsed Collector Current
Test Circuit
R
L
=
480V
4 X I
C
@25C
0 - 480V
Figure 17e. Macro Waveforms for
Figure 17a's
Test Circuit
GA300TD60U
10
www.irf.com
Case Outline -- DUAL INT-A-PAK
Notes:
Q
Repetitive rating; V
GE
= 20V, pulse width limited by
max. junction temperature.
R
See fig. 17
S
For screws M6.
T
Pulse width 80s; single shot.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/02
104.50
103.50
[
4.114
4.075
]
5.50
4.50
[
.217
.177
]
1
2
3
8
9
10
11
4
5
6
7
8.00
6.60
[
.315
.260
]
24.00
23.00
[
.945
.906
]
28.60
27.40
[
1.126
1.079
]
2X
93.30
92.70
[
3.673
3.650
]
107.30
106.30
[
4.224
4.185
]
15.59
14.39
[
.614
.567
]
6.60
5.40
[
.260
.213
]
4X
2X
48.50
47.50
[
1.909
1.870
]
48.30
47.70
[
1.902
1.878
]
3X M6
8 [.314]
MAX.
4X
6.80
6.20
[
.267
.244
]
0.15 [.0059] CONVEX
59.50
58.50
[
2.343
2.303
]
62.70
61.70
[
2.468
2.429
]
31.00
29.60
[
1.220
1.165
]
2. CONT ROLLING DIMENS ION: MILLIMETER.
1. ALL DIMENS IONS ARE SHOWN IN MILLIMET ERS [INCHES ].
NOT ES:
4X FAS T ON TAB (110)
2.8 x 0.5 [.110 x .020]