ChipFind - документация

Электронный компонент: MOSFETIRF6602

Скачать:  PDF   ZIP
Symbol
Parameter
Typ.
Max.
Units
R
JA
Junction-to-Ambient
55
R
JA
Junction-to-Ambient
12.5
R
JA
Junction-to-Ambient
20
C/W
R
JC
Junction-to-Case
3.0
R
J-PCB
Junction-to-PCB mounted
1.0
DirectFET
TM
Power MOSFET
IRF6602
Parameter
Max.
Units
V
DS
Drain- Source Voltage
20
V
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 4.5V
11
I
D
@ T
C
= 70C
Continuous Drain Current, V
GS
@ 4.5V
8.8
A
I
DM
Pulsed Drain Current
88
P
D
@T
C
= 25C
Power Dissipation
2.3
P
D
@T
C
= 70C
Power Dissipation
1.5
Linear Derating Factor
18
mW/C
V
GS
Gate-to-Source Voltage
20
V
T
J,
T
STG
Junction and Storage Temperature Range
-55 to + 150
C
Absolute Maximum Ratings
W
www.irf.com
1
Description
DirectFET
TM
ISOMETRIC
Thermal Resistance
04/24/02
V
DSS
R
DS(on)
max
I
D
20V
13m
@V
GS
= 10V
11A
19m
@V
GS
= 4.5V
8.8A
PD - 94363A
The IRF6602 combines the latest HEXFET Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging
to achieve the lowest on-state resistance charge product in a package that has the footprint of an SO-8 and only 0.7 mm
profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly
equipment and vapor phase, infra-red or convection soldering techniques. The DirectFET package allows dual sided cooling
to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.
The IRF6602 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction
and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power
the latest generation of processors operating at higher frequencies. The IRF6602 has been optimized for parameters that
are critical in synchronous buck converters including Rds(on) and gate charge to minimize losses in the control FET socket.
l
Application Specific MOSFETs
l
Ideal for CPU Core DC-DC Converters
l
Low Conduction Losses
l
Low Switching Losses
l
Low Profile (<0.7 mm)
l
Dual Sided Cooling Compatible
l
Compatible with existing Surface Mount
Techniques
IRF6602
2
www.irf.com
Symbol
Parameter
Min. Typ. Max. Units
Conditions
g
fs
Forward Transconductance
20
S
V
DS
= 10V, I
D
= 8.8A
Q
g
Total Gate Charge Cont FET
13 20 V
GS
= 5.0V, V
DS
= 10V, I
D
= 8.8A
Q
g
Total Gate Charge Sync FET
11
V
GS
= 5.0V, V
DS
< 100mV
Q
gs1
Pre-Vth Gate-Source Charge
3.5
V
DS
= 16V, I
D
= 8.8A
Q
gs2
Post-Vth Gate-Source Charge
1.3
nC
Q
gd
Gate to Drain Charge
4.8
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
6.1
Q
oss
Output Charge
19
V
DS
= 16V, V
GS
= 0V
t
d(on)
Turn-On Delay Time
11
V
DD
= 15V
t
r
Rise Time
58
I
D
= 8.8A
t
d(off)
Turn-Off Delay Time
15
R
G
= 1.8
t
f
Fall Time
5.5
V
GS
= 4.5V
C
iss
Input Capacitance
1420
V
GS
= 0V
C
oss
Output Capacitance
960
V
DS
= 10V
C
rss
Reverse Transfer Capacitance
100
pF
= 1.0MHz
Symbol
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
0.83
1.2
V
T
J
= 25C, I
S
= 8.8A, V
GS
= 0V
0.65
T
J
= 125C, I
S
= 8.8A, V
GS
= 0V
t
rr
Reverse Recovery Time
42
62
ns
T
J
= 25C, I
F
= 8.8A, V
R
=15V
Q
r r
Reverse Recovery Charge
51
77
nC
di/dt = 100A/s
t
rr
Reverse Recovery Time
43
64
ns
T
J
= 125C, I
F
= 8.8A, V
R
=15V
Q
r r
Reverse Recovery Charge
55
82
nC
di/dt = 100A/s
Dynamic @ T
J
= 25C (unless otherwise specified)
ns
Symbol
Parameter
Typ.
Max.
Units
E
AS
Single Pulse Avalanche Energy
97
mJ
I
AR
Avalanche Current
8.8
A
Avalanche Characteristics
S
D
G
Diode Characteristics
11
88
A
V
SD
Diode Forward Voltage
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
20
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.022 V/C Reference to 25C, I
D
= 1mA
10
13
V
GS
= 10V, I
D
= 11A
14
19
V
GS
= 4.5V, I
D
= 8.8A
V
GS(th)
Gate Threshold Voltage
1.0
3.0
V
V
DS
= V
GS
, I
D
= 250A
20
A
V
DS
= 16V, V
GS
= 0V
125
V
DS
= 16V, V
GS
= 0V, T
J
= 125C
Gate-to-Source Forward Leakage
200
V
GS
= 20V
Gate-to-Source Reverse Leakage
-200
nA
V
GS
= -20V
Static @ T
J
= 25C (unless otherwise specified)
I
GSS
I
DSS
Drain-to-Source Leakage Current
R
DS(on)
Static Drain-to-Source On-Resistance
m
IRF6602
www.irf.com
3
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
-60
-40
-20
0
20
40
60
80
100
120
140
160
0.0
0.5
1.0
1.5
2.0
T , Junction Temperature
( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
V
=
I
=
GS
D
10V
11A
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, Drain-to-Source Current (A)
2.7V
20s PULSE WIDTH
Tj = 25C
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.3V
3.0V
BOTTOM 2.7V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I D
, Drain-to-Source Current (A)
2.7V
20s PULSE WIDTH
Tj = 150C
VGS
TOP 10V
5.0V
4.5V
4.0V
3.5V
3.3V
3.0V
BOTTOM 2.7V
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VGS, Gate-to-Source Voltage (V)
1.00
10.00
100.00
I D
, Drain-to-Source Current
(
)
TJ = 25C
TJ = 150C
VDS = 15V
20s PULSE WIDTH
IRF6602
4
www.irf.com
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
0
4
8
12
16
0
1
2
4
5
6
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
I
=
D
8.8A
V
= 16V
DS
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
0.1
1
10
100
0.2
0.4
0.6
0.8
1.0
1.2
1.4
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 150 C
J
T = 25 C
J
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance(pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
1
10
100
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
I D
, Drain-to-Source Current (A)
Tc = 25C
Tj = 150C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100sec
IRF6602
www.irf.com
5
Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0.1
1
10
100
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Notes:
1. Duty factor D =
t / t
2. Peak T
= P
x Z
+ T
1
2
J
DM
thJA
A
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJA
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
V
DS
Pulse Width
1
s
Duty Factor
0.1 %
R
D
V
GS
R
G
D.U.T.
4.5V
+
-
V
DD
25
50
75
100
125
150
0
3
6
9
12
T , Case Temperature ( C)
I , Drain Current (A)
C
D
Fig 9. Maximum Drain Current Vs.
Ambient Temperature