IGBT PIM MODULE
GB25RF120K
PD - 94552
1
www.irf.com
Features
Low VCE (on) Non Punch Through IGBT Technology
Low Diode VF
10s Short Circuit Capability
Square RBSOA
HEXFRED Antiparallel Diode with Ultrasoft Diode
Reverse Recovery Characteristics
Positive VCE (on) Temperature Coefficient
Ceramic DBC Substrate
Low Stray Inductance Design
Benefits
Benchmark Efficiency for Motor Control
Rugged Transient Performance
Low EMI, Requires Less Snubbing
Direct Mounting to Heatsink
PCB Solderable Terminals
Low Junction to Case Thermal Resistance
UL Listed
ECONO2 PIM
V
CES
= 1200V
I
C
= 25A, T
C
=80C
t
sc
> 10s, T
J
=150C
V
CE(on)
typ. = 2.40V
10/17/02
Absolute Maximum Ratings (T
J
=25C, unless otherwise indicated)
Parameter
Symbol
Test Conditions
Ratings
Units
Inverter
Collector-to-Emitter Voltage
V
CES
1200
V
Gate-to-Emitter Voltage
V
GES
20
Collector Current
I
C
Continuous
25C / 80C
40 / 25
I
CM
25C
80
A
Diode Maximum Forward Current
I
FM
d
25C
80
Power Dissipation
P
D
1 device
25C
198
W
Input
Repetitive Peak Reverse Voltage
V
RRM
1600
V
Rectifier
Average Output Current
I
F(AV)
50/60Hz sine pulse
80C
20
A
Surge Current (Non Repetitive)
I
FSM
250
I
2
t (Non Repetitive)
I
2
t
316
A
2
s
Brake
Collector-to-Emitter Voltage
V
CES
1200
V
Gate-to-Emitter Voltage
V
GES
20
Collector Current
I
C
Continuous
25C / 80C
25 / 15
A
I
CM
25C
50
Power Dissipation
P
D
1 device
25C
104
W
Repetitive Peak Reverse Voltage
V
RRM
1200
V
Maximum Operating Junction Temperature
T
J
--
--
150
C
Storage Temperature Range
T
STG
--
--
-40 to +125
Isolation Voltage
V
ISOL
2500
V
Thermal and Mechanical Characteristics
Parameter
Symbol
Min
Typical
Maximum
Units
Junction-to-Case Inverter IGBT Thermal Resistance
--
--
0.63
C/W
Junction-to-Case Inverter FRED Thermal Resistance
--
--
1.0
Junction-to-Case Brake IGBT Thermal Resistance
R
THJC
--
--
1.2
Junction-to-Case Brake Diode Thermal Resistance
--
--
2.3
Junction-to-Case Input Rectifier Thermal Resistance
--
--
0.85
Mounting Torque (M5)
2.7
--
3.3
Nm
Rated V
RRM
applied, 10ms,
sine pulse
AC(1min.)
GB25RF120K
2
www.irf.com
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Inverter
BV
CES
Collector-to-Emitter Breakdown Voltage
1200
--
--
V
V
GE
= 0V, I
C
= 500A
IGBT
V
(BR)CES
/
T
J
Temperature Coeff. of Breakdown Voltage
--
1.0
--
V/C
V
GE
= 0V, I
C
= 1mA (25C-125C)
V
CE(on)
Collector-to-Emitter Voltage
--
2.40
2.70
V
I
C
= 25A, V
GE
= 15V
1,2
--
2.95
3.30
I
C
= 40A, V
GE
= 15V
4,5
--
2.85
--
I
C
= 25A, V
GE
= 15V, T
J
= 125C
--
3.55
--
I
C
= 40A, V
GE
= 15V, T
J
= 125C
V
GE(th)
Gate Threshold Voltage
4.0
5.0
6.0
V
CE
= V
GE
, I
C
= 250A
3,4,5
V
GE(th)
Threshold Voltage temp. coefficient
--
-10
--
mV/C V
CE
= V
GE
, I
C
= 1mA (25C-125C)
I
CES
Zero Gate Voltage Collector Current
--
11
100
A
V
GE
= 0V, V
CE
= 1200V
--
750
--
V
GE
= 0V, V
CE
= 1200V, T
J
= 125C
I
GES
Gate-to-Emitter Leakage Current
--
--
200
nA
V
GE
= 20V
Q
g
Total Gate Charge (turn-on)
--
175
265
I
C
= 25A
7
Q
ge
Gate-to-Emitter Charge (turn-on)
--
17.5
30
nC
V
CC
= 400V
CT1
Q
gc
Gate-to-Collector Charge (turn-on)
--
81
125
V
GE
= 15V
E
on
Turn-On Switching Loss
--
2450
4450
I
C
= 25A, V
CC
= 600V
CT4
E
off
Turn-Off Switching Loss
--
2050
3200
J
V
GE
= 15V, R
G
= 10
, L = 400H
E
tot
Total Switching Loss
--
4500
7650
T
J
= 25C
e
E
on
Turn-On Switching Loss
--
3350
5650
I
C
= 25A, V
CC
= 600V
9,11
E
off
Turn-Off Switching Loss
--
2850
3850
J
V
GE
= 15V, R
G
= 10
, L = 400H
CT4
E
tot
Total Switching Loss
--
6200
9500
T
J
= 125C
e
WF1,2
t
d(on)
Turn-On delay time
--
80
104
I
C
= 25A, V
CC
= 600V
10,12
t
r
Rise time
--
50
70
ns
V
GE
= 15V, R
G
= 10
, L = 400H
CT4
t
d(off)
Turn-Off delay time
--
510
1000
T
J
= 125C
WF1
t
f
Fall time
--
230
299
WF2
C
ies
Input Capacitance
--
2370
--
V
GE
= 0V
C
oes
Output Capacitance
--
455
--
pF
V
CC
= 30V
6
C
res
Reverse Transfer Capacitance
--
60
--
f = 1.0Mhz
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
T
J
= 150C, I
C
= 80A
CT2
R
G
= 10
, V
GE
= +15V to 0V
T
J
= 150C
CT3
SCSOA
Short Circuit Safe Operating Area
10
--
--
s
V
CC
= 900V, V
P
= 1200V
WF4
R
G
= 10
, V
GE
= +15V to 0V
Inverter
T
J
= 125C
13,14,15
FRED
I
rr
Diode Peak Reverse Recovery Current
--
35
--
A
V
CC
= 600V, I
F
= 25A, L = 400H
CT4
V
GE
= 15V, R
G
= 10
--
1.90
2.35
V
I
F
= 25A
V
FM
Diode Forward Voltage Drop
--
2.25
2.80
I
F
= 40A
8
--
2.00
--
I
F
= 25A, T
J
= 125C
--
2.45
--
I
F
= 40A, T
J
= 125C
GB25RF120K
www.irf.com
3
Note:
For UL Applications, T
J
is limited to +125C. (See File E78996).
Power dependent on temperature. T
J
not to exceed T
J
max.
Energy losses include "tail" and diode reverse recovery.
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Input
V
FM
Maximum Forward Voltage Drop
--
--
1.5
V
I
F
= 25A
17
Rectifier I
RM
Maximum Reverse Leakage Current
--
--
0.1
mA
T
J
= 25C, V
R
= 1600V
--
--
1.0
T
J
= 150C, V
R
= 1600V
r
T
Forward Slope Resistance
--
--
10.4
m
T
J
= 150C
V
F(TO)
Conduction Threshold Voltage
--
--
0.85
V
Brake
BV
CES
Collector-to-Emitter Breakdown Voltage
1200
--
--
V
V
GE
= 0V, I
C
= 500A
IGBT
V
(BR)CES
/
T
J
Temperature Coeff. of Breakdown Voltage
--
1.6
--
V/C
V
GE
= 0V, I
C
= 1mA (25C-125C)
V
CE(on)
Collector-to-Emitter Voltage
--
2.30
2.50
V
I
C
= 12.5A, V
GE
= 15V
20,21
--
3.00
3.25
I
C
= 25A, V
GE
= 15V
23,24
--
2.70
--
I
C
= 12.5A, V
GE
= 15V, T
J
= 125C
--
3.70
--
I
C
= 25A, V
GE
= 15V, T
J
= 125C
V
GE(th)
Gate Threshold Voltage
4.0
5.0
6.0
V
CE
= V
GE
, I
C
= 250A
22,23,24
V
GE(th)
Threshold Voltage temp. coefficient
--
-10
--
mV/C V
CE
= V
GE
, I
C
= 1mA (25C-125C)
I
CES
Zero Gate Voltage Collector Current
--
8.0
50
A
V
GE
= 0V, V
CE
= 1200V
--
370
--
V
GE
= 0V, V
CE
= 1200V, T
J
= 125C
I
GES
Gate-to-Emitter Leakage Current
--
--
200
nA
V
GE
= 20V
Q
g
Total Gate Charge (turn-on)
--
96
145
I
C
= 12.5A
26
Q
ge
Gate-to-Emitter Charge (turn-on)
--
46
70
nC
V
CC
= 400V
CT1
Q
gc
Gate-to-Collector Charge (turn-on)
--
10
15
V
GE
= 15V
E
on
Turn-On Switching Loss
--
1050
1200
I
C
= 12.5A, V
CC
= 600V
CT4
E
off
Turn-Off Switching Loss
--
750
1000
J
V
GE
= 15V, R
G
= 22
, L = 400H
E
tot
Total Switching Loss
--
1800
2200
T
J
= 25C
e
E
on
Turn-On Switching Loss
--
1350
1500
I
C
= 12.5A, V
CC
= 600V
28,30
E
off
Turn-Off Switching Loss
--
1100
1250
J
V
GE
= 15V, R
G
= 22
, L = 400H
CT4
E
tot
Total Switching Loss
--
2450
2750
T
J
= 125C
e
WF3,4
t
d(on)
Turn-On delay time
--
50
65
I
C
= 12.5A, V
CC
= 600V
29,31
t
r
Rise time
--
36
50
ns
V
GE
= 15V, R
G
= 22
, L = 400H
CT4
t
d(off)
Turn-Off delay time
--
350
400
T
J
= 125C
WF3
t
f
Fall time
--
210
275
WF4
C
ies
Input Capacitance
--
2370
--
V
GE
= 0V
C
oes
Output Capacitance
--
460
--
pF
V
CC
= 30V
25
C
res
Reverse Transfer Capacitance
--
60
--
f = 1.0Mhz
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
T
J
= 150C, I
C
= 50A
CT2
R
G
= 22
, V
GE
= +15V to 0V
T
J
= 150C
CT3
SCSOA
Short Circuit Safe Operating Area
10
--
--
s
V
CC
= 900V, V
P
= 1200V
R
G
= 22
, V
GE
= +15V to 0V
Brake
I
rr
Diode Peak Reverse Recovery Current
--
24
--
A
V
CC
= 600V, I
F
= 12.5A, L = 400H
32,33,34
Diode
V
GE
= 15V, R
G
= 22
, T
J
= 125C
CT4
--
1.90
2.10
V
I
F
= 8.0A
V
FM
Diode Forward Voltage Drop
--
2.40
2.65
I
F
= 16A
27
--
2.00
--
I
F
= 8.0A, T
J
= 125C
--
2.65
--
I
F
= 16A, T
J
= 125C
NTC
R
Resistance
4538
5000
5495
T
J
= 25C
16
468.6 493.3 518.0
T
J
= 100C
B
B Value
3307
3375
3443
K
T
J
= 25 / 50 C
GB25RF120K
4
www.irf.com
Fig. 2 - Typ. IGBT Output Characteristics
T
J
= 125C; tp = 80s
Fig. 1 - Typ. IGBT Output Characteristics
T
J
= 25C; tp = 80s
Fig. 4 - Typical V
CE
vs. V
GE
T
J
= 25C
Fig.5 - Typical V
CE
vs. V
GE
T
J
= 125C
Inverter
Fig. 3 - Typ. Transfer Characteristics
V
CE
= 50V; tp = 10s
Fig. 6- Typ. Capacitance vs. V
CE
V
GE
= 0V; f = 1MHz
5
10
15
20
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
V
C
E
(
V
)
ICE = 12.5A
ICE = 25A
ICE = 50A
5
10
15
20
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
V
C
E
(
V
)
ICE = 12.5A
ICE = 25A
ICE = 50A
0
1
2
3
4
5
6
VCE (V)
0
5
10
15
20
25
30
35
40
45
50
I C
E
(
A
)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0
1
2
3
4
5
6
VCE (V)
0
5
10
15
20
25
30
35
40
45
50
I C
E
(
A
)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0
5
10
15
20
VGE (V)
0
50
100
150
200
250
300
350
I C
E
(
A
)
TJ = 25C
TJ = 125C
TJ = 125C
TJ = 25C
0
20
40
60
80
100
VCE (V)
10
100
1000
10000
C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
Cies
Coes
Cres
GB25RF120K
www.irf.com
5
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80s
Inverter
Fig. 7 - Typical Gate Charge
vs. V
GE
I
CE
= 25A; L = 1mH
0
50
100
150
200
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
V
G
E
(
V
)
400V
600V
0.0
1.0
2.0
3.0
4.0
VF (V)
0
10
20
30
40
50
60
70
80
90
100
I F
(
A
)
25C
125C
Fig. 9 - Typ. Energy Loss vs. I
C
T
J
= 125C; L=400H; V
CE
= 600V,R
G
= 10
; V
GE
= 15V
0
10
20
30
40
50
60
IC (A)
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
E
n
e
r
g
y
(
J
)
EOFF
EON
Fig. 10 - Typ. Switching Time vs. I
C
T
J
= 125C; L = 400H; V
CE
= 600V,R
G
= 10
;V
GE
= 15V
0
10
20
30
40
50
60
IC (A)
10
100
1000
S
w
i
c
h
i
n
g
T
i
m
e
(
n
s
)
tR
tdOFF
tF
tdON
Fig. 12 - Typ. Switching Time vs. R
G
T
J
= 125C; L=400H; V
CE
= 600V, I
CE
= 25A; V
GE
= 15V
0
10
20
30
40
50
RG ()
10
100
1000
10000
S
w
i
c
h
i
n
g
T
i
m
e
(
n
s
)
tR
tdOFF
tF
tdON
Fig. 11 - Typ. Energy Loss vs. R
G
T
J
= 125C; L=400H; V
CE
= 600V, I
CE
= 25A; V
GE
= 15V
0
10
20
30
40
50
RG ()
0
1000
2000
3000
4000
5000
6000
E
n
e
r
g
y
(
J
)
EON
EOFF
GB25RF120K
6
www.irf.com
Fig. 13 - Typical Diode I
RR
vs. I
F
T
J
= 125C
Fig. 14 - Typical Diode I
RR
vs. R
G
T
J
= 125C; I
F
= 25A
Inverter
0
10
20
30
40
50
60
IF (A)
0
5
10
15
20
25
30
35
40
I R
R
(
A
)
RG = 4.7
RG = 10
RG = 22
RG = 47
0
10
20
30
40
50
RG ()
0
5
10
15
20
25
30
35
40
I R
R
(
A
)
Fig. 16 - Thermistor Resistance vs. Temperature
Input Rectifier
Fig. 17 - Typ. Diode Forward Characteristics
tp = 80s
0.0
1.0
2.0
3.0
VF (V)
0
10
20
30
40
50
60
70
80
90
100
I F
(
A
)
25C
125C
0
500
1000
1500
diF /dt (A/s)
0
5
10
15
20
25
30
35
40
I R
R
(
A
)
Fig. 15 - Typical Diode I
RR
vs. di
F
/ dt
V
CC
= 600V; V
GE
= 15V; I
F
= 25A; T
J
= 125C
Thermistor
0
20
40
60
80
100 120 140 160 180
TJ , Junction Temperature (C)
0
2
4
6
8
10
12
14
T
h
e
r
m
i
s
t
o
r
R
e
s
i
s
t
a
n
c
e
(
k
)
GB25RF120K
www.irf.com
7
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter IGBT)
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
T
h
e
r
m
a
l
R
e
s
p
o
n
s
e
(
Z
t
h
J
C
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (C/W)
i (sec)
0.120 0.000439
0.201 0.009470
0.309 0.018320
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
C
Ci
i
/Ri
Ci=
i/Ri
Inverter
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter FRED)
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
T
h
e
r
m
a
l
R
e
s
p
o
n
s
e
(
Z
t
h
J
C
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (C/W)
i (sec)
0.140 0.000230
0.257 0.002752
0.602 0.036788
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
C
Ci
i
/Ri
Ci=
i/Ri
Fig. WF1- Typ. Turn-off Loss Waveform
@ T
J
= 125C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform
@ T
J
= 125C using Fig. CT.4
-100
0
100
200
300
400
500
600
700
800
900
-0.60
-0.10
0.40
0.90
1.40
Time(s)
V
CE
(V
)
-5
0
5
10
15
20
25
30
35
40
45
I
CE
(A
)
90% I
CE
5% V
CE
5% I
CE
Eoff Loss
tf
-100
0
100
200
300
400
500
600
700
800
900
9.40
9.60
9.80
10.00 10.20 10.40
Time (s)
V
CE
(V
)
-10
0
10
20
30
40
50
60
70
80
90
I
CE
(A
)
TEST CURRENT
90% test current
5% V
CE
10% test current
tr
Eon Loss
GB25RF120K
8
www.irf.com
Fig. 21 - Typ. IGBT Output Characteristics
T
J
= 125C; tp = 80s
Fig. 20 - Typ. IGBT Output Characteristics
T
J
= 25C; tp = 80s
Fig. 23 - Typical V
CE
vs. V
GE
T
J
= 25C
Fig.24 - Typical V
CE
vs. V
GE
T
J
= 125C
Brake
Fig. 22 - Typ. Transfer Characteristics
V
CE
= 50V; tp = 10s
Fig. 25- Typ. Capacitance vs. V
CE
V
GE
= 0V; f = 1MHz
0
5
10
15
20
VGE (V)
0
20
40
60
80
100
120
140
160
180
I C
E
(
A
)
TJ = 25C
TJ = 125C
TJ = 125C
TJ = 25C
5
10
15
20
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
V
C
E
(
V
)
ICE = 6.25A
ICE = 12.5A
ICE = 25A
5
10
15
20
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
V
C
E
(
V
)
ICE = 6.25A
ICE = 12.5A
ICE = 25A
0
1
2
3
4
5
6
VCE (V)
0
5
10
15
20
25
30
35
40
45
50
I C
E
(
A
)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0
1
2
3
4
5
6
VCE (V)
0
5
10
15
20
25
30
35
40
45
50
I C
E
(
A
)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0
20
40
60
80
100
VCE (V)
10
100
1000
10000
C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
Cies
Coes
Cres
GB25RF120K
www.irf.com
9
Fig. 27 - Typ. Diode Forward Characteristics
tp = 80s
Brake
Fig. 26 - Typical Gate Charge
vs. V
GE
I
CE
= 12.5A; L = 1mH
0
25
50
75
100
125
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
V
G
E
(
V
)
400V
600V
Fig. 29 - Typ. Switching Time vs. I
C
T
J
= 125C; L=400H; V
CE
= 600V,R
G
= 22
;V
GE
= 15V
0
10
20
30
40
IC (A)
10
100
1000
S
w
i
c
h
i
n
g
T
i
m
e
(
n
s
)
tR
tdOFF
tF
tdON
Fig. 28 - Typ. Energy Loss vs. I
C
T
J
= 125C; L=400H; V
CE
= 600V,R
G
= 22
; V
GE
= 15V
Fig. 31 - Typ. Switching Time vs. R
G
T
J
= 125C; L=400H; V
CE
= 600V, I
CE
= 12.5A; V
GE
= 15V
0
25
50
75
100
125
150
RG ()
10
100
1000
10000
S
w
i
c
h
i
n
g
T
i
m
e
(
n
s
)
tR
tdOFF
tF
tdON
Fig. 30 - Typ. Energy Loss vs. R
G
T
J
= 125C; L=400H; V
CE
= 600V, I
CE
= 12.5A; V
GE
= 15V
0.0
1.0
2.0
3.0
4.0
5.0
VF (V)
0
5
10
15
20
25
30
35
40
45
50
I F
(
A
)
25C
125C
0
50
100
150
RG ()
0
500
1000
1500
2000
E
n
e
r
g
y
(
J
)
EON
EOFF
0
10
20
30
40
IC (A)
0
500
1000
1500
2000
2500
3000
E
n
e
r
g
y
(
J
)
EOFF
EON
GB25RF120K
10
www.irf.com
Fig. 32 - Typical Diode I
RR
vs. I
F
T
J
= 125C
Fig. 33- Typical Diode I
RR
vs. R
G
T
J
= 125C; I
F
= 12.5A
Brake
0
5
10
15
20
25
30
IF (A)
0
5
10
15
20
25
30
35
40
45
I R
R
(
A
)
RG = 4.7
RG = 10
RG = 22
RG = 47
0
10
20
30
40
50
RG ()
0
5
10
15
20
25
30
35
I R
R
(
A
)
0
500
1000
1500
diF /dt (A/s)
0
5
10
15
20
25
30
35
I R
R
(
A
)
Fig. 34 - Typical Diode I
RR
vs. di
F
/ dt
V
CC
= 600V; V
GE
= 15V; I
F
= 12.5A; T
J
= 125C
GB25RF120K
www.irf.com
11
Fig. WF3- Typ. Turn-off Loss Waveform
@ T
J
= 125C using Fig. CT.4
Fig. WF4- Typ. Turn-on Loss Waveform
@ T
J
= 125C using Fig. CT.4
-100
0
100
200
300
400
500
600
700
800
900
9.80
10.00 10.20 10.40 10.60 10.80
Time (s)
V
CE
(V
)
-5
0
5
10
15
20
25
30
35
40
45
I
CE
(A
)
TEST CURRENT
90% test current
5% V
CE
10% test current
tr
Eon Loss
-100
0
100
200
300
400
500
600
700
800
900
-0.60
-0.10
0.40
0.90
1.40
Time(s)
V
CE
(V
)
-5
0
5
10
15
20
25
30
35
40
45
I
CE
(A
)
90% I
CE
5% V
CE
5% I
CE
Eof f Loss
tf
Brake
Fig 36. Maximum Transient Thermal Impedance, Junction-to-Case (Brake Diode)
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
h
e
r
m
a
l
R
e
s
p
o
n
s
e
(
Z
t
h
J
C
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (C/W)
i (sec)
0.714 0.000489
1.193 0.020644
0.394 0.154110
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
C
Ci
i
/Ri
Ci=
i/Ri
Fig 35. Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT)
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
10
T
h
e
r
m
a
l
R
e
s
p
o
n
s
e
(
Z
t
h
J
C
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (C/W)
i (sec)
0.268 0.000469
0.642 0.018501
0.290 0.056904
J
J
1
1
2
2
3
3
R
1
R
1
R
2
R
2
R
3
R
3
C
Ci
i
/Ri
Ci=
i/Ri
GB25RF120K
12
www.irf.com
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.5 - Resistive Load Circuit
1K
VCC
DUT
0
L
L
Rg
80 V
DUT
480V
+
-
DC
Driver
DUT
360V
L
Rg
VCC
diode clamp /
DUT
DUT /
DRIVER
- 5V
Rg
VCC
DUT
R =
V
CC
I
CM
GB25RF120K
www.irf.com
13
Dimensions are shown in millimeters (inches)
Econo2 PIM Package Outline
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
10
/02
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial
market.
Qualification Standards can be found on IR's Web site.
Econo2 PIM Part Marking Information
0.25 [.0098] CONVEX