ChipFind - документация

Электронный компонент: ispGDX240VA

Скачать:  PDF   ZIP

Document Outline

1
ispGDX
240VA
In-System Programmable
3.3V Generic Digital Crosspoint
Functional Block Diagram
Features
IN-SYSTEM PROGRAMMABLE GENERIC DIGITAL
CROSSPOINT FAMILY
-- 240 I/O, "Any Input to Any Output" Routing
-- Advanced Architecture Addresses Programmable
PCB Interconnect, Bus Interface Integration and
Jumper/Switch Replacement
-- Fixed HIGH or LOW Output Option for Jumper/DIP
Switch Emulation
-- Space-Saving Fine Pitch BGA Packaging
-- Dedicated IEEE 1149.1-Compliant Boundary Scan
Test
HIGH PERFORMANCE E
2
CMOS
TECHNOLOGY
-- 3.3V Core Power Supply
-- 4.5ns Input-to-Output/4.0ns Clock-to-Output Delay
-- 200MHz Maximum Clock Frequency
-- TTL/3.3V/2.5V Compatible Input Thresholds and
Output Levels (Individually Programmable)
-- Low-Power: 20.0mA Quiescent Icc
-- 24mA I
OL
Drive with Programmable Slew Rate
Control Option
-- PCI Compatible Drive Capability
-- Schmitt Trigger Inputs for Noise Immunity
-- Electrically Erasable and Reprogrammable
-- Non-Volatile E
2
CMOS Technology
ispGDXVA OFFERS THE FOLLOWING ADVANTAGES
-- 3.3V In-System Programmable Using Boundary Scan
Test Access Port (TAP)
-- Change Interconnects in Seconds
FLEXIBLE ARCHITECTURE
-- Combinatorial/Latched/Registered Inputs or Outputs
-- Individual I/O Tri-state Control with Polarity Control
-- Dedicated Clock/Clock Enable Input Pins (four) or
Programmable Clocks/Clock Enables from I/O Pins (60)
-- Single Level 4:1 Dynamic Path Selection (Tpd = 4.5ns)
-- Programmable Wide-MUX Cascade Feature
Supports up to 16:1 MUX
-- Programmable Pull-ups, Bus Hold Latch and Open
Drain on I/O Pins
-- Outputs Tri-state During Power-up ("Live Insertion"
Friendly)
Global Routing
Pool
(GRP)
I/O
Cells
I/O Pins B
Boundary
Scan
Control
I/O
Cells
ISP
Control
I/O Pins
A
I/O Pins C
I/O Pins D
Description
The ispGDXVA architecture provides a family of fast,
flexible programmable devices to address a variety of
system-level digital signal routing and interface require-
ments including:
Multi-Port Multiprocessor Interfaces
Wide Data and Address Bus Multiplexing
(e.g. 16:1 High-Speed Bus MUX)
Programmable Control Signal Routing
(e.g. Interrupts, DMAREQs, etc.)
Board-Level PCB Signal Routing for Prototyping or
Programmable Bus Interfaces
The ispGDX240VA device features fast operation, with
input-to-output signal delays (Tpd) of 4.5ns and clock-to-
output delays of 4.0ns.
The architecture of the devices consists of a series of
programmable I/O cells interconnected by a Global Rout-
ing Pool (GRP). All I/O pin inputs enter the GRP directly
or are registered or latched so they can be routed to the
required I/O outputs. I/O pin inputs are defined as four
sets (A,B,C,D) which have access to the four MUX inputs
gdx240va_05
Copyright 2002 Lattice Semiconductor Corporation. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein
are subject to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.
February 2002
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
2
Specifications
ispGDX240VA
Description (Continued)
found in each I/O cell. Each output has individual, pro-
grammable I/O tri-state control (OE), output latch clock
(CLK), clock enable (CLKEN), and two multiplexer con-
trol (MUX0 and MUX1) inputs. Polarity for these signals
is programmable for each I/O cell. The MUX0 and MUX1
inputs control a fast 4:1 MUX, allowing dynamic selection
of up to four signal sources for a given output. A wider
16:1 MUX can be implemented with the MUX expander
feature of each I/O and a propagation delay increase of
2.0ns. OE, CLK, CLKEN, and MUX0 and MUX1 inputs
can be driven directly from selected sets of I/O pins.
Optional dedicated clock input pins give minimum clock-
to-output delays. CLK and CLKEN share the same set of
I/O pins. CLKEN disables the register clock when
CLKEN = 0.
Through in-system programming, connections between
I/O pins and architectural features (latched or registered
inputs or outputs, output enable control, etc.) can be
defined. In keeping with its data path application focus,
the ispGDXVA devices contain no programmable logic
arrays. All input pins include Schmitt trigger buffers for
noise immunity. These connections are programmed
into the device using non-volatile E
2
CMOS technology.
Non-volatile technology means the device configuration
is saved even when the power is removed from the
device.
In addition, there are no pin-to-pin routing constraints for
1:1 or 1:n signal routing. That is,
any I/O pin configured
as an input can drive one or more I/O pins configured as
outputs.
The device pins also have the ability to set outputs to
fixed HIGH or LOW logic levels (Jumper or DIP Switch
mode). Device outputs are specified for 24mA sink and
12mA source current (at JEDEC LVTTL levels) and can
be tied together in parallel for greater drive. On the
ispGDXVA, each I/O pin is individually programmable for
3.3V or 2.5V output levels as described later. Program-
mable output slew rate control can be defined
independently for each I/O pin to reduce overall ground
bounce and switching noise.
All I/O pins are equipped with IEEE1149.1-compliant
Boundary Scan Test circuitry for enhanced testability. In
addition, in-system programming is supported through
the Test Access Port via a special set of private com-
mands.
The ispGDXVA I/Os are designed to withstand "live
insertion" system environments. The I/O buffers are
disabled during power-up and power-down cycles. When
designing for "live insertion," absolute maximum rating
conditions for the Vcc and I/O pins must still be met.
Table 1. ispGDXVA Family Members
ispGDXVA Device
ispGDX160VA
I/O Pins
160
I/O-OE Inputs*
40
I/O-CLK / CLKEN Inputs*
40
I/O-MUXsel1 Inputs*
40
I/O-MUXsel2 Inputs*
40
BSCAN Interface
4
RESET
1
Pin Count/Package
208-Pin PQFP
208-Ball fpBGA
272-Ball BGA
* The CLK/CLK_EN, OE, MUX0 and MUX1 terminals on each I/O cell can each be assigned to
25% of the I/Os.
** Global clock pins Y0, Y1, Y2 and Y3 are multiplexed with CLKEN0, CLKEN1, CLKEN2 and
CLKEN3 respectively in all devices.
TOE
1
Dedicated Clock Pins**
4
EPEN
1
80
20
20
20
20
4
1
100-Pin TQFP
1
2
1
240
60
60
60
60
4
1
388-Ball fpBGA
1
4
1
ispGDX80VA
ispGDX240VA
3
Specifications
ispGDX240VA
Architecture
The ispGDXVA architecture is different from traditional
PLD architectures, in keeping with its unique application
focus. The block diagram is shown below. The program-
mable interconnect consists of a single Global Routing
Pool (GRP). Unlike ispLSI
devices, there are no pro-
grammable logic arrays on the device. Control signals for
OEs, Clocks/Clock Enables and MUX Controls must
come from designated sets of I/O pins. The polarity of
these signals can be independently programmed in each
I/O cell.
Each I/O cell drives a unique pin. The OE control for each
I/O pin is independent and may be driven via the GRP by
one of the designated I/O pins (I/O-OE set). The I/O-OE
set consists of 25% of the total I/O pins. Boundary Scan
test is supported by dedicated registers at each I/O pin.
In-system programming is accomplished through the
standard Boundary Scan protocol.
The various I/O pin sets are also shown in the block
diagram below. The A, B, C, and D I/O pins are grouped
together with one group per side.
I/O Architecture
Each I/O cell contains a 4:1 dynamic MUX controlled by
two select lines as well as a 4x4 crossbar switch con-
trolled by software for increased routing flexiability (Figure
1). The four data inputs to the MUX (called M0, M1, M2,
and M3) come from I/O signals in the GRP and/or
adjacent I/O cells. Each MUX data input can access one
quarter of the total I/Os. For example, in a 240-I/O
ispGDXVA, each data input can connect to one of 60 I/O
pins. MUX0 and MUX1 can be driven by designated I/O
pins called MUXsel1 and MUXsel2. Each MUXsel input
covers 25% of the total I/O pins (e.g. 60 out of 240). MUX0
and MUX1 can be driven from either MUXsel1 or MUXsel2.
Figure 1. ispGDXVA I/O Cell and GRP Detail (240 I/O Device)
I/OCell 0
I/O Cell 1
I/O Cell 118
I/O Cell 119
120 I/O Cells
Boundary
Scan Cell
Bypass Option
I/O Cell N
Register
or Latch
I/O
Pin
Prog.
Pull-up
(VCCIO)
Prog. Slew Rate
D
A
B
CLK
Reset
Q
4-to-1 MUX
240 Input GRP
Inputs Vertical
Outputs Horizontal
I/O Cell 239
I/O Cell 238
I/O Cell 121
M0
I/O Group A
I/O Group B
I/O Group C
I/O Group D
M1
4x4
Crossbar
Switch
M2
M3
MUX1
MUX0
Global
Reset
I/O Cell 120
120 I/O Cells
ispGDXVA architecture enhancements over ispGDX (5V)
E
2
CMOS
Programmable
Interconnect
Logic "0" Logic "1"
240 I/O Inputs
C
R
Y0-Y3
Global
Clocks /
Clock_Enables
Prog.
Bus Hold
Latch
CLK_EN
From MUX Outputs
of 2 Adjacent I/O Cells
From MUX Outputs
of 2 Adjacent I/O Cells
To 2 Adjacent
I/O Cells above
To 2 Adjacent
I/O Cells below
Prog. Open Drain
2.5V/3.3V Output
N+1
N+2
N-1
N-2
4
Specifications
ispGDX240VA
Flexible mapping of MUXsel
x
to MUX
x
allows the user to
change the MUX select assignment after the ispGDXVA
device has been soldered to the board. Figure 1 shows
that the I/O cell can accept (by programming the appro-
priate fuses) inputs from the MUX outputs of four adjacent
I/O cells, two above and two below. This enables cascad-
ing of the MUXes to enable wider (up to 16:1) MUX
implementations.
The I/O cell also includes a programmable flow-through
latch or register that can be placed in the input or output
path and bypassed for combinatorial outputs. As shown
in Figure 1, when the input control MUX of the register/
latch selects the "A" path, the register/latch gets its inputs
from the 4:1 MUX and drives the I/O output. When
selecting the "B" path, the register/latch is directly driven
by the I/O input while its output feeds the GRP. The
programmable polarity Clock to the latch or register can
be connected to any I/O in the I/O-CLK/CLKEN set (one-
quarter of total I/Os) or to one of the dedicated clock input
pins (Y
x
). The programmable polarity Clock Enable input
to the register can be programmed to connect to any of
the I/O-CLK/CLKEN input pin set or to the global clock
enable inputs (CLKEN
x
). Use of the dedicated clock
inputs gives minimum clock-to-output delays and mini-
mizes delay variation with fanout. Combinatorial output
mode may be implemented by a dedicated architecture
bit and bypass MUX. I/O cell output polarity can be
programmed as active high or active low.
MUX Expander Using Adjacent I/O Cells
The ispGDXVA allows adjacent I/O cell MUXes to be
cascaded to form wider input MUXes (up to 16 x 1)
without incurring an additional full Tpd penalty. However,
there are certain dependencies on the locality of the
adjacent MUXes when used along with direct MUX
inputs.
Adjacent I/O Cells
Expansion inputs MUXOUT[n-2], MUXOUT[n-1],
MUXOUT[n+1], and MUXOUT[n+2] are fuse-selectable
for each I/O cell MUX. These expansion inputs share the
same path as the standard A, B, C and D MUX inputs, and
allow adjacent I/O cell outputs to be directly connected
without passing through the global routing pool. The
relationship between the [N+i] adjacent cells and A, B, C
and D inputs will vary depending on where the I/O cell is
located on the physical die. The I/O cells can be grouped
into "normal" and "reflected" I/O cells or I/O "hemi-
spheres." These are defined as:
I/O MUX Operation
MUX1
MUX0
Data Input Selected
0
0
M0
0
1
M1
1
1
M2
1
0
M3
Device
Normal I/O Cells
Reflected I/O Cells
B9-B0, A19-A0,
D19-D10
B10-B19, C0-C19,
D0-D9
B19-B0, A39-A0,
D39-D20
B20-B39, C0-C39,
D0-D19
ispGDX80VA
ispGDX160VA
ispGDX240VA
B29-B0, A59-A0,
D59-D30
B30-B59, C0-C59,
D0-D29
Table 2 shows the relationship between adjacent I/O
cells as well as their relationship to direct MUX inputs.
Note that the MUX expansion is circular and that I/O cell
B30, for example, draws on I/Os B29 and B28, as well as
B31 and B32, even though they are in different hemi-
spheres of the physical die. Table 2 shows some typical
cases and all boundary cases. All other cells can be
extrapolated from the pattern shown in the table.
D30
D29
B29
B30
A0
A59
C59
C0
D59
B0
D0
B59
I/O cell 0
I/O cell 239
I/O cell 119
I/O cell 120
I/O cell index increases in this direction
I/O cell index increases in this direction
Figure 2. I/O Hemisphere Configuration of
ispGDX240VA
Direct and Expander Input Routing
Table 2 also illustrates the routing of MUX direct inputs
that are accessible when using adjacent I/O cells as
inputs. Take I/O cell D33 as an example, which is also
shown in Figure 3.
5
Specifications
ispGDX240VA
B30
B31
B32
B33
D26
D27
D28
D29
D30
D31
D32
D33
B26
B27
B28
B29
B32
B33
B34
B35
D28
D29
D30
D31
D28
D29
D30
D31
B24
B25
B26
B27
B31
B32
B33
B34
D27
D28
D29
D30
D29
D30
D31
D32
B25
B26
B27
B28
B29
B30
B31
B32
D25
D26
D27
D28
D31
D32
D33
D34
B27
B28
B29
B30
B28
B29
B30
B31
D24
D25
D26
D27
D32
D33
D34
D35
B28
B29
B30
B31
Data D/
MUXOUT
Data C/
MUXOUT
Data B/
MUXOUT
Data A/
MUXOUT
Reflected
I/O Cells
Normal
I/O Cells
Table 2. Adjacent I/O Cells (Mapping of
ispGDX240VA)
It can be seen from Figure 3 that if the D31 adjacent I/O
cell is used, the I/O group "A" input is no longer available
as a direct MUX input.
The ispGDXVA can implement MUXes up to 16 bits wide
in a single level of logic, but care must be taken when
combining adjacent I/O cell outputs with direct MUX
inputs. Any particular combination of adjacent I/O cells as
MUX inputs will dictate what I/O groups (A, B, C or D) can
be routed to the remaining inputs. By properly choosing
the adjacent I/O cells, all of the MUX inputs can be
utilized.
S0
S1
4 x 4
Crossbar
Switch
.m0
.m1
.m2
.m3
D33
I/O Group A
D31 MUX Out
I/O Group B
D32 MUX Out
I/O Group C
D34 MUX Out
I/O Group D
D35 MUX Out
ispGDX240VA I/O Cell
Figure 3. Adjacent I/O Cells vs. Direct Input Path for
ispGDX240VA, I/O D33
Special Features
Slew Rate Control
All output buffers contain a programmable slew rate
control that provides software-selectable slew rate op-
tions.
Open Drain Control
All output buffers provide a programmable Open-Drain
option which allows the user to drive system level reset,
interrupt and enable/disable lines directly without the
need for an off-chip Open-Drain or Open-Collector buffer.
Wire-OR logic functions can be performed at the printed
circuit board level.
Pull-up Resistor
All pins have a programmable active pull-up. A typical
resistor value for the pull-up ranges from 50k
to 80k
.
Output Latch (Bus Hold)
All pins have a programmable circuit that weakly holds
the previously driven state when all drivers connected to
the pin (including the pin's output driver as well as any
other devices connected to the pin by external bus) are
tristated.
User-Programmable I/Os
The ispGDX240VA features user-programmable
I/Os supporting either 3.3V or 2.5V output voltage level
options. The ispGDX240VA uses a VCCIO pin to provide
the 2.5V reference voltage when used.
PCI Compatible Drive Capability
The ispGDX240VA supports PCI compatible drive capa-
bility for all I/Os.
6
Specifications
ispGDX240VA
The ispGDXVA Family architecture has been developed
to deliver an in-system programmable signal routing
solution with high speed and high flexibility. The devices
are targeted for three similar but distinct classes of end-
system applications:
Programmable, Random Signal
Interconnect (PRSI)
This class includes PCB-level programmable signal rout-
ing and may be used to provide arbitrary signal swapping
between chips. It opens up the possibilities of program-
mable system hardware. It is characterized by the need
to provide a large number of 1:1 pin connections which
are statically configured, i.e., the pin-to-pin paths do not
need to change dynamically in response to control in-
puts.
Programmable Data Path (PDP)
This application area includes system data path trans-
ceiver, MUX and latch functions. With today's 32- and
64-bit microprocessor buses, but standard data path glue
components still relegated primarily to eight bits, PCBs
are frequently crammed with a dozen or more data path
glue chips that use valuable real estate. Many of these
applications consist of "on-board" bus and memory inter-
faces that do not require the very high drive of standard
glue functions but can benefit from higher integration.
Therefore, there is a need for a flexible means to inte-
grate these on-board data path functions in an analogous
way to programmable logic's solution to control logic
integration. Lattice's CPLDs make an ideal control logic
complement to the ispGDXVA in-system programmable
data path devices as shown below.
Data Path
Bus #1
Control
Inputs
(from
P)
Address
Inputs
(from
P)
Control
Outputs
System
Clock(s)
Data Path
Bus #2
Configuration
(Switch)
Outputs
ISP/JTAG
Interface
ispLSI/
ispMACH
Device
ispGDXVA
Device
Buffers / Registers
Decoders
Buffers / Registers
State Machines
Figure 4. ispGDXVA Complements Lattice CPLDs
Applications
Programmable Switch Replacement (PSR)
Includes solid-state replacement and integration of me-
chanical DIP Switch and jumper functions. Through
in-system programming, pins of the ispGDXVA devices
can be driven to HIGH or LOW logic levels to emulate the
traditional device outputs. PSR functions do not require
any input pin connections.
These applications actually require somewhat different
silicon features. PRSI functions require that the device
support arbitrary signal routing on-chip between any two
pins with no routing restrictions. The routing connections
are static (determined at programming time) and each
input-to-output path operates independently. As a result,
there is little need for dynamic signal controls (OE,
clocks, etc.). Because the ispGDXVA device will inter-
face with control logic outputs from other components
(such as ispLSI or ispMACHTM) on the board (which
frequently change late in the design process as control
logic is finalized), there must be no restrictions on pin-to-
pin signal routing for this type of application.
PDP functions, on the other hand, require the ability to
dynamically switch signal routing (MUXing) as well as
latch and tri-state output signals. As a result, the pro-
grammable interconnect is used to define
possible signal
routes that are then selected dynamically by control
signals from an external MPU or control logic. These
functions are usually formulated early in the conceptual
design of a product. The data path requirements are
driven by the microprocessor, bus and memory architec-
ture defined for the system. This part of the design is the
earliest portion of the system design frozen, and will not
usually change late in the design because the result
would be total system and PCB redesign. As a result, the
ability to accommodate
arbitrary any pin-to-any pin re-
routing is not a strong requirement as long as the designer
has the ability to define his functions with a reasonable
degree of freedom initially.
As a result, the ispGDXVA architecture has been defined
to support PSR and PRSI applications (including bidirec-
tional paths) with no restrictions, while PDP applications
(using dynamic MUXing) are supported with a minimal
number of restrictions as described below. In this way,
speed and cost can be optimized and the devices can still
support the system designer's needs.
The following diagrams illustrate several ispGDXVA ap-
plications.
7
Specifications
ispGDX240VA
Figure 6. Data Bus Byte Swapper
Figure 7. Four-Port Memory Interface
Contr
ol Bus
Data Bus A
Data Bus B
OEA OEB
I/OA
D0-7
D8-15
D8-15
D0-7
I/OB
XCVR
OEA OEB
I/OA
I/OB
XCVR
OEA OEB
I/OA
I/OB
XCVR
OEA OEB
I/OA
I/OB
XCVR
Bus 4
Bus 3
Bus 2
Bus 1
Port #1
OE1
Memory
Port
OEM
SEL0
SEL1
To
Memory
Port #2
OE2
Port #3
OE3
Note: All OE and SEL lines driven by external arbiter logic (not shown).
Port #4
OE4
4-to-1
16-Bit MUX
Bidirectional
Figure 5. Address Demultiplex/Data Buffering
Contr
ol Bus
MUXed Ad
dress Data Bus
D
Q
CLK
OEA
OEB
I/OA
I/OB
Address
Buffered
Data
To Memory/
Peripherals
XCVR
Address
Latch
Applications (Continued)
Designing with the ispGDXVA
As mentioned earlier, this architecture satisfies the PRSI
class of applications without restrictions: any I/O pin as a
single input or bidirectional can drive any other I/O pin as
output.
For the case of PDP applications, the designer does have
to take into consideration the limitations on pins that can
be used as control (MUX0, MUX1, OE, CLK) or data
(MUXA-D) inputs. The restrictions on control inputs are
not likely to cause any major design issues because the
input possibilities span 25% of the total pins.
The MUXA-D input partitioning requires that designers
consciously assign pinouts so that MUX inputs are in the
appropriate, disjoint groups. For example, since the
MUXA group includes I/O A0-39 (240 I/O device), it is not
possible to use I/O A0 and I/O A9 in the same MUX
function. As previously discussed, data path functions
will be assigned early in the design process and these
restrictions are reasonable in order to optimize speed
and cost.
User Electronic Signature
The ispGDXVA Family includes dedicated User Elec-
tronic Signature (UES) E
2
CMOS storage to allow users
to code design-specific information into the devices to
identify particular manufacturing dates, code revisions,
or the like. The UES information is accessible through
the boundary scan programming port via a specific com-
mand. This information can be read even when the
security cell is programmed.
Security
The ispGDXVA Family includes a security feature that
prevents reading the device program once set. Even
when set, it does not inhibit reading the UES or device ID
code. It can be erased only via a device bulk erase.
8
Specifications
ispGDX240VA
Absolute Maximum Ratings
1,2
Supply Voltage V
cc
................................. -0.5 to +5.4V
Input Voltage Applied ............................... -0.5 to +5.6V
Off-State Output Voltage Applied ............ -0.5 to +5.6V
Storage Temperature ................................ -65 to 150
C
Case Temp. with Power Applied .............. -55 to 125
C
Max. Junction Temp. (T
J
) with Power Applied ... 150
C
1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification
is not implied (while programming, follow the programming specifications).
2. Compliance with the Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM is a requirement.
DC Recommended Operating Conditions
C
SYMBOL
Table 2-0006/gdxva
C
PARAMETER
PACKAGE TYPE
Dedicated Clock Capacitance
10
UNITS
TYPICAL
TEST CONDITIONS
1
2
10
fpBGA
fpBGA
I/O Capacitance
pf
pf
V = 3.3V, V = 2.0V
V = 3.3V, V = 2.0V
CC
CC
Y
I/O
Capacitance (T
A
=25
o
C, f=1.0 MHz)
PARAMETER
MINIMUM
MAXIMUM
UNITS
Erase/Reprogram Cycles
10,000
--
Cycles
Erase/Reprogram Specifications
SYMBOL
Table 2-0005/gdxva
V
CC
V
CCIO
PARAMETER
Supply Voltage
I/O Reference Voltage
Commercial
T
A
= 0
C to +70
C
MIN.
MAX.
UNITS
3.00
2.3
3.60
3.60
V
Industrial
T
A
= -40
C to +85
C
3.00
3.60
V
V
9
Specifications
ispGDX240VA
Switching Test Conditions
Input Pulse Levels
Input Rise and Fall Time
Input Timing Reference Levels
Output Timing Reference Levels
Output Load
GND to V
CCIO(MIN)
<
1.5ns 10% to 90%
V
CCIO(MIN)
/2
V
CCIO(MIN)
/2
See Figure 8
3-state levels are measured 0.5V from steady-state active level.
Output Load Conditions (See Figure 8)
TEST CONDITION
R1
3.3V
2.5V
R2
CL
A
35pF
D
35pF
B
35pF
35pF
Active High
Slow Slew
Active Low
C
5pF
5pF
156
156
156
144
144
144
R1
R2
153
153
153
134
134
134
Active Low to Z
at V +0.5V
OL
Active High to Z
at V -0.5V
OH
Table 2-0004A/gdxva
DC Electrical Characteristics for 3.3V Range
Over Recommended Operating Conditions
Figure 8. Test Load
V
CCIO
R1
R2
CL
*
Device
Output
Test
Point
*
CL includes Test Fixture and Probe Capacitance.
0213D
V
OL
SYMBOL
1. Typical values are at V
CC
= 3.3V and T
A
= 25
C.
Table 2-0007/gdxva
V
OH
V
IH
V
IL
PARAMETER
Output Low Voltage
Output High Voltage
Input High Voltage
Input Low Voltage
V
CC
=
V
CC (MIN)
I
OL
=
+100
A
I
OL
=
+24mA
I
OH
=
-100
A
I
OH
=
-12mA
V
CC
=
V
CC (MIN)
V
OH
V
OUT
or V
OUT
V
OL(MAX)
V
OH
V
OUT
or V
OUT
V
OL (MAX)
CONDITION
MIN.
TYP.
MAX.
UNITS
1
2.8
2.0
-0.3
0.2
5.25
0.8
V
0.55
V
V
2.4
V
V
CCIO
I/O Reference Voltage
3.0
3.6
V
V
V
10
Specifications
ispGDX240VA
DC Electrical Characteristics for 2.5V Range
Over Recommended Operating Conditions
V
IH
SYMBOL
2.5V/gdxva
V
OH
PARAMETER
Input High Voltage
Output High Voltage
V
OH(MIN)
V
OUT
or V
OUT
V
OL(MAX)
V
OH(MIN)
V
OUT
or V
OUT
V
OL(MAX)
V
CCIO=MIN
,
I
OH
=
-8mA
V
CCIO=MIN
,
I
OL
=
8mA
CONDITION
MIN.
TYP.
MAX.
UNITS
1.7
1.8
5.25
V
V
CCIO
V
IL
I/O Reference Voltage
Input Low Voltage
2.3
-0.3
2.7
0.7
V
V
V
V
CCIO=MIN
,
I
OH
=
-100A
2.1
V
0.6
V
V
CCIO=MIN
,
I
OL
=
100A
0.2
V
V
OL
Output Low Voltage
DC Electrical Characteristics
Over Recommended Operating Conditions
SYMBOL
1. One output at a time for a maximum of one second. V
OUT
=
0.5V was selected to avoid test problems by
tester ground degradation. Characterized, but not 100% tested.
2. Typical values are at V
CC
=
3.3V and T
A
=
25
C.
3. I
CC
/ MHz = (0.0025 x I/O cell fanout) + 0.042.
e.g. An input driving four I/O cells at 40MHz results in a dynamic I
CC
of approximately ((0.0025 x 4) + 0.042) x 40 = 2.08mA.
4. For a typical application with 50% of I/O pins used as inputs, 50% used as outputs or bi-directionals.
5. This parameter limits the total current sinking of I/O pins surrounding the nearest GND pin.
DC Char_gdxva
I
PU
I
BHLS
PARAMETER
I/O Active Pullup Current
Bus Hold Low Sustaining Current
I
IH
I
IL
Input or I/O High Leakage Current
Input or I/O Low Leakage Current
0V
V
IN
V
IL (MAX)
CONDITION
MIN.
TYP.
2
MAX.
UNITS
-10
10
-200
50
A
I
BHT
Bus Hold Trip Points
V
IL
V
IH
V
A
A
A
40
A
(V
CCIO
-0.2)
V
IN
V
CCIO
V
CCIO
V
IN
5.25V
0V
V
IN
V
IL (MAX)
I
OS
1
Output Short Circuit Current
-250
mA
V
CC
=
3.3V, V
OUT
=
0.5V, T
A
=
25
C
I
CCQ
4
Quiescent Power Supply Current
20
mA
V
IL
=
0.5V, V
IH
=
V
CC
V
IN
=
V
IL (MAX)
I
BHHS
Bus Hold High Sustaining Current
-40
A
V
IN
=
V
IH (MIN)
I
BHLO
Bus Hold Low Overdrive Current
550
A
0V
V
IN
V
CCIO
I
CC
Dynamic Power Supply Current
per Input Switching
One input toggling at 50% duty cycle,
outputs open.
See
Note 3
mA/
MHz
I
CONT
5
Maximum Continuous I/O Pin Sink
Current Through Any GND Pin
135
mA
I
BHHO
Bus Hold High Overdrive Current
-550
A
0V
V
IN
V
CCIO
11
Specifications
ispGDX240VA
7.0
7.0
7.0
11.0
9.0
13.0
8.5
8.5
8.5
8.5
18.0
4.0
0.5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Data Prop. Delay from Any I/O Pin to Any I/O Pin (4:1 MUX)
Data Prop. Delay from MUXsel Inputs to Any Output (4:1 MUX)
Clk. Frequency, Max. Toggle
Clk. Frequency with External Feedback
Input Latch or Reg. Setup Time Before Y
x
Input Latch or Reg. Setup Time Before I/O Clk.
Output Latch or Reg. Setup Time Before Y
x
Output Latch or Reg. Setup Time Before I/O Clk.
Global Clock Enable Setup Time Before Y
x
Global Clock Enable Setup Time Before I/O Clock
I/O Clock Enable Setup Time Before Y
x
Input Latch or Reg. Hold Time (Y
x
)
Input Latch or Reg. Hold Time (I/O Clock)
Output Latch or Reg. Hold Time (Y
x
)
Output Latch or Reg. Hold Time (I/O Clock)
Global Clock Enable Hold Time (Y
x
)
Global Clock Enable Hold Time (I/O Clock)
I/O Clock Enable Hold Time (Y
x
)
Output Latch or Reg. Clk (from Y
x
) to Output Delay
Input Latch or Register Clk (from Y
x
) to Output Delay
Output Latch or Reg. Clk. (from I/O pin) to Output Delay
Input Latch or Reg. Clk. (from I/O pin) to Output Delay
Input to Output Enable
Input to Output Disable
Test OE Output Enable
Test OE Output Disable
Clk. Pulse Duration, High
Clk. Pulse Duration, Low
Reg. Reset Delay from RESET Low
Reset Pulse Width
Output Delay Adder for Output Timings Using Slow Slew Rate
Output Skew (tgco1 Across Chip)
External Timing Parameters
Over Recommended Operating Conditions
ns
ns
MHz
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
100.0
80.0
5.5
4.5
5.5
4.5
3.5
2.5
6.5
0.0
2.5
0.0
2.5
0.0
2.5
0.0
5.0
5.0
14.0
A
A
A
A
A
A
B
C
B
C
D
A
t
pd
2
t
sel
2
f
max (Tog.)
f
max (Ext.)
t
su1
t
su2
t
su3
t
su4
t
suce1
t
suce2
t
suce3
t
h1
t
h2
t
h3
t
h4
t
hce1
t
hce2
t
hce3
t
gco1
2
t
gco2
2
t
co1
2
t
co2
2
t
en
2
t
dis
2
t
toeen
2
t
toedis
2
t
wh
t
wl
t
rst
t
rw
t
sl
t
sk
DESCRIPTION
PARAMETER
( )
1
tsu3+tgco1
UNITS
-10
MIN. MAX.
1. All timings measured with one output switching, fast output slew rate setting, except
t
sl
.
2. The delay parameters are measured with Vcc as I/O voltage reference. An additional 0.5ns delay is incurred when Vccio is
used as I/O voltage reference.
#
4.5
4.5
4.0
7.0
5.0
8.0
5.0
5.0
6.5
6.5
12.0
4.0
0.5
200.0
153.8
2.5
1.5
2.5
1.5
2.5
1.5
3.0
0.0
1.0
0.0
1.0
0.0
1.0
0.0
2.5
2.5
7.5
-7
MIN. MAX.
TEST
1
COND.
-4
MIN. MAX.
10.0
10.0
10.0
15.5
12.5
18.0
12.0
12.0
12.0
12.0
25.0
4.0
1.0
71.0
56.0
8.0
6.5
8.0
6.5
5.0
3.5
9.0
0.0
3.5
0.0
3.5
0.0
3.5
0.0
7.0
7.0
18.0
Timing ver. 2.8
12
Specifications
ispGDX240VA
External Timing Parameters (Continued)
1.0
0.0
0 4 10
20
30
40
50
60
70
0.2
0.4
0.6
0.8
1.2
1.4
1.6
GRP Delay (ns)
I/O Cell Fanout
ispGDX240VA Maximum
GRP Delay vs. I/O Cell Fanout
ispGDX240VA timings are specified with a GRP load
(fanout) of four I/O cells. The figure below shows the
GRP Delay with increased GRP loads. These deltas
apply to any signal path traversing the GRP (MUXA-D,
OE, CLK/CLKEN, MUXsel0-1). Global Clock signals
which do not use the GRP have no fanout delay adder.
13
Specifications
ispGDX240VA
-4
-7
-10
PARAMETER #
DESCRIPTION
1
MIN. MAX. MIN. MAX. MIN. MAX. UNITS
Inputs
t
io
32
Input Buffer Delay
--
0.8
--
1.4
--
2.1
ns
GRP
t
grp
33
GRP Delay
--
1.1
--
1.1
--
1.1
ns
MUX
t
muxd
34
I/O Cell MUX A/B/C/D Data Delay
--
1.3
--
2.0
--
2.8
ns
t
muxexp
35
I/O Cell MUX A/B/C/D Expander Delay
--
1.8
--
2.5
--
3.3
ns
t
muxs
36
I/O Cell Data Select
--
1.3
--
2.0
--
2.8
ns
t
muxsio
37
I/O Cell Data Select (I/O Clock)
--
2.3
--
4.5
--
6.0
ns
t
muxsg
38
I/O Cell Data Select (Yx Clock)
--
2.3
--
2.5
--
5.0
ns
t
muxselexp
39
I/O Cell MUX Data Select Expander Delay
--
1.8
--
2.5
--
3.3
ns
Register
t
iolat
40
I/O Latch Delay
--
1.0
--
1.0
--
1.0
ns
t
iosu
41
I/O Register Setup Time Before Clock
--
0.3
--
3.2
--
5.0
ns
t
ioh
42
I/O Register Hold Time After Clock
--
2.2
--
2.3
--
2.5
ns
t
ioco
43
I/O Register Clock to Output Delay
--
0.5
--
0.5
--
0.4
ns
t
ior
44
I/O Reset to Output Delay
--
1.5
--
1.5
--
1.5
ns
t
cesu
45
I/O Clock Enable Setup Time Before Clock
--
2.0
--
2.5
--
2.0
ns
t
ceh
46
I/O Clock Enable Hold Time After Clock
--
0.0
--
1.0
--
3.0
ns
Data Path
t
fdbk
47
I/O Register Feedback Delay
--
0.8
--
1.2
--
1.5
ns
t
iobp
48
I/O Register Bypass Delay
--
0.0
--
0.3
--
0.8
ns
t
ioob
49
I/O Register Output Buffer Delay
--
0.2
--
0.6
--
0.7
ns
t
muxcg
50
I/O Register A/B/C/D Data Input MUX Delay (Yx Clock) --
2.3
--
2.5
--
5.0
ns
t
muxcio
51
I/O Register A/B/C/D Data Input MUX Delay (I/O Clock) --
2.3
--
4.5
--
6.0
ns
t
iodg
52
I/O Register I/O MUX Delay (Yx Clock)
--
4.2
--
5.0
--
8.7
ns
t
iodio
53
I/O Register I/O MUX Delay (I/O Clock)
--
4.2
--
7.0
--
9.7
ns
Outputs
t
ob
54
Output Buffer Delay
--
1.3
--
2.2
--
3.2
ns
t
obs
55
Output Buffer Delay (Slow Slew Option)
--
5.3
--
6.2
--
7.2
ns
t
oeen
56
I/O Cell OE to Output Enable
--
3.1
--
6.0
--
8.2
ns
t
oedis
57
I/O Cell OE to Output Disable
--
3.1
--
6.0
--
8.2
ns
t
goe
58
GRP Output Enable and Disable Delay
--
0.0
--
0.0
--
0.6
ns
t
toe
59
Test OE Enable and Disable Delay
--
3.4
--
2.5
--
3.8
ns
Clocks
t
ioclk
60
I/O Clock Delay
--
1.1
--
3.2
--
5.0
ns
t
gclk
61
Global Clock Delay
--
2.0
--
2.7
--
5.7
ns
t
gclkeng
62
Global Clock Enable (Yx Clock)
--
2.0
--
3.7
--
8.7
ns
t
gclkenio
63
Global Clock Enable (I/O Clock)
--
2.0
--
5.7
--
9.7
ns
t
ioclkeng
64
I/O Clock Enable (Yx Clock)
--
1.1
--
4.2
--
8.0
ns
Global Reset
t
gr
65
Global Reset to I/O Register Latch
--
9.0
--
13.7
--
19.6
ns
Internal Timing Parameters
1
Over Recommended Operating Conditions
1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to the Timing Model in this data sheet for further details.
Timing ver. 2.8
14
Specifications
ispGDX240VA
Switching Waveforms
Clock Width
CLK
(I/O INPUT)
t
wl
t
wh
COMBINATORIAL
I/O OUTPUT
VALID INPUT
DATA (I/O INPUT)
t
pd
t
sel
VALID INPUT
MUXSEL (I/O INPUT)
Combinatorial Output
COMBINATORIAL
I/O OUTPUT
OE (I/O INPUT)
t
en
t
dis
I/O Output Enable/Disable
Registered Output
Reset
REGISTERED
I/O OUTPUT
t
rst
RESET
t
rw
I/O Pin
RESET
TOE
Y0,1,2,3
Y0,1,2,3, Enable
tgclk #61
tgclkeng #62
tgclkenio #63
MUX0
MUX1
tgrp #33
MUX Expander Input
GRP
A
B
C
D
OE
tgoe #58
tmuxexp #35
tmuxselexp #39
tiobp #48
CLK
CLKEN
MUX Expander Output
tioob #49
tmuxd #34
tmuxs #36
tmuxio #37
tmuxg #38
tmuxcg #50
tmuxcio #51
tiod #52, #53
tgr #65
0902/gdx160v/va
tio #32
tfdbk #47
tioclk #60
tioclkeg #64
tiolat #40
tiosu #41
tioh #42
tioco #43
tior #44
tcesu #45
tceh #46
tob #54
tobs #55
toeen #56
toedis #57
ttoe #59
CLK
CLKEN
D
Q
DATA
(I/O INPUT)
REGISTERED
I/O OUTPUT
CLK
CLKEN
VALID INPUT
t
t
h
t
suce
t
ceh
t
co
1/
f
max
(external fdbk)
t
gco
su
ispGDXVA Timing Model
15
Specifications
ispGDX240VA
ispLEVER Development System
The ispLEVER Development System supports ispGDX
design using a VHDL or Verilog language syntax. From
creation to in-system programming, the ispLEVER sys-
tem is an easy-to-use, self-contained design tool.
Features
VHDL and Verilog Synthesis Support Available
ispGDX Design Compiler
- Design Rule Checker
- I/O Connectivity Checker
- Automatic Compiler Function
Industry Standard JEDEC File for Programming
Min/Max Timing Report
Interfaces To Popular Timing Simulators
User Electronic Signature (UES) Support
Detailed Log and Report Files For Easy Design
Debug
On-line Help
Windows
XP, Windows 2000, Windows 98 and
Windows NT
Compatible
Solaris
and HP-UX Versions Available
In-System Programmability
All necessary programming of the ispGDXVA is done via
four TTL level logic interface signals. These four signals
are fed into the on-chip programming circuitry where a
state machine controls the programming.
On-chip programming can be accomplished using an
IEEE 1149.1 boundary scan protocol. The IEEE 1149.1-
compliant interface signals are Test Data In (TDI), Test
Data Out (TDO), Test Clock (TCK) and Test Mode Select
(TMS) control. The EPEN pin is also used to enable or
disable the JTAG port.
The embedded controller port enable pin (EPEN) is used
to enable the JTAG tap controller and in that regard has
similar functionality to a TRST pin. When the pin is driven
high, the JTAG TAP controller is enabled. This is also true
when the pin is left unconnected, in which case the pin is
pulled high by the permanent internal pullup. This allows
ISP programming and BSCAN testing to take place as
specified by the Instruction Table.
When the pin is driven low, the JTAG TAP controller is
driven to a reset state asynchronously. It stays there
while the pin is held low. After pulling the pin high the
JTAG controller becomes active. The intent of this fea-
ture is to allow the JTAG interface to be directly controlled
by the data bus of an embedded controller (hence the
name Embedded Port Enable). The EPEN signal is used
as a "device select" to prevent spurious programming
and/or testing from occurring due to random bit patterns
on the data bus. Figure 5 illustrates the block diagram for
the ispJTAGTM interface.
Figure 5. ispJTAG Device Programming Interface
ispGDX
240VA
Device
TDO
TDI
TMS
TCK
EPEN
ispJTAG
Programming
Interface
ispLSI
Device
ispMACH
Device
ispGDX
240VA
Device
ispGDX
240VA
Device
16
Specifications
ispGDX240VA
Boundary Scan
The ispGDXVA devices provide IEEE1149.1a test capa-
bility and ISP programming through a standard Boundary
Scan Test Access Port (TAP) interface.
The boundary scan circuitry on the ispGDXVA Family
operates independently of the programmed pattern. This
allows customers using boundary scan test to have full
test capability with only a single BSDL file.
Table 2. I/O Shift Register Order
I/O Shift Reg Order/ispGDX240
ispGDX240VA
TDI, TOE, Y2, Y3,
RESET
, Y1, Y0, I/O B30 .. B59, I/O C0 .. C59, I/O D0 .. D29, I/O B29 .. B0,
I/O A59.. A0, I/O D59 .. D30, TDO
I/O SHIFT REGISTER ORDER
DEVICE
Table 3. ispGDX240VA Device ID Codes
ID Code/GDX240VA
ispGDX240VA
0001, 0000, 0011, 0101, 0100, 0000, 0100, 0011
32-BIT BOUNDARY SCAN ID CODE
DEVICE
The ispGDXVA devices are identified by the 32-bit JTAG
IDCODE register. The device ID assignments are listed
in Table 3.
The ispJTAG programming is accomplished by execut-
ing Lattice private instructions under the Boundary Scan
State Machine.
Contact Lattice Applications to obtain more detailed
programming information.
Figure 7. Boundary Scan I/O Register Cell
D
Q
M
U
X
D
Q
D
Q
D
Q
D
Q
M
U
X
M
U
X
M
U
X
M
U
X
Normal
Function
OE
I/O Pin
EXTEST
Update DR
SCANOUT (to next cell)
Clock DR
SCANIN
(from
previous
cell)
Shift DR
Normal
Function
OE
TOE
17
Specifications
ispGDX240VA
1
0
0
1
1
0
0
1
0
0
0
0
1
0
1
1
0
1
0
1
1
1
0
1
0
0
1
1
1
0
0
1
Update-IR
Exit2-IR
Pause-IR
Exit1-IR
Shift-IR
Capture-IR
Select-IR-Scan
Update-DR
Exit2-DR
Pause-DR
Exit1-DR
Shift-DR
Capture-DR
Select-DR-Scan
Run-Test/Idle
Test-Logic-Reset
TCK
TMS or
TDI
TDO
t
su
t
h
t
co
tsu = 0.1
s (min.) th = 0.1
s (min.) tco = 0.1
s (min.)
Figure 8. Boundary Scan State Machine
18
Specifications
ispGDX240VA
I/O
Input/Output Pins These are the general purpose bidirectional data pins. When used as outputs,
each may be independently latched, registered or tristated. They can also each assume one other
control function (OE, CLK/CLKEN, and MUXsel as described in the text).
TOE
Test Output Enable Pin This pin tristates all I/O pins when a logic low is driven.
RESET
Active LOW Input Pin Resets all I/O register outputs when LOW.
Yx/CLKENx
Input Pins These can be either Global Clocks or Clock Enables.
EPEN
Input Pin JTAG TAP Controller Enable Pin. When high, JTAG operation is enabled. When low,
JTAG TAP controller is driven to reset.
TDI
Input Pin Serial data input during ISP programming or Boundary Scan mode.
TCK
Input Pin Serial data clock during ISP programming or Boundary Scan mode.
TMS
Input Pin Control input during ISP programming or Boundary Scan mode.
TDO
Output Pin Serial data output during ISP programming or Boundary Scan mode.
GND
Ground (GND)
VCC
Vcc Supply voltage (3.3V).
VCCIO
Input This pin is used if optional 2.5V output is to be used. Every I/O can independently select either
3.3V or the optional voltage as its output level. If the optional output voltage is not required, this pin
must be connected to the VCC supply. Programmable pull-up resistors and bus-hold latches only draw
current from this supply.
NC
1
No Connect.
Signal Descriptions
Signal Name Description
1. NC pins are not to be connected to any active signals, VCC or GND.
Signal Locations: ispGDX240VA
Signal
388-Ball fpBGA
TOE
L22
RESET
L21
Y0/CLKEN0
M4
Y1/CLKEN1
L3
Y2/CLKEN2
M20
Y3/CLKEN3
M21
EPEN
A11
TDI
M1
TCK
L1
TMS
L2
TDO
AB12
GND
A1, A22, B2, B21, C3, C20, D4, D19, H9, H10, H11, H12, H13, H14, J8, J9, J10, J11, J12, J13, J14, J15, K8,
K9, K10, K11, K12, K13, K14, K15, L8, L9, L10, L11, L12, L13, L14, L15, M8, M9, M10, M11, M12, M13,
M14, M15, N8, N9, N10, N11, N12, N13, N14, N15, P8, P9, P10, P11, P12, P13, P14, P15, R9, R10, R11,
R12, R13, R14, W4, W19, Y3, Y20, AA2, AA21, AB1, AB22
VCC
D6, D9, D12, D14, D17, F4, F19, G7, G8, G15, G16, H7, H16, J4, J19, L4, M19, P4, P19, R7, R16, T7, T8,
T15, T16, U4, U19, W6, W9, W11, W14, W17
VCCIO
M22
NC
1
G9, G10, G11, G12, G13, G14, H8, H15, J7, J16, K7, K16, L7, L16, M7. M16, N7, N16, P7, P16, R8,
R15, T9, T10, T11, T12, T13, T14
1. NC pins are not to be connected to any active signals, VCC or GND.
19
Specifications
ispGDX240VA
VCC
I/O A0
CLK/CLKEN
A2
I/O A1
OE
B1
I/O A2
MUXsel1
C2
I/O A3
MUXsel2
D3
I/O A4
CLK/CLKEN
C1
I/O A5
OE
D2
I/O A6
MUXsel1
D1
GND
I/O A7
MUXsel2
E3
I/O A8
CLK/CLKEN
E4
I/O A9
OE
E2
I/O A10
MUXsel1
E1
I/O A11
MUXsel2
F3
VCC
I/O A12
CLK/CLKEN
F2
I/O A13
OE
F1
I/O A14
MUXsel1
G3
GND
I/O A15
MUXsel2
G4
I/O A16
CLK/CLKEN
G2
I/O A17
OE
G1
I/O A18
MUXsel1
H3
I/O A19
MUXsel2
H4
I/O A20
CLK/CLKEN
H2
I/O A21
OE
H1
GND
I/O A22
MUXsel1
J3
I/O A23
MUXsel2
J2
VCC
I/O A24
CLK/CLKEN
J1
I/O A25
OE
K3
I/O A26
MUXsel1
K2
I/O A27
MUXsel2
K4
I/O A28
CLK/CLKEN
K1
GND
I/O A29
OE
M2
I/O A30
MUXsel1
M3
I/O A31
MUXsel2
N1
I/O A32
CLK/CLKEN
N4
I/O A33
OE
N2
I/O A34
MUXsel1
N3
I/O A35
MUXsel2
P1
VCC
I/O A36
CLK/CLKEN
P2
I/O A37
OE
P3
GND
I/O A38
MUXsel1
R1
I/O A39
MUXsel2
R2
I/O A40
CLK/CLKEN
R4
I/O A41
OE
R3
I/O A42
MUXsel1
T1
I/O A43
MUXsel2
T2
I/O A44
CLK/CLKEN
T4
GND
I/O A45
OE
T3
I/O A46
MUXsel1
U1
I/O A47
MUXsel2
U2
VCC
I/O A48
CLK/CLKEN
U3
I/O A49
OE
V1
I/O A50
MUXsel1
V2
I/O A51
MUXsel2
V4
I/O A52
CLK/CLKEN
V3
GND
I/O A53
OE
W1
I/O A54
MUXsel1
W2
I/O A55
MUXsel2
Y1
I/O A56
CLK/CLKEN
W3
I/O A57
OE
Y2
I/O A58
MUXsel1
AA1
I/O A59
MUXsel2
AB2
GND
VCC
I/O B0
CLK/CLKEN
AA3
I/O B1
OE
W5
I/O B2
MUXsel1
AB3
I/O B3
MUXsel2
Y4
I/O B4
CLK/CLKEN
AB4
I/O B5
OE
AA4
I/O B6
MUXsel1
AA5
I/O B7
MUXsel2
Y5
I/O B8
CLK/CLKEN
W7
GND
I/O B9
OE
AB5
I/O B10
MUXsel1
Y6
I/O B11
MUXsel2
AA6
VCC
I/O B12
CLK/CLKEN
AB6
I/O B13
OE
Y7
I/O B14
MUXsel1
W8
I/O B15
MUXsel2
AA7
I/O B16
CLK/CLKEN
AB7
GND
I/O B17
OE
Y8
I/O B18
MUXsel1
AA8
I/O B19
MUXsel2
AB8
I/O B20
CLK/CLKEN
Y9
I/O B21
OE
AA9
I/O B22
MUXsel1
AB9
I/O B23
MUXsel2
W10
VCC
I/O B24
CLK/CLKEN
Y10
GND
I/O B25
OE
AA10
I/O B26
MUXsel1
AB10
I/O B27
MUXsel2
W12
I/O B28
CLK/CLKEN
Y11
I/O B29
OE
AA11
I/O B30
MUXsel1
AB11
I/O B31
MUXsel2
AA12
I/O B32
CLK/CLKEN
Y12
I/O B33
OE
AB13
I/O B34
MUXsel1
AA13
GND
I/O B35
MUXsel2
Y13
VCC
I/O B36
CLK/CLKEN
AB14
I/O B37
OE
AA14
I/O B38
MUXsel1
W13
I/O B39
MUXsel2
Y14
I/O B40
CLK/CLKEN
AB15
I/O B41
OE
AA15
I/O B42
MUXsel1
Y15
GND
I/O B43
MUXsel2
AB16
I/O B44
CLK/CLKEN
AA16
I/O B45
OE
W15
I/O B46
MUXsel1
Y16
I/O B47
MUXsel2
AB17
VCC
I/O B48
CLK/CLKEN
AA17
I/O B49
OE
Y17
I/O B50
MUXsel1
AB18
GND
I/O B51
MUXsel2
W16
I/O B52
CLK/CLKEN
Y18
I/O B53
OE
AA18
I/O B54
MUXsel1
AB19
I/O B55
MUXsel2
W18
I/O B56
CLK/CLKEN
AA20
I/O B57
OE
AB20
I/O B58
MUXsel1
Y19
I/O B59
MUXsel2
AA19
GND
VCC
I/O C0
CLK/CLKEN
AB21
I/O C1
OE
AA22
I/O C2
MUXsel1
Y21
I/O C3
MUXsel2
W20
I/O C4
CLK/CLKEN
Y22
I/O C5
OE
W21
I/O C6
MUXsel1
W22
GND
I/O C7
MUXsel2
V20
I/O C8
CLK/CLKEN
V19
I/O C9
OE
V21
I/O C10
MUXsel1
V22
I/O C11
MUXsel2
U20
VCC
I/O C12
CLK/CLKEN
U21
I/O C13
OE
U22
I/O C14
MUXsel1
T20
GND
I/O C15
MUXsel2
T19
I/O C16
CLK/CLKEN
T21
I/O C17
OE
T22
I/O C18
MUXsel1
R20
I/O C19
MUXsel2
R19
I/O C20
CLK/CLKEN
R21
I/O C21
OE
R22
GND
I/O C22
MUXsel1
P20
I/O C23
MUXsel2
P21
VCC
I/O C24
CLK/CLKEN
P22
I/O C25
OE
N20
I/O C26
MUXsel1
N21
I/O C27
MUXsel2
N19
I/O C28
CLK/CLKEN
L19
I/O C29
OE
N22
GND
I/O C30
MUXsel1
L20
I/O C31
MUXsel2
K22
I/O C32
CLK/CLKEN
K19
I/O C33
OE
K21
I/O C34
MUXsel1
K20
I/O C35
MUXsel2
J22
VCC
I/O C36
CLK/CLKEN
J21
I/O C37
OE
J20
GND
I/O C38
MUXsel1
H22
I/O C39
MUXsel2
H21
I/O C40
CLK/CLKEN
H19
I/O C41
OE
H20
I/O C42
MUXsel1
G22
I/O C43
MUXsel2
G21
I/O C44
CLK/CLKEN
G19
GND
I/O C45
OE
G20
I/O C46
MUXsel1
F22
I/O C47
MUXsel2
F21
VCC
I/O C48
CLK/CLKEN
F20
I/O C49
OE
E22
I/O C50
MUXsel1
E21
I/O C51
MUXsel2
E19
I/O C52
CLK/CLKEN
E20
GND
I/O C53
OE
D22
I/O C54
MUXsel1
D21
I/O C55
MUXsel2
C22
I/O C56
CLK/CLKEN
D20
I/O C57
OE
C21
I/O C58
MUXsel1
B22
I/O C59
MUXsel2
A21
GND
VCC
I/O D0
CLK/CLKEN
B20
I/O D1
OE
D18
I/O D2
MUXsel1
A20
I/O D3
MUXsel2
C19
I/O D4
CLK/CLKEN
A19
I/O D5
OE
B19
I/O D6
MUXsel1
B18
I/O D7
MUXsel2
C18
I/O D8
CLK/CLKEN
D16
GND
I/O D9
OE
A18
I/O D10
MUXsel1
C17
I/O D11
MUXsel2
B17
VCC
I/O D12
CLK/CLKEN
A17
I/O D13
OE
C16
I/O D14
MUXsel1
D15
I/O D15
MUXsel2
B16
I/O D16
CLK/CLKEN
A16
GND
I/O D17
OE
C15
388-Ball BGA I/O Locations (Sorted by I/O)
Control
I/O #
Signal
Ball
Control
I/O #
Signal
Ball
Control
I/O #
Signal
Ball
Control
I/O #
Signal
Ball
20
Specifications
ispGDX240VA
388-Ball BGA I/O Locations (Sorted by I/O), continued
Control
I/O #
Signal
Ball
Control
I/O #
Signal
Ball
Control
I/O #
Signal
Ball
Control
I/O #
Signal
Ball
I/O D18
MUXsel1
B15
I/O D19
MUXsel2
A15
I/O D20
CLK/CLKEN
C14
I/O D21
OE
B14
I/O D22
MUXsel1
A14
I/O D23
MUXsel2
D13
VCC
I/O D24
CLK/CLKEN
C13
GND
I/O D25
OE
B13
I/O D26
MUXsel1
A13
I/O D27
MUXsel2
D11
I/O D28
CLK/CLKEN
C12
I/O D29
OE
B12
I/O D30
MUXsel1
A12
I/O D31
MUXsel2
B11
I/O D32
CLK/CLKEN
C11
I/O D33
OE
A10
I/O D34
MUXsel1
B10
GND
I/O D35
MUXsel2
C10
VCC
I/O D36
CLK/CLKEN
A9
I/O D37
OE
B9
I/O D38
MUXsel1
D10
I/O D39
MUXsel2
C9
I/O D40
CLK/CLKEN
A8
I/O D41
OE
B8
I/O D42
MUXsel1
C8
GND
I/O D43
MUXsel2
A7
I/O D44
CLK/CLKEN
B7
I/O D45
OE
D8
I/O D46
MUXsel1
C7
I/O D47
MUXsel2
A6
VCC
I/O D48
CLK/CLKEN
B6
I/O D49
OE
C6
I/O D50
MUXsel1
A5
GND
I/O D51
MUXsel2
D7
I/O D52
CLK/CLKEN
C5
I/O D53
OE
B5
I/O D54
MUXsel1
B4
I/O D55
MUXsel2
A4
I/O D56
CLK/CLKEN
C4
I/O D57
OE
A3
I/O D58
MUXsel1
D5
I/O D59
MUXsel2
B3
GND
21
Specifications
ispGDX240VA
388-Ball BGA I/O Locations (Sorted by Ball)
I/O A0
CLK/CLKEN
A2
I/O D57
OE
A3
I/O D55
MUXsel2
A4
I/O D50
MUXsel1
A5
I/O D47
MUXsel2
A6
I/O D43
MUXsel2
A7
I/O D40
CLK/CLKEN
A8
I/O D36
CLK/CLKEN
A9
I/O D33
OE
A10
I/O D30
MUXsel1
A12
I/O D26
MUXsel1
A13
I/O D22
MUXsel1
A14
I/O D19
MUXsel2
A15
I/O D16
CLK/CLKEN
A16
I/O D12
CLK/CLKEN
A17
I/O D9
OE
A18
I/O D4
CLK/CLKEN
A19
I/O D2
MUXsel1
A20
I/O C59
MUXsel2
A21
I/O A1
OE
B1
I/O D59
MUXsel2
B3
I/O D54
MUXsel1
B4
I/O D53
OE
B5
I/O D48
CLK/CLKEN
B6
I/O D44
CLK/CLKEN
B7
I/O D41
OE
B8
I/O D37
OE
B9
I/O D34
MUXsel1
B10
I/O D31
MUXsel2
B11
I/O D29
OE
B12
I/O D25
OE
B13
I/O D21
OE
B14
I/O D18
MUXsel1
B15
I/O D15
MUXsel2
B16
I/O D11
MUXsel2
B17
I/O D6
MUXsel1
B18
I/O D5
OE
B19
I/O D0
CLK/CLKEN
B20
I/O C58
MUXsel1
B22
I/O A4
CLK/CLKEN
C1
I/O A2
MUXsel1
C2
I/O D56
CLK/CLKEN
C4
I/O D52
CLK/CLKEN
C5
I/O D49
OE
C6
I/O D46
MUXsel1
C7
I/O D42
MUXsel1
C8
I/O D39
MUXsel2
C9
I/O D35
MUXsel2
C10
I/O D32
CLK/CLKEN
C11
I/O D28
CLK/CLKEN
C12
I/O D24
CLK/CLKEN
C13
I/O D20
CLK/CLKEN
C14
I/O D17
OE
C15
I/O D13
OE
C16
I/O D10
MUXsel1
C17
I/O D7
MUXsel2
C18
I/O D3
MUXsel2
C19
I/O C57
OE
C21
I/O C55
MUXsel2
C22
I/O A6
MUXsel1
D1
Control
I/O #
Signal
Ball
Control
I/O #
Signal
Ball
Control
I/O #
Signal
Ball
Control
I/O #
Signal
Ball
I/O A5
OE
D2
I/O A3
MUXsel2
D3
I/O D58
MUXsel1
D5
I/O D51
MUXsel2
D7
I/O D45
OE
D8
I/O D38
MUXsel1
D10
I/O D27
MUXsel2
D11
I/O D23
MUXsel2
D13
I/O D14
MUXsel1
D15
I/O D8
CLK/CLKEN
D16
I/O D1
OE
D18
I/O C56
CLK/CLKEN
D20
I/O C54
MUXsel1
D21
I/O C53
OE
D22
I/O A10
MUXsel1
E1
I/O A9
OE
E2
I/O A7
MUXsel2
E3
I/O A8
CLK/CLKEN
E4
I/O C51
MUXsel2
E19
I/O C52
CLK/CLKEN
E20
I/O C50
MUXsel1
E21
I/O C49
OE
E22
I/O A13
OE
F1
I/O A12
CLK/CLKEN
F2
I/O A11
MUXsel2
F3
I/O C48
CLK/CLKEN
F20
I/O C47
MUXsel2
F21
I/O C46
MUXsel1
F22
I/O A17
OE
G1
I/O A16
CLK/CLKEN
G2
I/O A14
MUXsel1
G3
I/O A15
MUXsel2
G4
I/O C44
CLK/CLKEN
G19
I/O C45
OE
G20
I/O C43
MUXsel2
G21
I/O C42
MUXsel1
G22
I/O A21
OE
H1
I/O A20
CLK/CLKEN
H2
I/O A18
MUXsel1
H3
I/O A19
MUXsel2
H4
I/O C40
CLK/CLKEN
H19
I/O C41
OE
H20
I/O C39
MUXsel2
H21
I/O C38
MUXsel1
H22
I/O A24
CLK/CLKEN
J1
I/O A23
MUXsel2
J2
I/O A22
MUXsel1
J3
I/O C37
OE
J20
I/O C36
CLK/CLKEN
J21
I/O C35
MUXsel2
J22
I/O A28
CLK/CLKEN
K1
I/O A26
MUXsel1
K2
I/O A25
OE
K3
I/O A27
MUXsel2
K4
I/O C32
CLK/CLKEN
K19
I/O C34
MUXsel1
K20
I/O C33
OE
K21
I/O C31
MUXsel2
K22
I/O C28
CLK/CLKEN
L19
I/O C30
MUXsel1
L20
I/O A29
OE
M2
I/O A30
MUXsel1
M3
I/O A31
MUXsel2
N1
I/O A33
OE
N2
I/O A34
MUXsel1
N3
I/O A32
CLK/CLKEN
N4
I/O C27
MUXsel2
N19
I/O C25
OE
N20
I/O C26
MUXsel1
N21
I/O C29
OE
N22
I/O A35
MUXsel2
P1
I/O A36
CLK/CLKEN
P2
I/O A37
OE
P3
I/O C22
MUXsel1
P20
I/O C23
MUXsel2
P21
I/O C24
CLK/CLKEN
P22
I/O A38
MUXsel1
R1
I/O A39
MUXsel2
R2
I/O A41
OE
R3
I/O A40
CLK/CLKEN
R4
I/O C19
MUXsel2
R19
I/O C18
MUXsel1
R20
I/O C20
CLK/CLKEN
R21
I/O C21
OE
R22
I/O A42
MUXsel1
T1
I/O A43
MUXsel2
T2
I/O A45
OE
T3
I/O A44
CLK/CLKEN
T4
I/O C15
MUXsel2
T19
I/O C14
MUXsel1
T20
I/O C16
CLK/CLKEN
T21
I/O C17
OE
T22
I/O A46
MUXsel1
U1
I/O A47
MUXsel2
U2
I/O A48
CLK/CLKEN
U3
I/O C11
MUXsel2
U20
I/O C12
CLK/CLKEN
U21
I/O C13
OE
U22
I/O A49
OE
V1
I/O A50
MUXsel1
V2
I/O A52
CLK/CLKEN
V3
I/O A51
MUXsel2
V4
I/O C8
CLK/CLKEN
V19
I/O C7
MUXsel2
V20
I/O C9
OE
V21
I/O C10
MUXsel1
V22
I/O A53
OE
W1
I/O A54
MUXsel1
W2
I/O A56
CLK/CLKEN
W3
I/O B1
OE
W5
I/O B8
CLK/CLKEN
W7
I/O B14
MUXsel1
W8
I/O B23
MUXsel2
W10
I/O B27
MUXsel2
W12
I/O B38
MUXsel1
W13
I/O B45
OE
W15
I/O B51
MUXsel2
W16
I/O B55
MUXsel2
W18
I/O C3
MUXsel2
W20
I/O C5
OE
W21
I/O C6
MUXsel1
W22
I/O A55
MUXsel2
Y1
I/O A57
OE
Y2
I/O B3
MUXsel2
Y4
I/O B7
MUXsel2
Y5
I/O B10
MUXsel1
Y6
I/O B13
OE
Y7
I/O B17
OE
Y8
I/O B20
CLK/CLKEN
Y9
I/O B24
CLK/CLKEN
Y10
I/O B28
CLK/CLKEN
Y11
I/O B32
CLK/CLKEN
Y12
I/O B35
MUXsel2
Y13
I/O B39
MUXsel2
Y14
I/O B42
MUXsel1
Y15
I/O B46
MUXsel1
Y16
I/O B49
OE
Y17
I/O B52
CLK/CLKEN
Y18
I/O B58
MUXsel1
Y19
I/O C2
MUXsel1
Y21
I/O C4
CLK/CLKEN
Y22
I/O A58
MUXsel1
AA1
I/O B0
CLK/CLKEN
AA3
I/O B5
OE
AA4
I/O B6
MUXsel1
AA5
I/O B11
MUXsel2
AA6
I/O B15
MUXsel2
AA7
I/O B18
MUXsel1
AA8
I/O B21
OE
AA9
I/O B25
OE
AA10
I/O B29
OE
AA11
I/O B31
MUXsel2
AA12
I/O B34
MUXsel1
AA13
I/O B37
OE
AA14
I/O B41
OE
AA15
I/O B44
CLK/CLKEN
AA16
I/O B48
CLK/CLKEN
AA17
I/O B53
OE
AA18
I/O B59
MUXsel2
AA19
I/O B56
CLK/CLKEN
AA20
I/O C1
OE
AA22
I/O A59
MUXsel2
AB2
I/O B2
MUXsel1
AB3
I/O B4
CLK/CLKEN
AB4
I/O B9
OE
AB5
I/O B12
CLK/CLKEN
AB6
I/O B16
CLK/CLKEN
AB7
I/O B19
MUXsel2
AB8
I/O B22
MUXsel1
AB9
I/O B26
MUXsel1
AB10
I/O B30
MUXsel1
AB11
I/O B33
OE
AB13
I/O B36
CLK/CLKEN
AB14
I/O B40
CLK/CLKEN
AB15
I/O B43
MUXsel2
AB16
I/O B47
MUXsel2
AB17
I/O B50
MUXsel1
AB18
I/O B54
MUXsel1
AB19
I/O B57
OE
AB20
I/O C0
CLK/CLKEN
AB21
NOTE: VCC and GND Pads Shown for Reference
22
Specifications
ispGDX240VA
Signal Configuration: ispGDX240VA
ispGDX240VA 388-Ball fpBGA (1.0mm Ball Pitch / 23.0mm x 23.0mm Body Size)
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
I/O
A59
I/O
B2
I/O
B4
I/O
B5
I/O
B9
I/O
B12
I/O
B16
I/O
B19
I/O
B22
I/O
B26
I/O
B33
I/O
B43
I/O
B44
I/O
B46
I/O
B51
I/O
B47
I/O
B50
I/O
B54
GND
I/O
B6
I/O
B11
I/O
B15
I/O
B18
I/O
B14
I/O
B17
I/O
B21
I/O
B25
I/O
B29
I/O
B30
I/O
B28
I/O
A49
I/O
A50
I/O
A52
I/O
A51
I/O
A42
I/O
A43
I/O
A45
I/O
A48
I/O
A44
I/O
A40
I/O
A38
I/O
A39
I/O
A41
I/O
A26
I/O
A25
I/O
A21
I/O
A20
I/O
A18
I/O
A22
I/O
A19
I/O
A15
I/O
D56
I/O
D54
I/O
A10
I/O
A9
I/O
A7
I/O
A3
I/O
A8
I/O
A16
I/O
A12
I/O
A14
I/O
A33
I/O
A34
I/O
A37
I/O
A32
I/O
A27
I/O
A46
I/O
A47
I/O
B34
I/O
B37
I/O
B36
I/O
B41
I/O
B48
I/O
B53
I/O
B59
GND
I/O
A55
I/O
A58
I/O
A57
I/O
B3
I/O
B7
I/O
B10
I/O
B13
I/O
B8
I/O
B20
I/O
B24
I/O
B35
I/O
B38
I/O
B32
I/O
B31
I/O
B27
I/O
B39
I/O
B49
I/O
B52
I/O
B55
I/O
B58
I/O
C8
I/O
C15
I/O
C19
I/O
C27
I/O
C28
I/O
C32
I/O
C40
I/O
C44
I/O
C51
I/O
D3
I/O
D5
I/O
D4
GND
GND
TDO
VCC
VCC
VCC
VCC
VCC
VCC
NC
1
VCC
NC
1
NC
1
NC
1
VCC
GND
VCC
VCC
VCC
VCC
VCC
GND
GND
I/O
B57
I/O
B56
I/O
C7
I/O
C11
I/O
C3
I/O
C14
I/O
C18
I/O
C22
I/O
C25
I/O
C30
I/O
C34
I/O
C37
I/O
C41
I/O
C45
I/O
C48
I/O
C52
I/O
C56
I/O
D0
I/O
D2
GND
GND
GND
GND
TOE
Y2
I/O
C0
I/O
C2
I/O
C5
I/O
C9
I/O
C12
I/O
C16
I/O
C20
I/O
C23
I/O
C26
RESET
I/O
C33
I/O
C36
I/O
C39
I/O
C43
I/O
C47
I/O
C50
I/O
C54
I/O
C57
I/O
C59
Y3
I/O
C1
I/O
C4
I/O
C6
I/O
C10
I/O
C13
I/O
C17
I/O
C21
I/O
C24
I/O
C29
I/O
C31
I/O
C35
I/O
C38
I/O
C42
I/O
C46
I/O
C49
I/O
C53
I/O
C55
I/O
C58
VCCIO
GND
GND
NC
1
GND
NC
1
GND
NC
1
GND
NC
1
GND
NC
1
GND
GND
GND
GND
GND
GND
GND
GND
GND
NC
1
NC
1
GND
GND
GND
GND
GND
GND
GND
GND
NC
1
NC
1
GND
GND
GND
GND
GND
GND
GND
GND
NC
1
NC
1
GND
GND
GND
GND
GND
GND
GND
GND
NC
1
NC
1
GND
GND
GND
GND
GND
GND
GND
GND
NC
1
NC
1
GND
GND
GND
GND
GND
GND
GND
GND
VCC
VCC
NC
1
NC
1
GND
GND
GND
GND
GND
GND
NC
1
VCC
VCC
VCC
VCC
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
TCK
TMS
Y1
TDI
VCC
I/O
A35
I/O
A31
I/O
A36
VCC
VCC
VCC
VCC
VCC
VCC
Y0
I/O
A24
I/O
A28
I/O
A23
GND
GND
GND
I/O
A13
I/O
A17
I/O
A11
I/O
A29
I/O
A30
VCC
VCC
VCC
I/O
A53
I/O
A54
I/O
A56
I/O
B0
I/O
B1
I/O
B23
I/O
B45
I/O
B42
I/O
B40
I/O
D58
I/O
D51
I/O
D45
I/O
D38
I/O
D23
I/O
D8
I/O
D13
I/O
D15
I/O
D16
I/O
D1
I/O
D52
I/O
D49
I/O
D46
I/O
D42
I/O
D40
I/O
D41
I/O
D39
I/O
D35
I/O
D32
I/O
D27
I/O
D31
I/O
D24
I/O
D20
I/O
D17
I/O
D10
I/O
D7
I/O
D53
I/O
D48
I/O
D47
I/O
D44
I/O
D43
I/O
D37
I/O
D36
I/O
D34
I/O
D25
I/O
D26
I/O
D29
I/O
D28
I/O
D30
I/O
D21
I/O
D22
I/O
D11
I/O
D12
I/O
D6
I/O
D9
VCC
VCC
VCC
EPEN
I/O
D50
I/O
D33
I/O
D19
I/O
D18
I/O
D14
GND
I/O
A6
I/O
A5
I/O
A4
I/O
A2
I/O
A1
I/O
D59
I/O
D55
I/O
D57
I/O
A0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
ispGDX240VA
Bottom View
1. NCs are not to be connected to any active signals, VCC or GND.
Note: Ball A1 indicator dot on top side of package.
23
Specifications
ispGDX240VA
Part Number Description
Ordering Information
Device Number
Grade
Blank = Commercial
I = Industrial
ispGDX 240VA
X XXXX X
Speed
4 = 4.5ns Tpd
7 = 7.0ns Tpd
10 = 10.0ns Tpd
Package
B388 = 388-Ball fpBGA
Device Family
0212/gdx240va
Table 2-0041A/gdx240va
388-Ball fpBGA
7
ispGDX240VA-7B388
ispGDXVA
388-Ball fpBGA
4.5
ispGDX240VA-4B388
FAMILY
ORDERING NUMBER
PACKAGE
tpd (ns)
COMMERCIAL
Table 2-0041/gdx240va
388-Ball fpBGA
10
ispGDX240VA-10B388I
388-Ball fpBGA
7
ispGDX240VA-7B388I
ispGDXVA
FAMILY
ORDERING NUMBER
PACKAGE
tpd (ns)
INDUSTRIAL
Note: The ispGDX240VA devices are dual-marked with both Commercial and Industrial grades.
The Commercial speed grade is faster, e.g. ispGDX240VA-4B388-7I.