The RF Line
NPN Silicon
RF Power Transistor
. . . designed primarily for wideband largesignal output amplifier stages in the
225 to 400 MHz frequency range.
Guaranteed Performance in 225 to 400 MHz Broadband Amplifier @ 28 Vdc
Output Power = 60 Watts over 225 to 400 MHz Band
Minimum Gain = 7.8 dB @ 400 MHz
BuiltIn Matching Network for Broadband Operation Using Double
Match Technique
100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
Gold Metallization System for High Reliability Applications
MAXIMUM RATINGS*
Rating
Symbol
Value
Unit
CollectorEmitter Voltage
V
CEO
33
Vdc
CollectorBase Voltage
V
CBO
60
Vdc
EmitterBase Voltage
V
EBO
4.0
Vdc
Total Device Dissipation @ T
C
= 25
C (1)
Derate above 25
C
P
D
146
0.83
Watts
W/
C
Storage Temperature Range
T
stg
65 to +200
C
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
R
JC
1.2
C/W
ELECTRICAL CHARACTERISTICS*
(T
C
= 25
C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS
CollectorEmitter Breakdown Voltage
(I
C
= 50 mAdc, I
B
= 0)
V
(BR)CEO
33
--
--
Vdc
CollectorEmitter Breakdown Voltage
(I
C
= 50 mAdc, V
BE
= 0)
V
(BR)CES
60
--
--
Vdc
EmitterBase Breakdown Voltage
(I
E
= 5.0 mAdc, I
C
= 0)
V
(BR)EBO
4.0
--
--
Vdc
Collector Cutoff Current
(V
CB
= 30 Vdc, I
E
= 0)
I
CBO
--
--
2.0
mAdc
NOTE:
(continued)
1. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as RF
amplifiers.
* Indicates JEDEC Registered Data.
2N6439
60 W, 225 to 400 MHz
CONTROLLED "Q"
BROADBAND RF POWER
TRANSISTOR
NPN SILICON
CASE 31601, STYLE 1
Order this document
by 2N6439/D
SEMICONDUCTOR TECHNICAL DATA
1
ELECTRICAL CHARACTERISTICS* -- continued
(T
C
= 25
C unless otherwise noted.)
Characteristic
Unit
Max
Typ
Min
Symbol
ON CHARACTERISTICS
DC Current Gain
(I
C
= 1.0 Adc, V
CE
= 5.0 Vdc)
h
FE
10
--
100
--
DYNAMIC CHARACTERISTICS
Output Capacitance
(V
CB
= 28 Vdc, I
E
= 0, f = 1.0 MHz)
C
ob
--
67
75
pF
BROADBAND FUNCTIONAL TESTS (Figure 6)
CommonEmitter Amplifier Power Gain
(V
CC
= 28 Vdc, P
out
= 60 W, f = 225400 MHz)
G
PE
7.8
8.5
--
dB
Electrical Ruggedness
(P
out
= 60 W, V
CC
= 28 Vdc, f = 400 MHz, VSWR 30:1
all phase angles)
No Degradation in Output Power
--
NARROW BAND FUNCTIONAL TESTS (Figure 1)
CommonEmitter Amplifier Power Gain
(V
CC
= 28 Vdc, P
out
= 60 W, f = 400 MHz)
G
PE
7.8
10
--
dB
Collector Efficiency
(V
CC
= 28 Vdc, P
out
= 60 W, f = 400 MHz)
55
--
--
%
* Indicates JEDEC Registered Data.
Figure 1. 400 MHz Test Amplifier (Narrow Band)
C1
to
C4, C11 -- 4.040 pF
C5
to
C8 -- 33 pF
C9 -- 1000 pF
C10 -- 5.0
F
R1 -- 15
L1, L2 -- 3/16
x 1
Copper Strap
L3 -- 1.5
H
L4 -- 10
H
L5 -- 1 Turn #16 AWG, 5/16
I.D.
C8
C7
C3
C9
C10
C4
L2
C5
DUT
C11
C2
L3
L1
R1
L4
C6
L5
V
CC
= 28 V
C1
2
Figure 2. P
out
versus Frequency
Figure 3. Output Power versus Input Power
Figure 4. Power Gain versus Frequency
Figure 5. Output Power versus Supply Voltage
Figure 6. Output Power versus Supply Voltage
NARROW BAND DATA
100
80
60
40
20
0
200
250
300
350
400
450
f, FREQUENCY (MHz)
P
in
= 8 W
6 W
4 W
2 W
V
CC
= 28 V
P
, OUTPUT
POWER (W
A
TTS)
out
120
0
P
in
, INPUT POWER (WATTS)
P
, OUTPUT
POWER (W
A
TTS)
out
100
80
60
40
20
2
4
6
8
10
12
14
16
18
20
V
CC
= 28 V
400 MHz
12
250
300
350
400
450
f, FREQUENCY (MHz)
G
PE
, COMMONEMITTER
AMPLIFIER
POWER GAIN (dB)
11
10
9
8
200
P
out
= 60 W
V
CC
= 28 V
100
10
V
CC
, SUPPLY VOLTAGE (VOLTS)
P
, OUTPUT
POWER (W
A
TTS)
out
80
60
40
20
0
14
18
22
26
30
100
10
V
CC
, SUPPLY VOLTAGE (VOLTS)
P
, OUTPUT
POWER (W
A
TTS)
out
80
60
40
20
0
14
18
22
26
30
f = 225 MHz
P
in
= 8 W
4 W
4 W
P
in
= 6 W
f = 400 MHz
f = 225 MHz
3
Figure 7. 225 to 400 MHz Broadband Test Circuit Schematic
Figure 8. Power Gain versus Frequency
Figure 9. Efficiency versus Frequency
BROADBAND DATA (Circuit, Figure 7)
C1 -- 68 pF
C2, C4, C8, C10 -- 27 pF
C3, C5, C11 -- 10 pF
C6, C7 -- 51 pF
C9 -- 1.010 pF JOHANSON
C12 -- 100 pF
C13, C15 -- 680 pF
C14, C16 -- 1.0
F, 35 V Tantalum
C17 -- 0.1
F, ERIE Red Cap
RFC1 -- Ferrite Bead Choke, Feroxcube VK200 19/4B
B -- Ferroxcube 56-590-65/4B Ferrite Bead
T1, T2 -- 25 Ohms (UT25) Miniature Coaxial Cable, 1 turn
R1 -- 11
, 1.0 W
R2 -- 20
, 1/4 W
L1 -- 10 Turns, #22 AWG, 1/8
I.D.
L2 -- 4 Turns, #16 AWG, 1/4
I.D.
L3 -- 6 Turns, #24 AWG, 1/8
I.D.
L4, L5 -- 1
x 0.25
Microstrip Line
Board Material 0.031
Thick Teflon-Fiberglass
50
LINE
C1
T1
4:1
C2
C3
C4
C5
C6
C7
C8
C9 C10
C11
4:1
T2
50
LINE
L5
C12
C16
C15
R1
C13
B
L1
L2
A
DUT
C14
+
-
RFC1
0.8
L4
A
L3
R2
C17
10
8
6
4
2
0
200
250
300
350
400
P
out
= 60 W
V
CC
= 28 V
f, FREQUENCY (MHz)
G
PE
, POWER GAIN (dB)
100
80
200
250
300
350
400
f, FREQUENCY (MHz)
EFFICIENCY
(%)
60
40
20
0
P
out
= 60 W
V
CC
= 28 V
V
CC
0.5
4
Figure 10. Input VSWR versus Frequency
Figure 11. Series Equivalent Input-Output Impedance
6
5
4
3
2
1
400
350
300
250
200
f, FREQUENCY (MHz)
INPUT
VSWR
P
out
= 60 W
V
CC
= 28 V
Z
in
f = 225 MHz
450
450
400
275 350 400
f = 225 MHz
P
out
= 60 W, V
CC
= 28 V
Z
OL
* = Conjugate of the optimum load
Z
OL
* =
impedance into which the device
Z
OL
* =
output operates at a given output
Z
OL
* =
power, voltage and frequency.
FREQUENCY
MHz
Z
in
OHMS
Z
OL
*
OHMS
225
275
350
400
450
0.7 + j1.6
0.9 + j2.2
2.2 + j2.1
1.2 + j0.6
0.5 + j1.6
2.2 - j1.8
2.1 - j0.9
2.1 - j0.1
2.0 + j0.2
1.9 + j0.9
350
.3
0.2
0.1
0.1
Z
OL
*
275
5