ChipFind - документация

Электронный компонент: KXPC855TCZP66D4

Скачать:  PDF   ZIP

Document Outline

This document contains detailed information on power considerations, DC/AC electrical
characteristics, and AC timing specifications for the MPC860 family.
This document contains the following topics:
Topic
Page
Section 1, "Overview"
2
Section 2, "Features"
2
Section 3, "Maximum Tolerated Ratings"
6
Section 4, "Thermal Characteristics"
7
Section 5, "Power Dissipation"
8
Section 6, "DC Characteristics"
9
Section 7, "Thermal Calculation and Measurement"
10
Section 8, "Layout Practices"
12
Section 9, "Bus Signal Timing"
13
Section 10, "IEEE 1149.1 Electrical Specifications"
40
Section 11, "CPM Electrical Characteristics"
42
Section 12, "UTOPIA AC Electrical Specifications"
64
Section 13, "FEC Electrical Characteristics"
66
Section 14, "Mechanical Data and Ordering Information"
70
Section 15, "Document Revision History"
75
Advanced Information
MPC860EC/D
Rev. 6.2, 8/2003
MPC860 Family
Hardware Specifications
2
MPC860 Family Hardware Specifications
MOTOROLA
Overview
Overview
1
Overview
The MPC860 Quad Integrated Communications Controller (PowerQUICCTM) is a versatile one-chip
integrated microprocessor and peripheral combination designed for a variety of controller applications. It
particularly excels in both communications and networking systems. The PowerQUICC unit is referred to
as the MPC860 in this manual.
The MPC860 is a derivative of Motorola's MC68360 Quad Integrated Communications Controller
(QUICC
TM
), referred to here as the QUICC, that implements the PowerPC architecture. The CPU on the
MPC860 is a 32-bit PowerPC
TM
core that incorporates memory management units (MMUs) and instruction
and data caches and that implements the PowerPC instruction set. The communications processor module
(CPM) from the MC68360 QUICC has been enhanced by the addition of the inter-integrated controller (I
2
C)
channel. The memory controller has been enhanced, enabling the MPC860 to support any type of memory,
including high-performance memories and new types of DRAMs. A PCMCIA socket controller supports up
to two sockets. A real-time clock has also been integrated.
Table 1 shows the functionality supported by the members of the MPC860 family.
2
Features
The following list summarizes the key MPC860 features:
Embedded single-issue, 32-bit PowerPC
TM
core (implementing the PowerPC architecture) with
thirty-two 32-bit general-purpose registers (GPRs)
-- The core performs branch prediction with conditional prefetch, without conditional execution
-- 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)
16-Kbyte instruction caches are four-way, set-associative with 256 sets; 4-Kbyte instruction
caches are two-way, set-associative with 128 sets.
8-Kbyte data caches are two-way, set-associative with 256 sets; 4-Kbyte data caches are
two-way, set-associative with 128 sets.
Table 1. MPC860 Family Functionality
Part
Cache (Kbytes)
Ethernet
ATM
SCC Ref.
1
1
Supporting documentation for these devices refers to the following:
1. MPC860 PowerQUICC Family User's Manual (MPC860UM/D, Rev. 2).
2. MPC855T User's Manual (MPC855TUM/D, Rev. 1).
Instruction
Cache
Data Cache
10T
10/100
MPC860DE
4
4
Up to 2
--
--
2
1
MPC860DT
4
4
Up to 2
1
yes
2
1
MPC860DP
16
8
Up to 2
1
yes
2
1
MPC860EN
4
4
Up to 4
--
--
4
1
MPC860SR
4
4
Up to 4
--
yes
4
1
MPC860T
4
4
Up to 4
1
yes
4
1
MPC860P
16
8
Up to 4
1
yes
4
1
MPC855T
4
4
1
1
yes
1
2
MOTOROLA
MPC860 Family Hardware Specifications
3
Features
Cache coherency for both instruction and data caches is maintained on 128-bit (4-word)
cache blocks.
Caches are physically addressed, implement a least recently used (LRU) replacement
algorithm, and are lockable on a cache block basis.
-- Instruction and data caches are two-way, set-associative, physically addressed, LRU
replacement, and lockable on-line granularity.
-- MMUs with 32-entry TLB, fully associative instruction, and data TLBs
-- MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address
spaces and 16 protection groups
-- Advanced on-chip-emulation debug mode
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
32 address lines
Operates at up to 80 MHz
Memory controller (eight banks)
-- Contains complete dynamic RAM (DRAM) controller
-- Each bank can be a chip select or RAS to support a DRAM bank
-- Up to 15 wait states programmable per memory bank
-- Glueless interface to DRAM, SIMMS, SRAM, EPROM, Flash EPROM, and other memory
devices.
-- DRAM controller programmable to support most size and speed memory interfaces
-- Four CAS lines, four WE lines, one OE line
-- Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
-- Variable block sizes (32 Kbyte to 256 Mbyte)
-- Selectable write protection
-- On-chip bus arbitration logic
General-purpose timers
-- Four 16-bit timers or two 32-bit timers
-- Gate mode can enable/disable counting
-- Interrupt can be masked on reference match and event capture
System integration unit (SIU)
-- Bus monitor
-- Software watchdog
-- Periodic interrupt timer (PIT)
-- Low-power stop mode
-- Clock synthesizer
-- Decrementer, time base, and real-time clock (RTC) from the PowerPC architecture
-- Reset controller
-- IEEE 1149.1 test access port (JTAG)
Interrupts
-- Seven external interrupt request (IRQ) lines
-- 12 port pins with interrupt capability
4
MPC860 Family Hardware Specifications
MOTOROLA
Features
Features
-- 23 internal interrupt sources
-- Programmable priority between SCCs
-- Programmable highest priority request
10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u Standard (not available when
using ATM over UTOPIA interface)
ATM support compliant with ATM forum UNI 4.0 specification
-- Cell processing up to 5070 Mbps at 50-MHz system clock
-- Cell multiplexing/demultiplexing
-- Support of AAL5 and AAL0 protocols on a per-VC basis. AAL0 support enables OAM and
software implementation of other protocols).
-- ATM pace control (APC) scheduler, providing direct support for constant bit rate (CBR) and
unspecified bit rate (UBR) and providing control mechanisms enabling software support of
available bit rate (ABR)
-- Physical interface support for UTOPIA (10/100-Mbps is not supported with this interface) and
byte-aligned serial (for example, T1/E1/ADSL)
-- UTOPIA-mode ATM supports level-1 master with cell-level handshake, multi-PHY (up to 4
physical layer devices), connection to 25-, 51-, or 155-Mbps framers, and UTOPIA/system
clock ratios of 1/2 or 1/3.
-- Serial-mode ATM connection supports transmission convergence (TC) function for
T1/E1/ADSL lines; cell delineation; cell payload scrambling/descrambling; automatic
idle/unassigned cell insertion/stripping; header error control (HEC) generation, checking, and
statistics.
Communications processor module (CPM)
-- RISC communications processor (CP)
-- Communication-specific commands (for example,
GRACEFUL
STOP
TRANSMIT
,
ENTER
HUNT
MODE
, and
RESTART
TRANSMIT
)
-- Supports continuous mode transmission and reception on all serial channels
-- Up to 8Kbytes of dual-port RAM
-- 16 serial DMA (SDMA) channels
-- Three parallel I/O registers with open-drain capability
Four baud-rate generators (BRGs)
-- Independent (can be connected to any SCC or SMC)
-- Allow changes during operation
-- Autobaud support option
Four serial communications controllers (SCCs)
-- Ethernet/IEEE 802.3 optional on SCC14, supporting full 10-Mbps operation (available only
on specially programmed devices).
-- HDLC/SDLC
(all channels supported at 2 Mbps)
-- HDLC bus (implements an HDLC-based local area network (LAN))
-- Asynchronous HDLC to support PPP (point-to-point protocol)
-- AppleTalk
-- Universal asynchronous receiver transmitter (UART)
-- Synchronous UART
MOTOROLA
MPC860 Family Hardware Specifications
5
Features
-- Serial infrared (IrDA)
-- Binary synchronous communication (BISYNC)
-- Totally transparent (bit streams)
-- Totally transparent (frame based with optional cyclic redundancy check (CRC))
Two SMCs (serial management channels)
-- UART
-- Transparent
-- General circuit interface (GCI) controller
-- Can be connected to the time-division multiplexed (TDM) channels
One SPI (serial peripheral interface)
-- Supports master and slave modes
-- Supports multimaster operation on the same bus
One I
2
C (inter-integrated circuit) port
-- Supports master and slave modes
-- Multiple-master environment support
Time-slot assigner (TSA)
-- Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
-- Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined
-- 1- or 8-bit resolution
-- Allows independent transmit and receive routing, frame synchronization, clocking
-- Allows dynamic changes
-- Can be internally connected to six serial channels (four SCCs and two SMCs)
Parallel interface port (PIP)
-- Centronics interface support
-- Supports fast connection between compatible ports on the MPC860 or the MC68360
PCMCIA interface
-- Master (socket) interface, release 2.1 compliant
-- Supports two independent PCMCIA sockets
-- Eight memory or I/O windows supported
Low power support
-- Full on--all units fully powered
-- Doze--core functional units disabled, except time base decrementer, PLL, memory controller,
RTC, and CPM in low-power standby
-- Sleep--all units disabled, except RTC and PIT, PLL active for fast wake up
-- Deep sleep--all units disabled including PLL, except RTC and PIT
-- Power down mode-- all units powered down, except PLL, RTC, PIT, time base, and
decrementer
Debug interface
-- Eight comparators: four operate on instruction address, two operate on data address, and two
operate on data
-- Supports conditions:
=
< >
6
MPC860 Family Hardware Specifications
MOTOROLA
Maximum Tolerated Ratings
Maximum Tolerated Ratings
-- Each watchpoint can generate a break-point internally
3.3 V operation with 5-V TTL compatibility except EXTAL and EXTCLK
357-pin ball grid array (BGA) package
3
Maximum Tolerated Ratings
This section provides the maximum tolerated voltage and temperature ranges for the MPC860. Table 2
provides the maximum ratings.
This device contains circuitry protecting against damage due to high-static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced, if unused
inputs are tied to an appropriate logic voltage level (for example, either GND or V
dd
).
Table 2. Maximum Tolerated Ratings
(GND = 0 V)
Rating
Symbol
Value
Unit
Supply Voltage
1
1
The power supply of the device must start its ramp from 0.0 V.
V
DDH
0.3 to 4.0
V
V
DDL
0.3 to 4.0
V
KAPWR
0.3 to 4.0
V
VDDSYN
0.3 to 4.0
V
Input Voltage
2
2
Functional operating conditions are provided with the DC electrical specifications in Table 5. Absolute maximum
ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may
affect device reliability or cause permanent damage to the device.
Caution
: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies
to power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater than 2.5 V must not be
applied to its inputs).
V
in
GND 0.3 to VDDH
V
Temperature
3
(Standard)
3
Minimum temperatures are guaranteed as ambient temperature, T
A
. Maximum temperatures are guaranteed as
junction temperature, T
j
.
T
A(min)
0
C
T
j(max)
95
C
Temperature
3
(Extended)
T
A(min)
40
C
T
j(max)
95
C
Storage Temperature Range
T
stg
55 to 150
C
MOTOROLA
MPC860 Family Hardware Specifications
7
Thermal Characteristics
4
Thermal Characteristics
Table 3 shows the thermal characteristics for the MPC860.
Table 3. MPC860 Thermal Resistance Data
Rating
Environment
Symbol
Rev A
Rev
B, C, D
Unit
Junction to Ambient
1
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
Natural Convection
Single layer board (1s)
R
JA
2
2
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
31
40
C/W
Four layer board (2s2p)
R
JMA
3
3
Per JEDEC JESD51-6 with the board horizontal.
20
25
Air Flow (200 ft/min)
Single layer board (1s)
R
JMA
3
26
32
Four layer board (2s2p)
R
JMA
3
16
21
Junction to Board
4
4
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.
R
JB
8
15
Junction to Case
5
5
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed
pad packages where the pad would be expected to be soldered, junction to case thermal resistance is a simulated
value from the junction to the exposed pad without contact resistance.
R
JC
5
7
Junction to Package
Top
6
6
Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
Natural Convection
JT
1
2
Air Flow (200 ft/min)
2
3
8
MPC860 Family Hardware Specifications
MOTOROLA
Power Dissipation
Power Dissipation
5
Power Dissipation
Table 4 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal,
and 2:1 mode, where CPU frequency is twice bus speed.
NOTE
Values in Table 4" represent V
DDL
-based power dissipation and do not
include I/O power dissipation over V
DDH
. I/O power dissipation varies
widely by application due to buffer current, depending on external
circuitry.
Table 4. Power Dissipation (P
D
)
Die Revision
Frequency (MHz)
Typical
1
1
Typical power dissipation is measured at 3.3 V.
Maximum
2
2
Maximum power dissipation is measured at 3.5 V.
Unit
A.3 and Previous
25
450
550
mW
40
700
850
mW
50
870
1050
mW
B.1 and C.1
33
375
TBD
mW
50
575
TBD
mW
66
750
TBD
mW
D.3 and D.4
(1:1 Mode)
50
656
735
mW
66
TBD
TBD
mW
D.3 and D.4
(2:1 Mode)
66
722
762
mW
80
851
909
mW
MOTOROLA
MPC860 Family Hardware Specifications
9
DC Characteristics
6
DC Characteristics
Table 5 provides the DC electrical characteristics for the MPC860.
Table 5. DC Electrical Specifications
Characteristic
Symbol
Min
Max
Unit
Operating Voltage at 40 MHz or Less
V
DDH
, V
DDL
, VDDSYN
3.0
3.6
V
KAPWR
(power-down mode)
2.0
3.6
V
KAPWR
(all other operating modes)
V
DDH
0.4
V
DDH
V
Operating Voltage Greater than 40 MHz
V
DDH
, V
DDL
, KAPWR,
VDDSYN
3.135
3.465
V
KAPWR
(power-down mode)
2.0
3.6
V
KAPWR
(all other operating modes)
V
DDH
0.4
V
DDH
V
Input High Voltage (All Inputs Except EXTAL and
EXTCLK)
V
IH
2.0
5.5
V
Input Low Voltage
V
IL
GND
0.8
V
EXTAL, EXTCLK Input High Voltage
V
IHC
0.7
(V
DDH
)
V
DDH
+ 0.3
V
Input Leakage Current, V
in
= 5.5 V (Except TMS,
TRST, DSCK, and DSDI Pins)
I
in
--
100
A
Input Leakage Current, V
in
= 3.6 V (Except TMS,
TRST, DSCK, and DSDI Pins)
I
In
--
10
A
Input Leakage Current, V
in
= 0 V (Except TMS,
TRST, DSCK, and DSDI Pins)
I
In
--
10
A
Input Capacitance
1
1
Input capacitance is periodically sampled.
C
in
--
20
pF
Output High Voltage, I
OH
= 2.0 mA, V
DDH
= 3.0 V
(Except XTAL, XFC, and Open Drain Pins)
V
OH
2.4
--
V
Output Low Voltage
IOL = 2.0 mA, CLKOUT
IOL = 3.2 mA
2
IOL = 5.3 mA
3
IOL = 7.0 mA, TXD1/PA14, TXD2/PA12
IOL = 8.9 mA, TS, TA, TEA, BI, BB,
HRESET, SRESET
V
OL
--
0.5
V
10
MPC860 Family Hardware Specifications
MOTOROLA
Thermal Calculation and Measurement
Thermal Calculation and Measurement
7
Thermal Calculation and Measurement
For the following discussions, P
D
= (V
DD
I
DD
) + PI/O, where PI/O is the power dissipation of the I/O
drivers.
7.1
Estimation with Junction-to-Ambient Thermal
Resistance
An estimation of the chip junction temperature, T
J
, in C can be obtained from the equation:
T
J
= T
A
+ (R
JA
P
D
)
where:
T
A
= ambient temperature (C)
R
JA
= package junction-to-ambient thermal resistance (C/W)
P
D
= power dissipation in package
The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy
estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated
that errors of a factor of two (in the quantity T
J
T
A
) are possible.
7.2
Estimation with Junction-to-Case Thermal Resistance
Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal
resistance and a case-to-ambient thermal resistance:
R
JA
= R
JC
+ R
CA
where:
R
JA
= junction-to-ambient thermal resistance (C/W)
R
JC
= junction-to-case thermal resistance (C/W)
R
CA
= case-to-ambient thermal resistance (C/W)
2
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/
VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0,
IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8,
TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5,
TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/
PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/
PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/
PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19,
L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/
DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11,
TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, SDACK2/L1TSYNCB/PC7, L1RSYNCB/PC6, SDACK1/
L1TSYNCA/PC5, L1RSYNCA/PC4, PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PD5, PD6, PD7, PD4, PD3,
MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].
3
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD,
WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/
GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A,
CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).
MOTOROLA
MPC860 Family Hardware Specifications
11
Thermal Calculation and Measurement
R
JC
is device related and cannot be influenced by the user. The user adjusts the thermal environment to
affect the case-to-ambient thermal resistance, R
CA
. For instance, the user can change the air flow around
the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the
thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful
for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink
to the ambient environment. For most packages, a better model is required.
7.3
Estimation with Junction-to-Board Thermal Resistance
A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two resistor
model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case
covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the
top of the package. The junction-to-board thermal resistance describes the thermal performance when most
of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of
most plastic packages and especially PBGA packages is strongly dependent on the board temperature; see
Figure 1.
Figure 1. Effect of Board Temperature Rise on Thermal Behavior
If the board temperature is known, an estimate of the junction temperature in the environment can be made
using the following equation:
T
J
= T
B
+ (R
JB
P
D
)
where:
R
JB
= junction-to-board thermal resistance (C/W)
T
B
= board temperature (C)
P
D
= power dissipation in package
If the board temperature is known and the heat loss from the package case to the air can be ignored,
acceptable predictions of junction temperature can be made. For this method to work, the board and board
mounting must be similar to the test board used to determine the junction-to-board thermal resistance,
namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground
plane.
0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
1 0 0
0
2 0
4 0
6 0
8 0
Board Temperture Rise Above Ambient Divided by Package
Junction Temperature Rise Above
Ambient Divided by Package Power
Board Temperature Rise Above Ambient Divided by Package Power
J
unction
T
emper
ature Rise Abo
v
e
Ambient Divided b
y
P
a
c
kage P
o
w
e
r
12
MPC860 Family Hardware Specifications
MOTOROLA
Layout Practices
Layout Practices
7.4
Estimation Using Simulation
When the board temperature is not known, a thermal simulation of the application is needed. The simple
two resistor model can be used with the thermal simulation of the application [2], or a more accurate and
complex model of the package can be used in the thermal simulation.
7.5
Experimental Determination
To determine the junction temperature of the device in the application after prototypes are available, the
thermal characterization parameter (
JT
) can be used to determine the junction temperature with a
measurement of the temperature at the top center of the package case using the following equation:
T
J
= T
T
+ (
JT
P
D
)
where:
JT
= thermal characterization parameter
T
T
= thermocouple temperature on top of package
P
D
= power dissipation in package
The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge
type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned
so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is
placed flat against the package case to avoid measurement errors caused by cooling effects of the
thermocouple wire.
7.6
References
Semiconductor Equipment and Materials International
(415) 964-5111
805 East Middlefield Rd.
Mountain View, CA 94043
MIL-SPEC and EIA/JESD (JEDEC) specifications
800-854-7179 or
(Available from Global Engineering Documents)
303-397-7956
JEDEC Specifications
http://www.jedec.org
1. 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an
Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 4754.
2. 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal
Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego,
1999, pp. 212220.
8
Layout Practices
Each V
DD
pin on the MPC860 should be provided with a low-impedance path to the board's supply. Each
GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive
distinct groups of logic on chip. The V
DD
power supply should be bypassed to ground using at least four 0.1
F-bypass capacitors located as close as possible to the four sides of the package. The capacitor leads and
associated printed circuit traces connecting to chip V
DD
and GND should be kept to less than half an inch
per capacitor lead. A four-layer board is recommended, employing two inner layers as V
CC
and GND planes.
MOTOROLA
MPC860 Family Hardware Specifications
13
Bus Signal Timing
All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection length
should be minimized in order to minimize undershoot and reflections caused by these fast output switching
times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths
of 6 inches are recommended. Capacitance calculations should consider all device loads as well as parasitic
capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical
in systems with higher capacitive loads because these loads create higher transient currents in the V
CC
and
GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be
taken to minimize the noise levels on the PLL supply pins.
9
Bus Signal Timing
Table 6 provides the bus operation timing for the MPC860 at 33, 40, 50, and 66 MHz.
The maximum bus speed supported by the MPC860 is 66 MHz. Higher-speed parts must be operated in
half-speed bus mode (for example, an MPC860 used at 80 MHz must be configured for a 40 MHz bus).
The timing for the MPC860 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for
minimum delays.
Table 6. Bus Operation Timings
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
B1
CLKOUT period
30.30
30.30
25.00
30.30
20.00
30.30
15.15
30.30
ns
B1a
EXTCLK to CLKOUT phase skew
(EXTCLK > 15 MHz and MF <= 2)
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
ns
B1b
EXTCLK to CLKOUT phase skew
(EXTCLK > 10 MHz and MF < 10)
2.30
2.30
2.30
2.30
2.30
2.30
2.30
2.30
ns
B1c
CLKOUT phase jitter (EXTCLK >
15 MHz and MF <= 2)
1
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
ns
B1d
CLKOUT phase jitter
1
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
ns
B1e
CLKOUT frequency jitter (MF < 10)
1
--
0.50
--
0.50
--
0.50
--
0.50
%
B1f
CLKOUT frequency jitter (10 < MF
< 500)
1
--
2.00
--
2.00
--
2.00
--
2.00
%
B1g
CLKOUT frequency jitter (MF > 500)
1
--
3.00
--
3.00
--
3.00
--
3.00
%
B1h
Frequency jitter on EXTCLK
2
--
0.50
--
0.50
--
0.50
--
0.50
%
B2
CLKOUT pulse width low
12.12
--
10.00
--
8.00
--
6.06
--
ns
B3
CLKOUT width high
12.12
--
10.00
--
8.00
--
6.06
--
ns
B4
CLKOUT rise time
3
--
4.00
--
4.00
--
4.00
--
4.00
ns
B5
33
CLKOUT fall time
3
--
4.00
--
4.00
--
4.00
--
4.00
ns
B7
CLKOUT to A(0:31), BADDR(28:30),
RD/WR, BURST, D(0:31), DP(0:3)
invalid
7.58
--
6.25
--
5.00
--
3.80
--
ns
14
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
B7a
CLKOUT to TSIZ(0:1), REG, RSV,
AT(0:3), BDIP, PTR invalid
7.58
--
6.25
--
5.00
--
3.80
--
ns
B7b
CLKOUT to BR, BG, FRZ,
VFLS(0:1), VF(0:2) IWP(0:2),
LWP(0:1), STS invalid
4
7.58
--
6.25
--
5.00
--
3.80
--
ns
B8
CLKOUT to A(0:31), BADDR(28:30)
RD/WR, BURST, D(0:31), DP(0:3)
valid
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
B8a
CLKOUT to TSIZ(0:1), REG, RSV,
AT(0:3) BDIP, PTR valid
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
B8b
CLKOUT to BR, BG, VFLS(0:1),
VF(0:2), IWP(0:2), FRZ, LWP(0:1),
STS valid
4
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
B9
CLKOUT to A(0:31), BADDR(28:30),
RD/WR, BURST, D(0:31), DP(0:3),
TSIZ(0:1), REG, RSV, AT(0:3), PTR
High-Z
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
B11
CLKOUT to TS, BB assertion
7.58
13.58
6.25
12.25
5.00
11.00
3.80
11.29
ns
B11a
CLKOUT to TA, BI assertion (when
driven by the memory controller or
PCMCIA interface)
2.50
9.25
2.50
9.25
2.50
9.25
2.50
9.75
ns
B12
CLKOUT to TS, BB negation
7.58
14.33
6.25
13.00
5.00
11.75
3.80
8.54
ns
B12a
CLKOUT to TA, BI negation (when
driven by the memory controller or
PCMCIA interface)
2.50
11.00
2.50
11.00
2.50
11.00
2.50
9.00
ns
B13
CLKOUT to TS, BB High-Z
7.58
21.58
6.25
20.25
5.00
19.00
3.80
14.04
ns
B13a
CLKOUT to TA, BI High-Z (when
driven by the memory controller or
PCMCIA interface)
2.50
15.00
2.50
15.00
2.50
15.00
2.50
15.00
ns
B14
CLKOUT to TEA assertion
2.50
10.00
2.50
10.00
2.50
10.00
2.50
9.00
ns
B15
CLKOUT to TEA High-Z
2.50
15.00
2.50
15.00
2.50
15.00
2.50
15.00
ns
B16
TA, BI valid to CLKOUT (setup time)
9.75
--
9.75
--
9.75
--
6.00
--
ns
B16a
TEA, KR, RETRY, CR valid to
CLKOUT (setup time)
10.00
--
10.00
--
10.00
--
4.50
--
ns
B16b
BB, BG, BR, valid to CLKOUT (setup
time)
5
8.50
--
8.50
--
8.50
--
4.00
--
ns
B17
CLKOUT to TA, TEA, BI, BB, BG, BR
valid (hold time)
1.00
--
1.00
--
1.00
--
2.00
--
ns
B17a
CLKOUT to KR, RETRY, CR valid
(hold time)
2.00
--
2.00
--
2.00
--
2.00
--
ns
Table 6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
MOTOROLA
MPC860 Family Hardware Specifications
15
Bus Signal Timing
B18
D(0:31), DP(0:3) valid to CLKOUT
rising edge (setup time)
6
6.00
--
6.00
--
6.00
--
6.00
--
ns
B19
CLKOUT rising edge to D(0:31),
DP(0:3) valid (hold time)
6
1.00
--
1.00
--
1.00
--
2.00
--
ns
B20
D(0:31), DP(0:3) valid to CLKOUT
falling edge (setup time)
7
4.00
--
4.00
--
4.00
--
4.00
--
ns
B21
CLKOUT falling edge to D(0:31),
DP(0:3) valid (hold time)
7
2.00
--
2.00
--
2.00
--
2.00
--
ns
B22
CLKOUT rising edge to CS asserted
GPCM ACS = 00
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
B22a
CLKOUT falling edge to CS asserted
GPCM ACS = 10, TRLX = 0
--
8.00
--
8.00
--
8.00
--
8.00
ns
B22b
CLKOUT falling edge to CS asserted
GPCM ACS = 11, TRLX = 0,
EBDF = 0
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
B22c
CLKOUT falling edge to CS asserted
GPCM ACS = 11, TRLX = 0,
EBDF = 1
10.86
17.99
8.88
16.00
7.00
14.13
5.18
12.31
ns
B23
CLKOUT rising edge to CS negated
GPCM read access, GPCM write
access ACS = 00, TRLX = 0, and
CSNT = 0
2.00
8.00
2.00
8.00
2.00
8.00
2.00
8.00
ns
B24
A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 10, TRLX = 0
5.58
--
4.25
--
3.00
--
1.79
--
ns
B24a
A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 11, TRLX = 0
13.15
--
10.50
--
8.00
--
5.58
--
ns
B25
CLKOUT rising edge to OE, WE(0:3)
asserted
--
9.00
--
9.00
--
9.00
--
9.00
ns
B26
CLKOUT rising edge to OE negated
2.00
9.00
2.00
9.00
2.00
9.00
2.00
9.00
ns
B27
A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 10, TRLX = 1
35.88
--
29.25
--
23.00
--
16.94
--
ns
B27a
A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 11, TRLX = 1
43.45
--
35.50
--
28.00
--
20.73
--
ns
B28
CLKOUT rising edge to WE(0:3)
negated GPCM write access
CSNT = 0
--
9.00
--
9.00
--
9.00
--
9.00
ns
B28a
CLKOUT falling edge to WE(0:3)
negated GPCM write access
TRLX = 0, 1, CSNT = 1, EBDF = 0
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
Table 6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
16
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
B28b
CLKOUT falling edge to CS negated
GPCM write access TRLX = 0, 1,
CSNT = 1, ACS = 10, or ACS = 11,
EBDF = 0
--
14.33
--
13.00
--
11.75
--
10.54
ns
B28c
CLKOUT falling edge to WE(0:3)
negated GPCM write access
TRLX = 0, 1, CSNT = 1 write access
TRLX = 0, CSNT = 1, EBDF = 1
10.86
17.99
8.88
16.00
7.00
14.13
5.18
12.31
ns
B28d
CLKOUT falling edge to CS negated
GPCM write access TRLX = 0, 1,
CSNT = 1, ACS = 10, or ACS = 11,
EBDF = 1
--
17.99
--
16.00
--
14.13
--
12.31
ns
B29
WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access
CSNT = 0, EBDF = 0
5.58
--
4.25
--
3.00
--
1.79
--
ns
B29a
WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 0, CSNT = 1, EBDF = 0
13.15
--
10.5
--
8.00
--
5.58
--
ns
B29b
CS negated to D(0:31), DP(0:3),
High-Z GPCM write access,
ACS = 00, TRLX = 0, 1, and CSNT =
0
5.58
--
4.25
--
3.00
--
1.79
--
ns
B29c CS negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 0, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 0
13.15
--
10.5
--
8.00
--
5.58
--
ns
B29d
WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 1, CSNT = 1, EBDF = 0
43.45
--
35.5
--
28.00
--
20.73
--
ns
B29e
CS negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 1, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 0
43.45
--
35.5
--
28.00
--
29.73
--
ns
B29f
WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 0, CSNT = 1, EBDF = 1
8.86
--
6.88
--
5.00
--
3.18
--
ns
B29g
CS negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 0, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 1
8.86
--
6.88
--
5.00
--
3.18
--
ns
B29h
WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 1, CSNT = 1, EBDF = 1
38.67
--
31.38
--
24.50
--
17.83
--
ns
Table 6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
MOTOROLA
MPC860 Family Hardware Specifications
17
Bus Signal Timing
B29i
CS negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 1, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 1
38.67
--
31.38
--
24.50
--
17.83
--
ns
B30
CS, WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write
access
8
5.58
--
4.25
--
3.00
--
1.79
--
ns
B30a
WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM, write
access, TRLX = 0, CSNT = 1,
CS negated to A(0:31) invalid GPCM
write access, TRLX = 0, CSNT =1
ACS = 10, or ACS = 11, EBDF = 0
13.15
--
10.50
--
8.00
--
5.58
--
ns
B30b
WE(0:3) negated to A(0:31),
invalid GPCM BADDR(28:30) invalid
GPCM write access, TRLX = 1,
CSNT = 1. CS negated to A(0:31),
Invalid GPCM, write access,
TRLX = 1, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 0
43.45
--
35.50
--
28.00
--
20.73
--
ns
B30c
WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write
access, TRLX = 0, CSNT = 1.
CS negated to A(0:31) invalid GPCM
write access, TRLX = 0, CSNT = 1,
ACS = 10, ACS = 11, EBDF = 1
8.36
--
6.38
--
4.50
--
2.68
--
ns
B30d
WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write
access, TRLX = 1, CSNT =1.
CS negated to A(0:31) invalid GPCM
write access TRLX = 1, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 1
38.67
--
31.38
--
24.50
--
17.83
--
ns
B31
CLKOUT falling edge to CS
valid--as requested by control bit
CST4 in the corresponding word in
UPM
1.50
6.00
1.50
6.00
1.50
6.00
1.50
6.00
ns
B31a
CLKOUT falling edge to CS
valid--as requested by control bit
CST1 in the corresponding word in
UPM
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
B31b
CLKOUT rising edge to CS valid--as
requested by control bit CST2 in the
corresponding word in UPM
1.50
8.00
1.50
8.00
1.50
8.00
1.50
8.00
ns
B31c
CLKOUT rising edge to CS valid--as
requested by control bit CST3 in the
corresponding word in UPM
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
Table 6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
18
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
B31d
CLKOUT falling edge to CS
valid--as requested by control bit
CST1 in the corresponding word in
UPM, EBDF = 1
13.26
17.99
11.28
16.00
9.40
14.13
7.58
12.31
ns
B32
CLKOUT falling edge to BS valid--as
requested by control bit BST4 in the
corresponding word in UPM
1.50
6.00
1.50
6.00
1.50
6.00
1.50
6.00
ns
B32a
CLKOUT falling edge to BS valid--as
requested by control bit BST1 in the
corresponding word in UPM, EBDF =
0
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
B32b
CLKOUT rising edge to BS valid--as
requested by control bit BST2 in the
corresponding word in UPM
1.50
8.00
1.50
8.00
1.50
8.00
1.50
8.00
ns
B32c
CLKOUT rising edge to BS valid--as
requested by control bit BST3 in the
corresponding word in UPM
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
B32d
CLKOUT falling edge to BS valid--as
requested by control bit BST1 in the
corresponding word in UPM, EBDF =
1
13.26
17.99
11.28
16.00
9.40
14.13
7.58
12.31
ns
B33
CLKOUT falling edge to GPL
valid--as requested by control bit
GxT4 in the corresponding word in
UPM
1.50
6.00
1.50
6.00
1.50
6.00
1.50
6.00
ns
B33a
CLKOUT rising edge to GPL
valid--as requested by control bit
GxT3 in the corresponding word in
UPM
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
B34
A(0:31), BADDR(28:30), and D(0:31)
to CS valid--as requested by control
bit CST4 in the corresponding word
in UPM
5.58
--
4.25
--
3.00
--
1.79
--
ns
B34a
A(0:31), BADDR(28:30), and D(0:31)
to CS valid--as requested by control
bit CST1 in the corresponding word
in UPM
13.15
--
10.50
--
8.00
--
5.58
--
ns
B34b
A(0:31), BADDR(28:30), and D(0:31)
to CS valid--as requested by control
bit CST2 in the corresponding word
in UPM
20.73
--
16.75
--
13.00
--
9.36
--
ns
B35
A(0:31), BADDR(28:30) to CS
valid--as requested by control bit
BST4 in the corresponding word in
UPM
5.58
--
4.25
--
3.00
--
1.79
--
ns
Table 6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
MOTOROLA
MPC860 Family Hardware Specifications
19
Bus Signal Timing
B35a
A(0:31), BADDR(28:30), and D(0:31)
to BS valid--as requested by control
bit BST1 in the corresponding word
in UPM
13.15
--
10.50
--
8.00
--
5.58
--
ns
B35b
A(0:31), BADDR(28:30), and D(0:31)
to BS valid--as requested by control
bit BST2 in the corresponding word
in UPM
20.73
--
16.75
--
13.00
--
9.36
--
ns
B36
A(0:31), BADDR(28:30), and D(0:31)
to GPL valid--as requested by
control bit GxT4 in the corresponding
word in UPM
5.58
--
4.25
--
3.00
--
1.79
--
ns
B37
UPWAIT valid to CLKOUT falling
edge
9
6.00
--
6.00
--
6.00
--
6.00
--
ns
B38
CLKOUT falling edge to UPWAIT
valid
9
1.00
--
1.00
--
1.00
--
1.00
--
ns
B39
AS valid to CLKOUT rising edge
10
7.00
--
7.00
--
7.00
--
7.00
--
ns
B40
A(0:31), TSIZ(0:1), RD/WR, BURST,
valid to CLKOUT rising edge
7.00
--
7.00
--
7.00
--
7.00
--
ns
B41
TS valid to CLKOUT rising edge
(setup time)
7.00
--
7.00
--
7.00
--
7.00
--
ns
B42
CLKOUT rising edge to TS valid
(hold time)
2.00
--
2.00
--
2.00
--
2.00
--
ns
B43
AS negation to memory controller
signals negation
--
TBD
--
TBD
--
TBD
--
TBD
ns
1
Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.
2
If the rate of change of the frequency of EXTAL is slow (i.e., it does not jump between the minimum and maximum
values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time) then
the maximum allowed jitter on EXTAL can be up to 2%.
3
The timings specified in B4 and B5 are based on full strength clock.
4
The timing for BR output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for BG
output is relevant when the MPC860 is selected to work with internal bus arbiter.
5
The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing
for BG input is relevant when the MPC860 is selected to work with external bus arbiter.
6
The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input
signal is asserted.
7
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only
for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where
DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
8
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.
9
The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified
in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 17.
10
The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior
specified in Figure 20.
Table 6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
20
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
Figure 2 is the control timing diagram.
Figure 2. Control Timing
Figure 3 provides the timing for the external clock.
Figure 3. External Clock Timing
CLKOUT
Outputs
A
B
2.0 V
0.8 V
0.8 V
2.0 V
2.0 V
0.8 V
2.0 V
0.8 V
Outputs
2.0 V
0.8 V
2.0 V
0.8 V
B
A
Inputs
2.0 V
0.8 V
2.0 V
0.8 V
D
C
Inputs
2.0 V
0.8 V
2.0 V
0.8 V
C
D
A
Maximum output delay specification.
B
Minimum output hold time.
C
Minimum input setup time specification.
D
Minimum input hold time specification.
CLKOUT
B1
B5
B3
B4
B1
B2
MOTOROLA
MPC860 Family Hardware Specifications
21
Bus Signal Timing
Figure 4 provides the timing for the synchronous output signals.
Figure 4. Synchronous Output Signals Timing
Figure 5 provides the timing for the synchronous active pull-up and open-drain output signals.
Figure 5. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing
CLKOUT
Output
Signals
Output
Signals
Output
Signals
B8
B7
B9
B8a
B9
B7a
B8b
B7b
CLKOUT
TS, BB
TA, BI
TEA
B13
B12
B11
B11a
B12a
B13a
B15
B14
22
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
Figure 6 provides the timing for the synchronous input signals.
Figure 6. Synchronous Input Signals Timing
Figure 7 provides normal case timing for input data. It also applies to normal read accesses under the control
of the UPM in the memory controller.
Figure 7. Input Data Timing in Normal Case
CLKOUT
TA, BI
TEA, KR,
RETRY, CR
BB, BG, BR
B16
B17
B16a
B17a
B16b
B17
CLKOUT
TA
D[0:31],
DP[0:3]
B16
B17
B19
B18
MOTOROLA
MPC860 Family Hardware Specifications
23
Bus Signal Timing
Figure 8 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the
UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
Figure 8. Input Data Timing when Controlled by UPM in the Memory Controller
and DLT3 = 1
Figure 9 through Figure 12 provide the timing for the external bus read controlled by various GPCM factors.
Figure 9. External Bus Read Timing (GPCM Controlled--ACS = 00)
CLKOUT
TA
D[0:31],
DP[0:3]
B20
B21
CLKOUT
A[0:31]
CSx
OE
WE[0:3]
TS
D[0:31],
DP[0:3]
B11
B12
B23
B8
B22
B26
B19
B18
B25
B28
24
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
Figure 10. External Bus Read Timing (GPCM Controlled--TRLX = 0, ACS = 10)
Figure 11. External Bus Read Timing (GPCM Controlled--TRLX = 0, ACS = 11)
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11
B12
B8
B22a
B23
B26
B19
B18
B25
B24
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11
B12
B22b
B8
B22c
B23
B24a
B25
B26
B19
B18
MOTOROLA
MPC860 Family Hardware Specifications
25
Bus Signal Timing
Figure 12. External Bus Read Timing (GPCM Controlled--TRLX = 0 or 1, ACS = 10, ACS = 11)
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11
B12
B8
B22a
B27
B27a
B22b B22c
B19
B18
B26
B23
26
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
Figure 13 through Figure 15 provide the timing for the external bus write controlled by various GPCM
factors.
Figure 13. External Bus Write Timing (GPCM Controlled--TRLX = 0 or 1, CSNT = 0)
CLKOUT
A[0:31]
CSx
WE[0:3]
OE
TS
D[0:31],
DP[0:3]
B11
B8
B22
B23
B12
B30
B28
B25
B26
B8
B9
B29
B29b
MOTOROLA
MPC860 Family Hardware Specifications
27
Bus Signal Timing
Figure 14. External Bus Write Timing (GPCM Controlled--TRLX = 0 or 1, CSNT = 1)
B23
B30a B30c
CLKOUT
A[0:31]
CSx
OE
WE[0:3]
TS
D[0:31],
DP[0:3]
B11
B8
B22
B12
B28b B28d
B25
B26
B8
B28a
B9
B28c
B29c B29g
B29a
B29f
28
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
Figure 15. External Bus Write Timing (GPCM Controlled--TRLX = 0 or 1, CSNT = 1)
B23
B22
B8
B12
B11
CLKOUT
A[0:31]
CSx
WE[0:3]
TS
OE
D[0:31],
DP[0:3]
B30d
B30b
B28b B28d
B25
B29e B29i
B26
B29d B29h
B28a B28c
B9
B8
B29b
MOTOROLA
MPC860 Family Hardware Specifications
29
Bus Signal Timing
Figure 16 provides the timing for the external bus controlled by the UPM.
Figure 16. External Bus Timing (UPM Controlled Signals)
CLKOUT
CSx
B31d
B8
B31
B34
B32b
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
A[0:31]
B31c
B31b
B34a
B32
B32a B32d
B34b
B36
B35b
B35a
B35
B33
B32c
B33a
B31a
30
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
Figure 17 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.
Figure 17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing
Figure 18 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.
Figure 18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing
CLKOUT
CSx
UPWAIT
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
B37
B38
CLKOUT
CSx
UPWAIT
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
B37
B38
MOTOROLA
MPC860 Family Hardware Specifications
31
Bus Signal Timing
Figure 19 provides the timing for the synchronous external master access controlled by the GPCM.
Figure 19. Synchronous External Master Access Timing (GPCM Handled ACS = 00)
Figure 20 provides the timing for the asynchronous external master memory access controlled by the
GPCM.
Figure 20. Asynchronous External Master Memory Access Timing
(GPCM Controlled--ACS = 00)
Figure 21 provides the timing for the asynchronous external master control signals negation.
Figure 21. Asynchronous External Master--Control Signals Negation Timing
CLKOUT
TS
A[0:31],
TSIZ[0:1],
R/W, BURST
CSx
B41
B42
B40
B22
CLKOUT
AS
A[0:31],
TSIZ[0:1],
R/W
CSx
B39
B40
B22
AS
CSx, WE[0:3],
OE, GPLx,
BS[0:3]
B43
32
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
Table 7 provides interrupt timing for the MPC860.
Figure 22 provides the interrupt detection timing for the external level-sensitive lines.
Figure 22. Interrupt Detection Timing for External Level Sensitive Lines
Figure 23 provides the interrupt detection timing for the external edge-sensitive lines.
Figure 23. Interrupt Detection Timing for External Edge Sensitive Lines
Table 7. Interrupt Timing
Num
Characteristic
1
1
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as
level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference
to the CLKOUT.
The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has
no direct relation with the total system interrupt latency that the MPC860 is able to support.
All Frequencies
Unit
Min
Max
I39
IRQx valid to CLKOUT rising edge (setup time)
6.00
--
ns
I40
IRQx hold time after CLKOUT
2.00
--
ns
I41
IRQx pulse width low
3.00
--
ns
I42
IRQx pulse width high
3.00
--
ns
I43
IRQx edge-to-edge time
4
T
CLOCKOUT
--
--
CLKOUT
IRQx
I39
I40
CLKOUT
IRQx
I41
I42
I43
I43
MOTOROLA
MPC860 Family Hardware Specifications
33
Bus Signal Timing
Table 8 shows the PCMCIA timing for the MPC860.
Table 8. PCMCIA Timing
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
P44
A(0:31), REG valid to PCMCIA
Strobe asserted
1
1
PSST = 1. Otherwise add PSST times cycle time.
PSHT = 0. Otherwise add PSHT times cycle time.
These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the
PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL
timer expiration. See PCMCIA Interface in the MPC860 PowerQUICC User s Manual.
20.73
--
16.75
--
13.00
--
9.36
--
ns
P45
A(0:31), REG valid to ALE negation
1
28.30
--
23.00
--
18.00
--
13.15
--
ns
P46
CLKOUT to REG valid
7.58
15.58
6.25
14.25
5.00
13.00
3.79
11.84
ns
P47
CLKOUT to REG invalid
8.58
--
7.25
--
6.00
--
4.84
--
ns
P48
CLKOUT to CE1, CE2 asserted
7.58
15.58
6.25
14.25
5.00
13.00
3.79
11.84
ns
P49
CLKOUT to CE1, CE2 negated
7.58
15.58
6.25
14.25
5.00
13.00
3.79
11.84
ns
P50
CLKOUT to PCOE, IORD, PCWE,
IOWR assert time
--
11.00
11.00
--
11.00
--
11.00
ns
P51
CLKOUT to PCOE, IORD, PCWE,
IOWR negate time
2.00
11.00
2.00
11.00
2.00
11.00
2.00
11.00
ns
P52
CLKOUT to ALE assert time
7.58
15.58
6.25
14.25
5.00
13.00
3.79
10.04
ns
P53
CLKOUT to ALE negate time
--
15.58
14.25
--
13.00
--
11.84
ns
P54
PCWE, IOWR negated to D(0:31)
invalid
1
5.58
--
4.25
--
3.00
--
1.79
--
ns
P55
WAITA and WAITB valid to CLKOUT
rising edge
1
8.00
--
8.00
--
8.00
--
8.00
--
ns
P56
CLKOUT rising edge to WAITA and
WAITB invalid
1
2.00
--
2.00
--
2.00
--
2.00
--
ns
34
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
Figure 24 provides the PCMCIA access cycle timing for the external bus read.
Figure 24. PCMCIA Access Cycles Timing External Bus Read
CLKOUT
A[0:31]
REG
CE1/CE2
PCOE, IORD
TS
D[0:31]
ALE
B19
B18
P53
P52
P52
P51
P50
P48
P49
P46
P45
P44
P47
MOTOROLA
MPC860 Family Hardware Specifications
35
Bus Signal Timing
Figure 25 provides the PCMCIA access cycle timing for the external bus write.
Figure 25. PCMCIA Access Cycles Timing External Bus Write
Figure 26 provides the PCMCIA WAIT signals detection timing.
Figure 26. PCMCIA WAIT Signals Detection Timing
CLKOUT
A[0:31]
REG
CE1/CE2
PCWE, IOWR
TS
D[0:31]
ALE
B9
B8
P53
P52
P52
P51
P50
P48
P49
P46
P45
P44
P47
P54
CLKOUT
WAITx
P55
P56
36
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
Table 9 shows the PCMCIA port timing for the MPC860.
Figure 27 provides the PCMCIA output port timing for the MPC860.
Figure 27. PCMCIA Output Port Timing
Figure 28 provides the PCMCIA output port timing for the MPC860.
Figure 28. PCMCIA Input Port Timing
Table 9. PCMCIA Port Timing
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
P57
CLKOUT to OPx valid
--
19.00
--
19.00
--
19.00
--
19.00
ns
P58
HRESET negated to OPx drive
1
1
OP2 and OP3 only.
25.73
--
21.75
--
18.00
--
14.36
--
ns
P59
IP_Xx valid to CLKOUT rising edge
5.00
--
5.00
--
5.00
--
5.00
--
ns
P60
CLKOUT rising edge to IP_Xx
invalid
1.00
--
1.00
--
1.00
--
1.00
--
ns
CLKOUT
HRESET
Output
Signals
OP2, OP3
P57
P58
CLKOUT
Input
Signals
P59
P60
MOTOROLA
MPC860 Family Hardware Specifications
37
Bus Signal Timing
Table 10 shows the debug port timing for the MPC860.
Figure 29 provides the input timing for the debug port clock.
Figure 29. Debug Port Clock Input Timing
Figure 30 provides the timing for the debug port.
Figure 30. Debug Port Timings
Table 10. Debug Port Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
P61
DSCK cycle time
3
T
CLOCKOUT
--
--
P62
DSCK clock pulse width
1.25
T
CLOCKOUT
--
--
P63
DSCK rise and fall times
0.00
3.00
ns
P64
DSDI input data setup time
8.00
--
ns
P65
DSDI data hold time
5.00
--
ns
P66
DSCK low to DSDO data valid
0.00
15.00
ns
P67
DSCK low to DSDO invalid
0.00
2.00
ns
DSCK
D61
D61
D63
D62
D62
D63
DSCK
DSDI
DSDO
D64
D65
D66
D67
38
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Bus Signal Timing
Table 11 shows the reset timing for the MPC860.
Table 11. Reset Timing
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
R69
CLKOUT to HRESET high
impedance
--
20.00
--
20.00
--
20.00
--
20.00
ns
R70
CLKOUT to SRESET high
impedance
--
20.00
--
20.00
--
20.00
--
20.00
ns
R71
RSTCONF pulse width
515.1
5
--
425.0
0
340.0
0
--
257.5
8
--
ns
R72
--
--
--
--
--
--
--
--
--
R73
Configuration data to HRESET rising
edge setup time
504.5
5
--
425.0
0
--
350.0
0
--
277.2
7
--
ns
R74
Configuration data to RSTCONF
rising edge setup time
350.0
0
--
350.0
0
--
350.0
0
--
350.0
0
--
ns
R75
Configuration data hold time after
RSTCONF negation
0.00
--
0.00
--
0.00
--
0.00
--
ns
R76
Configuration data hold time after
HRESET negation
0.00
--
0.00
--
0.00
--
0.00
--
ns
R77
HRESET and RSTCONF asserted to
data out drive
--
25.00
25.00
--
25.00
--
25.00
ns
R78
RSTCONF negated to data out high
impedance
--
25.00
--
25.00
--
25.00
--
25.00
ns
R79
CLKOUT of last rising edge before
chip three-state HRESET to data out
high impedance
--
25.00
--
25.00
--
25.00
--
25.00
ns
R80
DSDI, DSCK setup
90.91
--
75.00
--
60.00
--
45.45
--
ns
R81
DSDI, DSCK hold time
0.00
--
0.00
--
0.00
--
0.00
--
ns
R82
SRESET negated to CLKOUT rising
edge for DSDI and DSCK sample
242.4
2
--
200.0
0
--
160.0
0
--
121.2
1
--
ns
MOTOROLA
MPC860 Family Hardware Specifications
39
Bus Signal Timing
Figure 31 shows the reset timing for the data bus configuration.
Figure 31. Reset Timing--Configuration from Data Bus
Figure 32 provides the reset timing for the data bus weak drive during configuration.
Figure 32. Reset Timing--Data Bus Weak Drive During Configuration
HRESET
RSTCONF
D[0:31] (IN)
R71
R74
R73
R75
R76
CLKOUT
HRESET
D[0:31] (OUT)
(Weak)
RSTCONF
R69
R79
R77
R78
40
MPC860 Family Hardware Specifications
MOTOROLA
IEEE 1149.1 Electrical Specifications
IEEE 1149.1 Electrical Specifications
Figure 33 provides the reset timing for the debug port configuration.
Figure 33. Reset Timing--Debug Port Configuration
10
IEEE 1149.1 Electrical Specifications
Table 12 provides the JTAG timings for the MPC860 shown in Figure 34 through Figure 37.
Table 12. JTAG Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
J82
TCK cycle time
100.00
--
ns
J83
TCK clock pulse width measured at 1.5 V
40.00
--
ns
J84
TCK rise and fall times
0.00
10.00
ns
J85
TMS, TDI data setup time
5.00
--
ns
J86
TMS, TDI data hold time
25.00
--
ns
J87
TCK low to TDO data valid
--
27.00
ns
J88
TCK low to TDO data invalid
0.00
--
ns
J89
TCK low to TDO high impedance
--
20.00
ns
J90
TRST assert time
100.00
--
ns
J91
TRST setup time to TCK low
40.00
--
ns
J92
TCK falling edge to output valid
--
50.00
ns
J93
TCK falling edge to output valid out of high impedance
--
50.00
ns
J94
TCK falling edge to output high impedance
--
50.00
ns
J95
Boundary scan input valid to TCK rising edge
50.00
--
ns
J96
TCK rising edge to boundary scan input invalid
50.00
--
ns
CLKOUT
SRESET
DSCK, DSDI
R70
R82
R80
R80
R81
R81
MOTOROLA
MPC860 Family Hardware Specifications
41
IEEE 1149.1 Electrical Specifications
Figure 34. JTAG Test Clock Input Timing
Figure 35. JTAG Test Access Port Timing Diagram
Figure 36. JTAG TRST Timing Diagram
Figure 37. Boundary Scan (JTAG) Timing Diagram
TCK
J82
J83
J82
J83
J84
J84
TCK
TMS, TDI
TDO
J85
J86
J87
J88
J89
TCK
TRST
J91
J90
TCK
Output
Signals
Output
Signals
Output
Signals
J92
J94
J93
J95
J96
42
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
11
CPM Electrical Characteristics
This section provides the AC and DC electrical specifications for the communications processor module
(CPM) of the MPC860.
11.1
PIP/PIO AC Electrical Specifications
Table 13 provides the PIP/PIO AC timings as shown in Figure 38 through Figure 42.
Figure 38. PIP Rx (Interlock Mode) Timing Diagram
Table 13. PIP/PIO Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
21
Data-in setup time to STBI low
0
--
ns
22
Data-In hold time to STBI high
2.5 t3
1
1
t3 = Specification 23.
--
CLK
23
STBI pulse width
1.5
--
CLK
24
STBO pulse width
1 CLK 5 ns
--
ns
25
Data-out setup time to STBO low
2
--
CLK
26
Data-out hold time from STBO high
5
--
CLK
27
STBI low to STBO low (Rx interlock)
--
2
CLK
28
STBI low to STBO high (Tx interlock)
2
--
CLK
29
Data-in setup time to clock high
15
--
ns
30
Data-in hold time from clock high
7.5
--
ns
31
Clock low to data-out valid (CPU writes data, control, or direction)
--
25
ns
DATA-IN
STBI
23
24
22
STBO
27
21
MOTOROLA
MPC860 Family Hardware Specifications
43
CPM Electrical Characteristics
Figure 39. PIP Tx (Interlock Mode) Timing Diagram
Figure 40. PIP Rx (Pulse Mode) Timing Diagram
Figure 41. PIP TX (Pulse Mode) Timing Diagram
DATA-OUT
24
23
26
28
25
STBO
(Output)
STBI
(Input)
DATA-IN
23
22
21
STBI
(Input)
STBO
(Output)
24
DATA-OUT
24
26
25
STBO
(Output)
STBI
(Input)
23
44
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
Figure 42. Parallel I/O Data-In/Data-Out Timing Diagram
11.2
IDMA Controller AC Electrical Specifications
Table 14 provides the IDMA controller timings as shown in Figure 43 through Figure 46.
Figure 43. IDMA External Requests Timing Diagram
Table 14. IDMA Controller Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
40
DREQ setup time to clock high
7
--
ns
41
DREQ hold time from clock high
3
--
ns
42
SDACK assertion delay from clock high
--
12
ns
43
SDACK negation delay from clock low
--
12
ns
44
SDACK negation delay from TA low
--
20
ns
45
SDACK negation delay from clock high
--
15
ns
46
TA assertion to falling edge of the clock setup time (applies to
external TA)
7
--
ns
CLKO
DATA-IN
29
31
30
DATA-OUT
41
40
DREQ
(Input)
CLKO
(Output)
MOTOROLA
MPC860 Family Hardware Specifications
45
CPM Electrical Characteristics
Figure 44. SDACK Timing Diagram--Peripheral Write, Externally-Generated TA
Figure 45. SDACK Timing Diagram--Peripheral Write, Internally-Generated TA
DATA
42
46
43
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Input)
SDACK
DATA
42
44
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Output)
SDACK
46
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
Figure 46. SDACK Timing Diagram--Peripheral Read, Internally-Generated TA
11.3
Baud Rate Generator AC Electrical Specifications
Table 15 provides the baud rate generator timings as shown in Figure 47.
Figure 47. Baud Rate Generator Timing Diagram
Table 15. Baud Rate Generator Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
50
BRGO rise and fall time
--
10
ns
51
BRGO duty cycle
40
60
%
52
BRGO cycle
40
--
ns
DATA
42
45
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Output)
SDACK
52
50
51
BRGOX
50
51
MOTOROLA
MPC860 Family Hardware Specifications
47
CPM Electrical Characteristics
11.4
Timer AC Electrical Specifications
Table 16 provides the general-purpose timer timings as shown in Figure 48.
Figure 48. CPM General-Purpose Timers Timing Diagram
11.5
Serial Interface AC Electrical Specifications
Table 17 provides the serial interface timings as shown in Figure 49 through Figure 53.
Table 16. Timer Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
61
TIN/TGATE rise and fall time
10
--
ns
62
TIN/TGATE low time
1
--
CLK
63
TIN/TGATE high time
2
--
CLK
64
TIN/TGATE cycle time
3
--
CLK
65
CLKO low to TOUT valid
3
25
ns
Table 17. SI Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
70
L1RCLK, L1TCLK frequency (DSC = 0)
1,
2
--
SYNCCLK/2.5
MHz
71
L1RCLK, L1TCLK width low (DSC = 0)
2
P + 10
--
ns
71a
L1RCLK, L1TCLK width high (DSC = 0)
3
P + 10
--
ns
72
L1TXD, L1ST(14), L1RQ, L1CLKO rise/fall time
--
15.00
ns
73
L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)
20.00
--
ns
74
L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)
35.00
--
ns
75
L1RSYNC, L1TSYNC rise/fall time
--
15.00
ns
CLKO
TIN/TGATE
(Input)
TOUT
(Output)
64
65
61
62
63
61
60
48
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
76
L1RXD valid to L1CLK edge (L1RXD setup time)
17.00
--
ns
77
L1CLK edge to L1RXD invalid (L1RXD hold time)
13.00
--
ns
78
L1CLK edge to L1ST(14) valid
4
10.00
45.00
ns
78A
L1SYNC valid to L1ST(14) valid
10.00
45.00
ns
79
L1CLK edge to L1ST(14) invalid
10.00
45.00
ns
80
L1CLK edge to L1TXD valid
10.00
55.00
ns
80A
L1TSYNC valid to L1TXD valid
4
10.00
55.00
ns
81
L1CLK edge to L1TXD high impedance
0.00
42.00
ns
82
L1RCLK, L1TCLK frequency (DSC =1)
--
16.00 or
SYNCCLK/2
MHz
83
L1RCLK, L1TCLK width low (DSC =1)
P + 10
--
ns
83a
L1RCLK, L1TCLK width high (DSC = 1)
3
P + 10
--
ns
84
L1CLK edge to L1CLKO valid (DSC = 1)
--
30.00
ns
85
L1RQ valid before falling edge of L1TSYNC
4
1.00
--
L1TCL
K
86
L1GR setup time
2
42.00
--
ns
87
L1GR hold time
42.00
--
ns
88
L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0,
DSC = 0)
--
0.00
ns
1
The ratio SYNCCLK/L1RCLK must be greater than 2.5/1.
2
These specs are valid for IDL mode only.
3
Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.
4
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.
Table 17. SI Timing (continued)
Num
Characteristic
All Frequencies
Unit
Min
Max
MOTOROLA
MPC860 Family Hardware Specifications
49
CPM Electrical Characteristics
Figure 49. SI Receive Timing Diagram with Normal Clocking (DSC = 0)
L1RXD
(Input)
L1RCLK
(FE=0, CE=0)
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
71
72
70
71a
RFSD=1
75
73
74
77
78
76
79
BIT0
50
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
Figure 50. SI Receive Timing with Double-Speed Clocking (DSC = 1)
L1RXD
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RCLK
(FE=0, CE=0)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
72
RFSD=1
75
73
74
77
78
76
79
83a
82
L1CLKO
(Output)
84
BIT0
MOTOROLA
MPC860 Family Hardware Specifications
51
CPM Electrical Characteristics
Figure 51. SI Transmit Timing Diagram (DSC = 0)
L1TXD
(Output)
L1TCLK
(FE=0, CE=0)
(Input)
L1TCLK
(FE=1, CE=1)
(Input)
L1TSYNC
(Input)
L1ST(4-1)
(Output)
71
70
72
73
75
74
80a
80
78
TFSD=0
81
79
BIT0
52
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
Figure 52. SI Transmit Timing with Double Speed Clocking (DSC = 1)
L1TXD
(Output)
L1RCLK
(FE=0, CE=0)
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
72
TFSD=0
75
73
74
78a
80
79
83a
82
L1CLKO
(Output)
84
BIT0
78
81
MOTOROLA
MPC860 Family Hardware Specifications
53
CPM Electrical Characteristics
Figure 53. IDL Timing
B17
B16
B14
B13
B12
B11
B10
D1
A
B27
B26
B25
B24
B23
B22
B21
B20
D2
M
B15
L1RXD
(Input)
L1TXD
(Output)
L1ST(4-1)
(Output)
L1RQ
(Output)
73
77
123456789
10
11
12
13
14
15
16
17
18
19
20
74
80
B17
B16
B15
B14
B13
B12
B11
B10
D1
A
B27
B26
B25
B24
B23
B22
B21
B20
D2
M
71
71
L1GR
(Input)
78
85
72
76
87
86
L1RSYNC
(Input)
L1RCLK
(Input)
81
54
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
11.6
SCC in NMSI Mode Electrical Specifications
Table 18 provides the NMSI external clock timing.
Table 19 provides the NMSI internal clock timing.
Table 18. NMSI External Clock Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
100
RCLK1 and TCLK1 width high
1
1
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2.25/1.
1/SYNCCLK
--
ns
101
RCLK1 and TCLK1 width low
1/SYNCCLK + 5
--
ns
102
RCLK1 and TCLK1 rise/fall time
--
15.00
ns
103
TXD1 active delay (from TCLK1 falling edge)
0.00
50.00
ns
104
RTS1 active/inactive delay (from TCLK1 falling edge)
0.00
50.00
ns
105
CTS1 setup time to TCLK1 rising edge
5.00
--
ns
106
RXD1 setup time to RCLK1 rising edge
5.00
--
ns
107
RXD1 hold time from RCLK1 rising edge
2
2
Also applies to CD and CTS hold time when they are used as an external sync signal.
5.00
--
ns
108 CD1 setup Time to RCLK1 rising edge
5.00
--
ns
Table 19. NMSI Internal Clock Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
100
RCLK1 and TCLK1 frequency
1
1
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater or equal to 3/1.
0.00
SYNCCLK/3
MHz
102
RCLK1 and TCLK1 rise/fall time
--
--
ns
103
TXD1 active delay (from TCLK1 falling edge)
0.00
30.00
ns
104
RTS1 active/inactive delay (from TCLK1 falling edge)
0.00
30.00
ns
105
CTS1 setup time to TCLK1 rising edge
40.00
--
ns
106
RXD1 setup time to RCLK1 rising edge
40.00
--
ns
107
RXD1 hold time from RCLK1 rising edge
2
2
Also applies to CD and CTS hold time when they are used as an external sync signals.
0.00
--
ns
108
CD1 setup time to RCLK1 rising edge
40.00
--
ns
MOTOROLA
MPC860 Family Hardware Specifications
55
CPM Electrical Characteristics
Figure 54 through Figure 56 show the NMSI timings.
Figure 54. SCC NMSI Receive Timing Diagram
Figure 55. SCC NMSI Transmit Timing Diagram
RCLK1
CD1
(Input)
102
100
107
108
107
RxD1
(Input)
CD1
(SYNC Input)
102
101
106
TCLK1
CTS1
(Input)
102
100
104
107
TxD1
(Output)
CTS1
(SYNC Input)
102
101
RTS1
(Output)
105
103
104
56
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
Figure 56. HDLC Bus Timing Diagram
11.7
Ethernet Electrical Specifications
Table 20 provides the Ethernet timings as shown in Figure 57 through Figure 61.
Table 20. Ethernet Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
120
CLSN width high
40
--
ns
121
RCLK1 rise/fall time
--
15
ns
122
RCLK1 width low
40
--
ns
123
RCLK1 clock period
1
80
120
ns
124
RXD1 setup time
20
--
ns
125
RXD1 hold time
5
--
ns
126
RENA active delay (from RCLK1 rising edge of the last data bit)
10
--
ns
127
RENA width low
100
--
ns
128
TCLK1 rise/fall time
--
15
ns
129
TCLK1 width low
40
--
ns
130
TCLK1 clock period
1
99
101
ns
131
TXD1 active delay (from TCLK1 rising edge)
10
50
ns
132
TXD1 inactive delay (from TCLK1 rising edge)
10
50
ns
133
TENA active delay (from TCLK1 rising edge)
10
50
ns
134
TENA inactive delay (from TCLK1 rising edge)
10
50
ns
TCLK1
CTS1
(Echo Input)
102
100
104
TxD1
(Output)
102
101
RTS1
(Output)
103
104
107
105
MOTOROLA
MPC860 Family Hardware Specifications
57
CPM Electrical Characteristics
Figure 57. Ethernet Collision Timing Diagram
Figure 58. Ethernet Receive Timing Diagram
135
RSTRT active delay (from TCLK1 falling edge)
10
50
ns
136
RSTRT inactive delay (from TCLK1 falling edge)
10
50
ns
137
REJECT width low
1
--
CLK
138
CLKO1 low to SDACK asserted
2
--
20
ns
139
CLKO1 low to SDACK negated
2
--
20
ns
1
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater or equal to 2/1.
2
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.
Table 20. Ethernet Timing (continued)
Num
Characteristic
All Frequencies
Unit
Min
Max
CLSN(CTS1)
120
(Input)
RCLK1
121
RxD1
(Input)
121
RENA(CD1)
(Input)
125
124
123
127
126
Last Bit
58
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
Figure 59. Ethernet Transmit Timing Diagram
Figure 60. CAM Interface Receive Start Timing Diagram
Figure 61. CAM Interface REJECT Timing Diagram
TCLK1
128
TxD1
(Output)
128
TENA(RTS1)
(Input)
NOTES:
Transmit clock invert (TCI) bit in GSMR is set.
If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the
CSL bit is set in the buffer descriptor at the end of the frame transmission.
1.
2.
RENA(CD1)
(Input)
133
134
132
131
121
129
(NOTE 2)
RCLK1
RxD1
(Input)
RSTRT
(Output)
0
136
125
1
1
BIT1
BIT2
Start Frame
REJECT
137
MOTOROLA
MPC860 Family Hardware Specifications
59
CPM Electrical Characteristics
11.8
SMC Transparent AC Electrical Specifications
Table 21 provides the SMC transparent timings as shown in Figure 62.
Figure 62. SMC Transparent Timing Diagram
Table 21. SMC Transparent Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
150
SMCLK clock period
1
1
SYNCCLK must be at least twice as fast as SMCLK.
100
--
ns
151
SMCLK width low
50
--
ns
151A
SMCLK width high
50
--
ns
152
SMCLK rise/fall time
--
15
ns
153
SMTXD active delay (from SMCLK falling edge)
10
50
ns
154
SMRXD/SMSYNC setup time
20
--
ns
155
RXD1/SMSYNC hold time
5
--
ns
SMCLK
SMRXD
(Input)
152
150
SMTXD
(Output)
152
151
SMSYNC
151
154
153
155
154
155
NOTE
NOTE:
This delay is equal to an integer number of character-length clocks.
1.
60
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
11.9
SPI Master AC Electrical Specifications
Table 22 provides the SPI master timings as shown in Figure 63 and Figure 64.
Figure 63. SPI Master (CP = 0) Timing Diagram
Table 22. SPI Master Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
160
MASTER cycle time
4
1024
t
cyc
161
MASTER clock (SCK) high or low time
2
512
t
cyc
162
MASTER data setup time (inputs)
50
--
ns
163
Master data hold time (inputs)
0
--
ns
164
Master data valid (after SCK edge)
--
20
ns
165
Master data hold time (outputs)
0
--
ns
166
Rise time output
--
15
ns
167
Fall time output
--
15
ns
SPIMOSI
(Output)
SPICLK
(CI=0)
(Output)
SPICLK
(CI=1)
(Output)
SPIMISO
(Input)
162
Data
166
167
161
161
160
msb
lsb
msb
msb
Data
lsb
msb
167
166
163
166
167
165
164
MOTOROLA
MPC860 Family Hardware Specifications
61
CPM Electrical Characteristics
Figure 64. SPI Master (CP = 1) Timing Diagram
11.10 SPI Slave AC Electrical Specifications
Table 23 provides the SPI slave timings as shown in Figure 65 and Figure 66.
Table 23. SPI Slave Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
170
Slave cycle time
2
--
t
cyc
171
Slave enable lead time
15
--
ns
172
Slave enable lag time
15
--
ns
173
Slave clock (SPICLK) high or low time
1
--
t
cyc
174
Slave sequential transfer delay (does not require deselect)
1
--
t
cyc
175
Slave data setup time (inputs)
20
--
ns
176
Slave data hold time (inputs)
20
--
ns
177
Slave access time
--
50
ns
SPIMOSI
(Output)
SPICLK
(CI=0)
(Output)
SPICLK
(CI=1)
(Output)
SPIMISO
(Input)
Data
166
167
161
161
160
msb
lsb
msb
msb
Data
lsb
msb
167
166
163
166
167
165
164
162
62
MPC860 Family Hardware Specifications
MOTOROLA
CPM Electrical Characteristics
CPM Electrical Characteristics
Figure 65. SPI Slave (CP = 0) Timing Diagram
Figure 66. SPI Slave (CP = 1) Timing Diagram
SPIMOSI
(Input)
SPICLK
(CI=0)
(Input)
SPICLK
(CI=1)
(Input)
SPIMISO
(Output)
180
Data
181
182
173
173
170
msb
lsb
msb
181
177
182
175
179
SPISEL
(Input)
171
172
174
Data
msb
lsb
msb
Undef
181
178
176
182
SPIMOSI
(Input)
SPICLK
(CI=0)
(Input)
SPICLK
(CI=1)
(Input)
SPIMISO
(Output)
180
Data
181
182
msb
lsb
181
177
182
175
179
SPISEL
(Input)
174
Data
msb
lsb
Undef
178
176
182
msb
msb
172
173
173
171
170
181
MOTOROLA
MPC860 Family Hardware Specifications
63
CPM Electrical Characteristics
11.11 I
2
C AC Electrical Specifications
Table 24 provides the I
2
C (SCL < 100 kHz) timings.
Table 24. I
2
C Timing (SCL < 100 kH
Z
)
Num
Characteristic
All Frequencies
Unit
Min
Max
200
SCL clock frequency (slave)
0
100
kHz
200
SCL clock frequency (master)
1
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3
pre_scaler 2).
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater or equal to 4/1.
1.5
100
kHz
202
Bus free time between transmissions
4.7
--
s
203
Low period of SCL
4.7
--
s
204
High period of SCL
4.0
--
s
205
Start condition setup time
4.7
--
s
206
Start condition hold time
4.0
--
s
207
Data hold time
0
--
s
208
Data setup time
250
--
ns
209
SDL/SCL rise time
--
1
s
210
SDL/SCL fall time
--
300
ns
211
Stop condition setup time
4.7
--
s
64
MPC860 Family Hardware Specifications
MOTOROLA
UTOPIA AC Electrical Specifications
UTOPIA AC Electrical Specifications
Table 25 provides the I
2
C (SCL > 100 kHz) timings.
Figure 67 shows the I
2
C bus timing.
Figure 67. I
2
C Bus Timing Diagram
12
UTOPIA AC Electrical Specifications
Table 26 shows the AC electrical specifications for the UTOPIA interface.
Table 25. . I
2
C Timing (SCL > 100 kH
Z
)
Num
Characteristic
Expression
All Frequencies
Unit
Min
Max
200
SCL clock frequency (slave)
fSCL
0
BRGCLK/48
Hz
200
SCL clock frequency (master)
1
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3)
pre_scaler 2).
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater or equal to 4/1.
fSCL
BRGCLK/16512
BRGCLK/48
Hz
202
Bus free time between transmissions
1/(2.2 * fSCL)
--
s
203
Low period of SCL
1/(2.2 * fSCL)
--
s
204
High period of SCL
1/(2.2 * fSCL)
--
s
205
Start condition setup time
1/(2.2 * fSCL)
--
s
206
Start condition hold time
1/(2.2 * fSCL)
--
s
207
Data hold time
0
--
s
208
Data setup time
1/(40 * fSCL)
--
s
209
SDL/SCL rise time
--
1/(10 * fSCL)
s
210
SDL/SCL fall time
--
1/(33 * fSCL)
s
211
Stop condition setup time
1/2(2.2 * fSCL)
--
s
Table 26. UTOPIA AC Electrical Specifications
Num
Signal Characteristic
Direction
Min
Max
Unit
U1
UtpClk rise/fall time (Internal clock option)
Output
--
3.5
ns
Duty cycle
50
50
%
Frequency
--
50
MHz
SCL
202
205
203
207
204
208
206
209
211
210
SDA
MOTOROLA
MPC860 Family Hardware Specifications
65
UTOPIA AC Electrical Specifications
Figure 68 shows signal timings during UTOPIA receive operations.
Figure 68. UTOPIA Receive Timing
U1a
UtpClk rise/fall time (external clock option)
Input
--
3.5
ns
Duty cycle
40
60
%
Frequency
--
50
MHz
U2
RxEnb and TxEnb active delay
Output
2
16
ns
U3
UTPB, SOC, Rxclav and Txclav setup time
Input
8
--
ns
U4
UTPB, SOC, Rxclav and Txclav hold time
Input
1
--
ns
U5
UTPB, SOC active delay (and PHREQ and PHSEL active delay
in MPHY mode)
Output
2
16
ns
Table 26. UTOPIA AC Electrical Specifications (continued)
Num
Signal Characteristic
Direction
Min
Max
Unit
UtpClk
UTPB
RxEnb
U1
3
2
SOC
4
RxClav
PHREQn
3
4
HighZ at MPHY
HighZ at MPHY
U1
U5
U3
U4
U4
U3
U2
66
MPC860 Family Hardware Specifications
MOTOROLA
FEC Electrical Characteristics
FEC Electrical Characteristics
Figure 69 shows signal timings during UTOPIA transmit operations.
Figure 69. UTOPIA Transmit Timing
13
FEC Electrical Characteristics
This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the
timing specifications for the MII signals are independent of system clock frequency (part speed
designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 V or
3.3 V.
13.1
MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV,
MII_RX_ER, MII_RX_CLK)
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz +1%. There is no
minimum frequency requirement. In addition, the processor clock frequency must exceed the
MII_RX_CLK frequency 1%.
Table 27 provides information on the MII receive signal timing.
Table 27. MII Receive Signal Timing
Num
Characteristic
Min
Max
Unit
M1
MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup
5
--
ns
M2
MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold
5
--
ns
M3
MII_RX_CLK pulse width high
35%
65%
MII_RX_CL
K period
M4
MII_RX_CLK pulse width low
35%
65%
MII_RX_CL
K period
UtpClk
UTPB
TxEnb
1
2
SOC
5
TxClav
PHSELn
3
4
5
HighZ at MPHY
HighZ at MPHY
U1
U1
U5
U5
U2
U3
U4
MOTOROLA
MPC860 Family Hardware Specifications
67
FEC Electrical Characteristics
Figure 70 shows MII receive signal timing.
Figure 70. MII Receive Signal Timing Diagram
13.2
MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN,
MII_TX_ER, MII_TX_CLK)
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is
no minimum frequency requirement. In addition, the processor clock frequency must exceed the
MII_TX_CLK frequency 1%.
Table 28 provides information on the MII transmit signal timing.
Table 28. MII Transmit Signal Timing
Num
Characteristic
Min
Max
Unit
M5
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid
5
--
ns
M6
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid
--
25
M7
MII_TX_CLK pulse width high
35
65%
MII_TX_CLK
period
M8
MII_TX_CLK pulse width low
35%
65%
MII_TX_CLK
period
M1
M2
MII_RX_CLK (Input)
MII_RXD[3:0] (Inputs)
MII_RX_DV
MII_RX_ER
M3
M4
68
MPC860 Family Hardware Specifications
MOTOROLA
FEC Electrical Characteristics
FEC Electrical Characteristics
Figure 71 shows the MII transmit signal timing diagram.
Figure 71. MII Transmit Signal Timing Diagram
13.3
MII Async Inputs Signal Timing (MII_CRS, MII_COL)
Table 29 provides information on the MII async inputs signal timing.
Figure 72 shows the MII asynchronous inputs signal timing diagram.
Figure 72. MII Async Inputs Timing Diagram
Table 29. MII Async Inputs Signal Timing
Num
Characteristic
Min
Max
Unit
M9
MII_CRS, MII_COL minimum pulse width
1.5
--
MII_TX_CLK
period
M6
MII_TX_CLK (Input)
MII_TXD[3:0] (Outputs)
MII_TX_EN
MII_TX_ER
M5
M7
M8
MII_CRS, MII_COL
M9
MOTOROLA
MPC860 Family Hardware Specifications
69
FEC Electrical Characteristics
13.4
MII Serial Management Channel Timing (MII_MDIO,
MII_MDC)
Table 30 provides information on the MII serial management channel signal timing. The FEC functions
correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under
investigation.
Figure 73 shows the MII serial management channel timing diagram.
Figure 73. MII Serial Management Channel Timing Diagram
Table 30. MII Serial Management Channel Timing
Num
Characteristic
Min
Max
Unit
M10
MII_MDC falling edge to MII_MDIO output invalid (minimum
propagation delay)
0
--
ns
M11
MII_MDC falling edge to MII_MDIO output valid (max prop delay)
--
25
ns
M12
MII_MDIO (input) to MII_MDC rising edge setup
10
--
ns
M13
MII_MDIO (input) to MII_MDC rising edge hold
0
--
ns
M14
MII_MDC pulse width high
40%
60%
MII_MDC
period
M15
MII_MDC pulse width low
40%
60%
MII_MDC
period
M11
MII_MDC (Output)
MII_MDIO (Output)
M12
M13
MII_MDIO (Input)
M10
M14
MM15
70
MPC860 Family Hardware Specifications
MOTOROLA
Mechanical Data and Ordering Information
Mechanical Data and Ordering Information
14
Mechanical Data and Ordering Information
Table 31 provides information on the MPC860 revision D.3 and D.4 derivative devices.
Table 31. MPC860 Family Revision D.3 and D.4 Derivatives
Device
Number of
SCCs
1
1
Serial communications controller (SCC).
Ethernet Support
2
(Mbps)
2
Up to 4 channels at 40 MHz or 2 channels at 25 MHz.
Multi-Channel
HDLC Support
ATM
Support
MPC855T
1
10/100
yes
yes
MPC860DE
2
10
N/A
N/A
MPC860DT
10/100
Yes
Yes
MPC860DP
10/100
Yes
Yes
MPC860EN
4
10
N/A
N/A
MPC860SR
10
Yes
Yes
MPC860T
10/100
Yes
Yes
MPC860P
10/100
Yes
Yes
MOTOROLA
MPC860 Family Hardware Specifications
71
Mechanical Data and Ordering Information
Table 32 identifies the packages and operating frequencies available for the MPC860.
Table 33 identifies the packages and operating frequencies available for the MPC860P.
Table 32. MPC860 Family Package/Frequency Availability
Package Type
Frequency
(MHz)
Temperature
(Tj)
Order Number
Ball grid array
(ZP suffix)
50
0 to 95C
XPC860DEZP50nn
1
XPC860DTZP50nn
XPC860ENZP50nn
XPC860SRZP50nn
XPC860TZP50nn
XPC855TZP50D4
1
Where nn specifies version D.3 (as D3) or D.4 (as D4).
66
0 to 95C
XPC860DEZP66nn
XPC860DTZP66nn
XPC860ENZP66nn
XPC860SRZP66nn
XPC860TZP66nn
XPC855TZP66D4
80
0 to 95C
XPC860DEZP80nn
XPC860DTZP80nn
XPC860ENZP80nn
XPC860SRZP80nn
XPC860TZP80nn
XPC855TZP80D4
Ball grid array
(CZP suffix)
50
40 to 95C
XPC860DECZP50nn
XPC860DTCZP50nn
XPC860ENCZP50nn
XPC860SRCZP50nn
XPC860TCZP50nn
XPC855TCZP50D4
66
40 to 95C
XPC860DECZP66nn
XPC860DTCZP66nn
XPC860ENCZP66nn
XPC860SRCZP66nn
XPC860TCZP66nn
XPC855TCZP66D4
Table 33. MPC860P Package/Frequency Availability
Package Type
Frequency
(MHz)
Temperature
(Tj)
Order Number
Ball grid array
(ZP suffix)
50
0 to 95C
XPC860DPZP50nn
1
XPC860PZP50nn
66
0 to 95C
XPC860DPZP66nn
XPC860PZP66nn
80
0 to 95C
XPC860DPZP80nn
XPC860PZP80nn
72
MPC860 Family Hardware Specifications
MOTOROLA
Mechanical Data and Ordering Information
Mechanical Data and Ordering Information
Ball grid array
(CZP suffix)
50
40 to 95C
XPC860DPCZP50nn
XPC860PCZP50nn
66
40 to 95C
XPC860DPCZP66nn
XPC860PCZP66nn
1
Where nn specifies version D.3 (as D3) or D.4 (as D4).
Table 33. MPC860P Package/Frequency Availability (continued)
MOTOROLA
MPC860 Family Hardware Specifications
73
Mechanical Data and Ordering Information
14.1
Pin Assignments
Figure 74 shows the top view pinout of the PBGA package. For additional information, see the MPC860
PowerQUICC User's Manual
, or the MPC855T User's Manual.
NOTE: This is the top view of the device.
Figure 74. Pinout of the PBGA Package
PD3
IRQ7
D0
D4
D1
D2
D3
D5
VDDL
D6
D7
D29
CLKOUT IPA3
DP2
A2
A7
A14
A27
A29
A30
A28
A31
VDDL BSA2
WE1
WE3
CE2A
CS1
CS4
A5
A11
18
16
14
13
12
11
10
9
8
7
6
5
3
2
4
17
15
1
19
A1
A6
A13
A17
A21
A23
A22
TSIZ0 BSA3 M_CRS WE2 GPLA2
CE1A
WR
CS5
A4
A10
GPLB4
A0
PA15
A3
A12
A16
A20
A24
A26
TSIZ1 BSA1
WE0 GPLA1 GPLA3
CS0
TA
CS7
PB31
A9
GPLA4
PB30
PC14
PC15
N/C
N/C
A15
A19
A25
A18
BSA0 GPLA0
N/C
CS6
GPLA5 BDIP
CS2
PA14
A8
TEA
PB28
PC13
PB29
VDDH
VDDH
BI
BG
CS3
PA13
BB
PB27
PC12
VDDL
GND
GND
TS
IRQ3
VDDL
PA12
BURST
PB26
TMS
PA11
IRQ6
IPB4
BR
TDO
IPB3
TRST
M_MDIO
TCK
IRQ2
IPB0
M_COL
TDI
IPB7
VDDL
PB24
PB25
IPB1
IPB2
IPB5
PA10
ALEB
PC11
PA9
PB21
GND
IPB6 ALEA
BADDR30
PB23
IRQ4
PC10
PC9
PB20
AS
OP1
OP0
PA8
MODCK1
PB22
PC8
PC7
BADDR28
BADDR29
MODCK2
PA6
VDDL
PA7
PA5
PB16
TEXP
EXTCLK
HRESET
PB18
EXTAL
PB19
PB17
VDDL
GND
RSTCONF SRESET
VDDL
PA3
GND
XTAL
PA4
PA2
PD12
VDDH
WAIT_A
PORESET
WAIT_B
PB15
VDDH
KAPWR
PC6
PC5
PD11
VDDH D12
D17
D9
D15
D22
D25
D31
IPA6
IPA0
IPA7
XFC
IPA1
PC4
PD7
VDDSYN
PA1
PB14
PD4
IRQ1
D8
D23
D11
D16
D19
D21
D26
D30
IPA5
IPA2
N/C
IPA4
PD15
PD5
VSSSYN
PA0
PD13
PD6
IRQ0 D13
D27
D10
D14
D18
D20
D24
D28
DP1
DP0
N/C
DP3
PD9
M_Tx_EN
VSSSYN1
PD14
B
A
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
PD10
PD8
74
MPC860 Family Hardware Specifications
MOTOROLA
Mechanical Data and Ordering Information
Mechanical Data and Ordering Information
14.2
Mechanical Dimensions of the PBGA Package
For more information on the printed circuit board layout of the PBGA package, including thermal via design
and suggested pad layout, please refer to Motorola Application Note, Plastic Ball Grid Array (order
number: AN1231/D), available from your local Motorola sales office. Figure 75 shows the mechanical
dimensions of the PBGA package.
Figure 75. Mechanical Dimensions and Bottom Surface Nomenclature
of the PBGA Package
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SIDE VIEW
BOTTOM VIEW
18X
4X
357X
b
TOP VIEW
A2
A3
e
0.3 M C
D
A
A1
D2
0.15 M C
E
E2
0.2 C
A
B
0.2
D1
E1
A B
0.25 C
0.35 C
C
NOTES:
1. Dimensions and tolerance per ASME Y14.5M, 1994.
2. Dimensions in millimeters.
3. Dimension b is the maximum solder ball diameter
measured parallel to datum C.
DIM
MIN
MAX
MILLIMETERS
A
---
2.05
0.50
0.70
A2
0.95
1.35
A3
0.70
0.90
b
0.60
0.90
D
25.00 BSC
D1
22.86 BSC
D2
22.40
22.60
e
1.27 BSC
E
25.00 BSC
E1
22.86 BSC
E2
22.40
22.60
A1
Case No. 1103-01
MOTOROLA
MPC860 Family Hardware Specifications
75
Document Revision History
15
Document Revision History
Table 34 lists significant changes between revisions of this document.
Table 34. Document Revision History
Revision
Date
Change
5.1
11/2001
Revised template format, removed references to MAC functionality, changed Table 6
B23 max value @ 66 Mhz from 2ns to 8ns, added this revision history table
6
10/2002
Added the MPC855T. Corrected Figure 25 on page 35.
6.1
11/2002
Corrected UTOPIA RXenb* and TXenb* timing values.
Changed incorrect usage of Vcc to Vdd.
Corrected dual port RAM to 8Kbytes.
6.2
8/2003
Changed B28a through B28d and B29d to show that TRLX can be 0 or 1.
Changed reference documentation to reflect the Rev 2 MPC860 PowerQUICC Family
Users Manual.
Nontechnical reformatting
MPC860EC/D
HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-480-768-2130
(800) 521-6274
JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569
ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre, 2 Dai King Street
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334
TECHNICAL INFORMATION CENTER:
(800) 521-6274
HOME PAGE:
www.motorola.com/semiconductors
Information in this document is provided solely to enable system and software implementers to use
Motorola products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits or integrated circuits based on the information in this document.
Motorola reserves the right to make changes without further notice to any products herein.
Motorola makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Motorola assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. "Typical" parameters which may be provided in
Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including "Typicals" must be validated
for each customer application by customer's technical experts. Motorola does not convey any
license under its patent rights nor the rights of others. Motorola products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which
the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.
digital dna is a trademark of Motorola, Inc. The described product contains a PowerPC processor
core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product
or service names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Motorola, Inc. 2003