ChipFind - документация

Электронный компонент: L349

Скачать:  PDF   ZIP
2002 IXYS All rights reserved
1 - 3
I
R
V
R
= V
RRM
,
T
VJ
= 25
C
0.3
mA
V
R
= V
RRM
,
T
VJ
= 150
C
5
mA
V
F
I
F
= 150 A,
T
VJ
= 25
C
VUO 120
1.59
V
VUO 155
1.49
V
V
F0
For power-loss calculations only
VUO 120
0.80
V
VUO 155
0.75
V
r
T
T
VJ
= 150
C
VUO 120
6.1
m
VUO 155
4.6
m
R
thJC
per diode
VUO 120
1.0 K/W
VUO 155
0.8 K/W
R
thJH
VUO 120
1.3 K/W
VUO 155
1.1 K/W
R
25
(option)
Siemens S 891/2,2/+9
2.2
k
Symbol
Test Conditions Maximum Ratings
VUO 120
VUO155
V
RRM
1200/1600
1200/1600
V
I
dAVM
T
C
= 75
C, sinusoidal 120
121
157
A
I
FSM
T
VJ
= 45
C,
t = 10 ms, V
R
= 0 V
650
850
A
T
VJ
= 150
C,
t = 10 ms, V
R
= 0 V
580
760
A
I
2
t
T
VJ
= 45
C,
t = 10 ms, V
R
= 0 V
2110
3610
A
T
VJ
= 150
C,
t = 10 ms, V
R
= 0V
1680
2880
A
P
tot
T
C
= 25
C per diode
150
190
W
T
VJ
-40...+150
C
T
VJM
150
C
T
stg
-40...+125
C
V
ISOL
50/60 Hz
t = 1 min
3000
V~
I
ISOL
1 mA
t = 1 s
3600
V~
M
d
Mounting torque
(M5)
2-2.5
Nm
(10-32 unf)
18-22
lb.in.
d
S
Creep distance on surface
12.7
mm
d
A
Strike distance in air
9.4
mm
a
Maximum allowable acceleration
50
m/s
2
Weight
typ.
80
g
I
dAVM
= 121/157 A
V
RRM
= 1200-1600 V
V
RRM
Type
V
RRM
Type
V
V
1200 VUO 120-12 NO1
1600 VUO 120-16 NO1
1200 VUO 155-12 NO1
1600 VUO 155-16 NO1
Features
Soldering connections for PCB
mounting
Isolation voltage 3600 V~
Convenient package outline
UL registered E 72873
Case and potting UL94 V-0
Applications
Input Rectifier for Drive Inverters
Advantages
Easy to mount with two screws
Suitable for wave soldering
High temperature and power cycling
capability
Dimensions in mm (1 mm = 0.0394")
IXYS reserves the right to change limits, test conditions and dimensions
Symbol
Test Conditions
Characteristic Values
(T
VJ
= 25
C, unless otherwise specified)
min.
typ.
max.
VUO 120
VUO 155
211
Three Phase
Rectifier Bridge
option
M1/O1
M10/O10
W5
W6
A6
E6
K6
Therm
.
2002 IXYS All rights reserved
2 - 3
VUO 120
0.001
0.01
0.1
1
0
100
200
300
400
500
600
700
2
3
4
5 6 7 8 9
1
10
10
3
10
4
0.0
0.5
1.0
1.5
2.0
0
30
60
90
120
150
0
20
40
60
80
100
120
0
50
100
150
0
20
40
60
80 100 120 140
0.01
0.1
1
10
0.0
0.2
0.4
0.6
0.8
1.0
1.2
I
2
t
I
FSM
I
F
A
V
F
t
s
t
ms
P
tot
W
I
d(AV)M
A
T
amb
t
s
K/W
A
2
s
0
20 40 60 80 100 120 140
0
20
40
60
80
100
120
140
I
d(AV)M
T
C
A
V
A
C
C
VUO 120
T
VJ
= 150C
T
VJ
= 25C
T
VJ
= 45C
T
VJ
= 150C
V
R
= 0 V
50 Hz, 80% V
RRM
T
VJ
= 45C
T
VJ
= 150C
R
thKA
:
0.7 KW
1 KW
1.4 KW
2 KW
3 KW
5 KW
Fig. 1 Forward current versus voltage
drop per diode
Fig. 2 Surge overload current
Fig. 3 I
2
t versus time per diode
Fig. 4
Power dissipation versus direct output current and ambient temperature, sine 120
Fig. 5 Max. forward current versus
case temperature
Fig. 6 Transient thermal impedance junction to case
Constants for Z
thJC
calculation:
i
R
thi
(K/W)
t
i
(s)
1
0.003521
0.01
2
0.1479
0.05
3
0.5599
0.14
4
0.2887
0.5
2002 IXYS All rights reserved
3 - 3
VUO 155
0.001
0.01
0.1
1
0
100
200
300
400
500
600
700
2
3
4
5 6 7 8 9
1
10
10
3
10
4
0.0
0.5
1.0
1.5
2.0
0
30
60
90
120
150
0
20
40
60
80
100 120 140
0
50
100
150
0
20
40
60
80 100 120 140
0.01
0.1
1
10
0.0
0.2
0.4
0.6
0.8
1.0
I
2
t
I
FSM
I
F
A
V
F
t
s
t
ms
P
tot
W
I
d(AV)M
A
T
amb
t
s
K/W
A
2
s
0
20 40 60 80 100 120 140
0
20
40
60
80
100
120
140
160
180
I
d(AV)M
T
C
A
V
A
C
C
VUO 155
T
VJ
= 150C
T
VJ
= 25C
T
VJ
= 45C
T
VJ
= 150C
V
R
= 0 V
50 Hz, 80% V
RRM
T
VJ
= 45C
T
VJ
= 150C
R
thKA
:
0.7 KW
1 KW
1.4 KW
2 KW
3 KW
5 KW
Fig. 1 Forward current versus voltage
drop per diode
Fig. 2 Surge overload current
Fig. 3 I
2
t versus time per diode
Fig. 4
Power dissipation versus direct output current and ambient temperature, sine 120
Fig. 5 Max. forward current versus
case temperature
Fig. 6 Transient thermal impedance junction to case
Constants for Z
thJC
calculation:
i
R
thi
(K/W)
t
i
(s)
1
0.002817
0.01
2
0.1183
0.05
3
0.4479
0.14
4
0.231
0.5