1 - 4
2000 IXYS All rights reserved
Symbol
Test Conditions
Maximum Ratings
V
CES
T
J
= 25
C to 150
C
1200
V
V
CGR
T
J
= 25
C to 150
C; R
GE
= 1 M
W
1200
A
V
GES
Continuous
20
V
V
GEM
Transient
30
V
I
C25
T
C
= 25
C
70
A
I
C90
T
C
= 90
C
35
A
I
CM
T
C
= 25
C, 1 ms
140
A
SSOA
V
GE
= 15 V, T
VJ
= 125
C, R
G
= 22
W
I
CM
= 70
A
(RBSOA)
Clamped inductive load, L = 30
m
H
@ 0.8 V
CES
t
SC
V
GE
= 15 V, V
CE
= 0.6 V
CES
, T
J
= 125
C
10
m
s
(SCSOA)
R
G
= 22
W
, non repetitive
P
C
T
C
= 25
C
IGBT
300
W
P
D
Diode
175
W
V
ISOL
50/60 Hz
t = 1 min
2500
V~
I
ISOL
1 mA
t = 1 s
3000
V~
T
J
-55 ... +150
C
T
JM
150
C
T
stg
-55 ... +150
C
M
d
Mounting torque
1.5/13
Nm/lb.in.
Terminal connection torque (M4)
1.5/13
Nm/lb.in.
Weight
30
g
High Voltage
IXSN 35N120AU1
V
CES
= 1200 V
IGBT with Diode
I
C25
= 70 A
V
CE(sat)
= 4 V
Symbol
Test Conditions
Characteristic Values
(T
J
= 25
C, unless otherwise specified)
min.
typ.
max.
BV
CES
I
C
= 5 mA, V
GE
= 0 V
1200
V
V
GE(th)
I
C
= 4 mA, V
CE
= V
GE
4
8
V
I
CES
V
CE
= 0.8 V
CES
T
J
= 25
C
750
m
A
V
GE
= 0 V
T
J
= 125
C
15
mA
I
GES
V
CE
= 0 V, V
GE
=
20 V
100
nA
V
CE(sat)
I
C
= I
C90
, V
GE
= 15 V
4
V
Device must be heat sunk during high temperature leackage test to avoid thermal runaway.
miniBLOC, SOT-227 B
2
1
4
3
Features
q
International standard package
miniBLOC (ISOTOP) compatible
q
Aluminium-nitride isolation
- high power dissipation
q
Isolation voltage 3000 V~
q
Low V
CE(sat)
- for minimum on-state conduction
losses
q
Fast Recovery
Epitaxial Diode
- short t
rr
and I
RM
q
Low collector-to-case capacitance
(< 50 pF)
- reducesd RFI
q
Low package inductance (< 10 nH)
- easy to drive and to protect
Applications
q
AC motor speed control
q
DC servo and robot drives
q
DC choppers
q
Uninterruptible power supplies (UPS)
q
Switch-mode and resonant-mode
power supplies
Advantages
q
Space savings
q
Easy to mount with 2 screws
q
High power density
1 = Emitter
,
3 = Collector
2 = Gate,
4 = Emitter
Either Emitter terminal can be used as
Main or Kelvin Emitter
2
4
3
1
92519E (12/96)
IXYS reserves the right to change limits, test conditions, and dimensions.
2 - 4
2000 IXYS All rights reserved
Symbol
Test Conditions
Characteristic Values
(T
J
= 25
C, unless otherwise specified)
min.
typ.
max.
g
fs
I
C
= I
C90
; V
CE
= 10 V,
20
26
S
Pulse test, t
300
m
s, duty cycle d
2 %
I
C(on)
V
CE
= 10 V, V
GE
= 15 V
170
A
C
ies
3900
pF
C
oes
V
CE
= 25 V, V
GE
= 0 V, f = 1 MHz
295
pF
C
res
60
pF
Q
g
150
190
nC
Q
ge
I
C
= I
C90
, V
GE
= 15 V, V
CE
= 0.5 V
CES
40
60
nC
Q
gc
70
100
nC
t
d(on)
80
ns
t
ri
150
ns
t
d(off)
400
900
ns
t
fi
500
700
ns
E
off
10
mJ
t
d(on)
80
ns
t
ri
150
ns
t
d(off)
400
ns
t
fi
700
ns
E
on
6
mJ
E
off
15
mJ
R
thJC
0.42 K/W
R
thCK
0.05
K/W
Reverse Diode (FRED)
Characteristic Values
(T
J
= 25
C, unless otherwise specified)
Symbol
Test Conditions
min.
typ.
max.
V
F
I
F
= I
C90
, V
GE
= 0 V,
2.35
V
Pulse test, t
300
m
s, duty cycle d
2 %
I
RM
I
F
= I
C90
, V
GE
= 0 V, -di
F
/dt = 480 A/
m
s
32
35
A
t
rr
V
R
= 540 V
T
J
= 100
C
225
ns
I
F
= 1 A; -di/dt = 200 A/
m
s; V
R
= 30 V
T
J
= 25
C
40
60
ns
R
thJC
0.71 K/W
Inductive load, T
J
= 25
C
I
C
= I
C90
, V
GE
= 15 V,
V
CE
= 0.8 V
CES
, R
G
= 2.7
W
Remarks: Switching times may increase
for V
CE
(Clamp) > 0.8 V
CES
, higher T
J
or
increased R
G
Inductive load, T
J
= 125
C
I
C
= I
C90
, V
GE
= 15 V,
V
CE
= 0.8 V
CES
, R
G
= 2.7
W
Remarks: Switching times may increase
for V
CE
(Clamp) > 0.8 V
CES
, higher T
J
or
increased R
G
M4 screws (4x) supplied
Dim.
Millimeter
Inches
Min.
Max.
Min.
Max.
A
31.50
31.88
1.240
1.255
B
7.80
8.20
0.307
0.323
C
4.09
4.29
0.161
0.169
D
4.09
4.29
0.161
0.169
E
4.09
4.29
0.161
0.169
F
14.91
15.11
0.587
0.595
G
30.12
30.30
1.186
1.193
H
38.00
38.23
1.496
1.505
J
11.68
12.22
0.460
0.481
K
8.92
9.60
0.351
0.378
L
0.76
0.84
0.030
0.033
M
12.60
12.85
0.496
0.506
N
25.15
25.42
0.990
1.001
O
1.98
2.13
0.078
0.084
P
4.95
5.97
0.195
0.235
Q
26.54
26.90
1.045
1.059
R
3.94
4.42
0.155
0.174
S
4.72
4.85
0.186
0.191
T
24.59
25.07
0.968
0.987
U
-0.05
0.1
-0.002
0.004
miniBLOC, SOT-227 B
IXSN35N120AU1
IXYS MOSFETS and IGBTs are covered by one or more of the following U.S. patents:
4,835,592
4,881,106
5,017,508
5,049,961
5,187,117
5,486,715
4,850,072
4,931,844
5,034,796
5,063,307
5,237,481
5,381,025
3 - 4
2000 IXYS All rights reserved
IXSN35N120AU1
T
J
- Degrees C
-50
-25
0
25
50
75
100 125 150
BV /
V
GE
(
t
h)
- N
o
r
m
a
l
iz
e
d
0.7
0.8
0.9
1.0
1.1
1.2
1.3
BV
CES
I
C
= 3mA
V
GE
- Volts
4
5
6
7
8
9
10 11 12 13 14 15
I
C
-
Am
per
es
0
10
20
30
40
50
V
CE
= 10V
T
J
- Degrees C
-50
-25
0
25
50
75
100 125 150
V
CE
(s
at
)
- N
o
rm
a
l
i
z
e
d
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
V
GE
=15V
V
GE
- Volts
8
9
10
11
12
13
14
15
V
CE
- V
o
lts
0
1
2
3
4
5
6
7
8
9
10
T
J
= 25C
V
CE
- Volts
0
2
4
6
8
10
12 14 16 18 20
I
C
-
Am
per
es
0
50
100
150
200
250
T
J
= 25C
7V
9V
11V
13V
V
CE
- Volts
0
1
2
3
4
5
I
C
-
Am
per
es
0
10
20
30
40
50
60
70
T
J
= 25C
V
GE
=15V
11V
7V
9V
V
GE(th)
I
C
= 4mA
13V
V
GE
= 15V
I
C
= 17.5A
I
C
= 35A
I
C
= 70A
T
J
= - 40C
T
J
= 25C
T
J
= 125C
I
C
=1 7.5A
I
C
= 35A
I
C
= 70A
Fig. 3 Collector-Emitter Voltage
Fig. 4 Temperature Dependence
vs. Gate-Emitter Voltage
of Output Saturation Voltage
Fig. 5 Input Admittance
Fig. 6 Temperature Dependence of
Breakdown and Threshold Voltage
Fig. 1 Saturation Characteristics
Fig. 2 Output Characterstics
4 - 4
2000 IXYS All rights reserved
IXSN35N120AU1
Pulse Width - Seconds
0.00001
0.0001
0.001
0.01
0.1
1
10
Z
th
j
J
C
- K
/
W
0.001
0.01
0.1
1
Single Pulse
D=0.2
V
CE
- Volts
0
200
400
600
800
1000
1200
I
C
-
Am
per
es
0.01
0.1
1
10
100
T
J
= 125C
R
G
= 2.7
W
dV/dt < 5V/ns
Q
G
- nanocoulombs
0
50
100
150
200
V
GE
- V
o
lts
0
3
6
9
12
15
I
C
= 35A
V
CE
= 500V
R
G
- Ohms
0
10
20
30
40
50
E
of
f
-
m
i
llijo
u
l
e
s
14
15
16
17
18
t
fi
-
n
anoseconds
250
500
750
1000
1250
T
J
= 125C
I
C
= 35A
t
fi
E
off
I
C
- Amperes
0
10
20
30
40
50
60
70
E
of
f
-
m
i
l
l
i
j
oul
es
5
10
15
20
25
t
fi
-
n
anoseconds
250
500
750
1000
1250
E
off
t
fi
D = Duty Cycle
T
J
= 125C
R
G
= 10
W
D=0.01
D=0.02
D=0.05
D=0.1
D=0.5
Fig.11 Transient Thermal Impedance
Fig.9 Gate Charge Characteristic Curve
Fig.10 Turn-Off Safe Operating Area
Fig.7 Turn-Off Energy per Pulse and
Fig.8 Dependence of Turn-Off Energy
Fall Time on Collector Current
Per Pulse and Fall Time on R
G