ChipFind - документация

Электронный компонент: LM833D

Скачать:  PDF   ZIP
Device
Operating
Temperature Range
Package
LM833
SEMICONDUCTOR
TECHNICAL DATA
DUAL OPERATIONAL
AMPLIFIER
ORDERING INFORMATION
LM833N
LM833D
TA = 40
to +85
C
Plastic DIP
SO8
PIN CONNECTIONS
Order this document by LM833/D
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO8)
N SUFFIX
PLASTIC PACKAGE
CASE 626
1
1
8
8
2
(Top View)
1
3
4
8
7
6
5
Output 1
Inputs 1
Output 2
Inputs 2
VEE
VCC
1
2
1
MOTOROLA ANALOG IC DEVICE DATA
Dual Low Noise,
Audio Amplifier
The LM833 is a standard lowcost monolithic dual generalpurpose
operational amplifier employing Bipolar technology with innovative
highperformance concepts for audio systems applications. With high
frequency PNP transistors, the LM833 offers low voltage noise
(4.5 nV/ Hz ), 15 MHz gain bandwidth product, 7.0 V/
s slew rate, 0.3 mV
input offset voltage with 2.0
V/
C temperature coefficient of input offset
voltage. The LM833 output stage exhibits no deadband crossover distortion,
large output voltage swing, excellent phase and gain margins, low open loop
high frequency output impedance and symmetrical source/sink AC
frequency response.
The LM833 is specified over the automotive temperature range and is
available in the plastic DIP and SO8 packages (P and D suffixes). For an
improved performance dual/quad version, see the MC33079 family.
Low Voltage Noise: 4.5 nV/ Hz
High Gain Bandwidth Product: 15 MHz
High Slew Rate: 7.0 V/
s
Low Input Offset Voltage: 0.3 mV
Low T.C. of Input Offset Voltage: 2.0
V/
C
Low Distortion: 0.002%
Excellent Frequency Stability
Dual Supply Operation
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Supply Voltage (VCC to VEE)
VS
+36
V
Input Differential Voltage Range (Note 1)
VIDR
30
V
Input Voltage Range (Note 1)
VIR
15
V
Output Short Circuit Duration (Note 2)
tSC
Indefinite
Operating Ambient Temperature Range
TA
40 to +85
C
Operating Junction Temperature
TJ
+150
C
Storage Temperature
Tstg
60 to +150
C
Maximum Power Dissipation (Notes 2 and 3)
PD
500
mW
NOTES: 1. Either or both input voltages must not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature
(TJ) is not exceeded (see power dissipation performance characteristic).
3. Maximum value at TA
85
C.
Motorola, Inc. 1996
Rev 0
LM833
2
MOTOROLA ANALOG IC DEVICE DATA
ELECTRICAL CHARACTERISTICS
(VCC = +15 V, VEE = 15 V, TA = 25
C, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Input Offset Voltage (RS = 10
, VO = 0 V)
VIO
0.3
5.0
mV
Average Temperature Coefficient of Input Offset Voltage
VIO/
T
2.0
V/
C
RS = 10
, VO = 0 V, TA = Tlow to Thigh
Input Offset Current (VCM = 0 V, VO = 0 V)
IIO
10
200
nA
Input Bias Current (VCM = 0 V, VO = 0 V)
IIB
300
1000
nA
Common Mode Input Voltage Range
VICR
12
+14
14
+12
V
Large Signal Voltage Gain (RL = 2.0 k
, VO =
10 V
AVOL
90
110
dB
Output Voltage Swing:
V
RL = 2.0 k
, VID = 1.0 V
VO+
10
13.7
RL = 2.0 k
, VID = 1.0 V
VO
14.1
10
RL = 10 k
, VID = 1.0 V
VO+
12
13.9
RL = 10 k
, VID = 1.0 V
VO
14.7
12
Common Mode Rejection (Vin =
12 V)
CMR
80
100
dB
Power Supply Rejection (VS = 15 V to 5.0 V, 15 V to 5.0 V)
PSR
80
115
dB
Power Supply Current (VO = 0 V, Both Amplifiers)
ID
4.0
8.0
mA
AC ELECTRICAL CHARACTERISTICS
(VCC = +15 V, VEE = 15 V, TA = 25
C, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Slew Rate (Vin = 10 V to +10 V, RL = 2.0 k
, AV = +1.0)
SR
5.0
7.0
V/
s
Gain Bandwidth Product (f = 100 kHz)
GBW
10
15
MHz
Unity Gain Frequency (Open Loop)
fU
9.0
MHz
Unity Gain Phase Margin (Open Loop)
m
60
Deg
Equivalent Input Noise Voltage (RS = 100
, f = 1.0 kHz)
en
4.5
nV
Hz
Equivalent Input Noise Current (f = 1.0 kHz)
in
0.5
pA
Hz
Power Bandwidth (VO = 27 Vpp, RL = 2.0 k
, THD
1.0%)
BWP
120
kHz
Distortion (RL = 2.0 k
, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0)
THD
0.002
%
Channel Separation (f = 20 Hz to 20 kHz)
CS
120
dB
Figure 1. Maximum Power Dissipation
versus Temperature
Figure 2. Input Bias Current versus Temperature
TA, AMBIENT TEMPERATURE (
C)
P
, MAXIMUM POWER DISSIP
A
TION
(mW)
D
I , INPUT

BIAS
CURRENT

(nA)
IB
800
600
400
200
0
50
0
50
100
150
1000
800
600
400
200
0
55
25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (
C)
VCC = +15 V
VEE = 15 V
VCM = 0 V
LM833
3
MOTOROLA ANALOG IC DEVICE DATA
TA, AMBIENT TEMPERATURE (
C)
GBW
, GAIN BANDWIDTH PRODUCT
(MHz)
20
15
10
5.0
0
25
0
25
50
75
100
125
55
VCC = +15 V
VEE = 15 V
f = 100 kHz
Figure 3. Input Bias Current versus
Supply Voltage
Figure 4. Supply Current versus
Supply Voltage
Figure 5. DC Voltage Gain
versus Temperature
Figure 6. DC Voltage Gain versus
Supply Voltage
Figure 7. Open Loop Voltage Gain and
Phase versus Frequency
Figure 8. Gain Bandwidth Product
versus Temperature
TA, AMBIENT TEMPERATURE (
C)
VCC, |VEE|, SUPPLY VOLTAGE (V)
f, FREQUENCY (Hz)
VCC, |VEE|, SUPPLY VOLTAGE (V)
VCC, |VEE|, SUPPLY VOLTAGE (V)
I , SUPPL
Y

CURRENT

(mA)
S
A
, OPEN LOOP
VOL
T
AGE
GAIN
(dB)
VOL
A
, DC VOL
T
AGE
GAIN
(dB)
VOL
800
600
400
200
0
5.0
10
15
20
10
8.0
6.0
4.0
2.0
0
110
105
100
95
90
55
25
0
25
50
75
100
125
110
100
90
80
0
5.0
10
15
20
120
100
80
60
40
20
0
1.0
10
100
1.0 k
10 k
100 k
1.0 M
10 M
0
45
90
135
180
5.0
10
15
20
, EXCESS PHASE (DEGREES)
RL =
TA = 25
C
VCC
VO
VEE
IS
VCC = +15 V
VEE = 15 V
RL = 2.0 k
VCC = +15 V
VEE = 15 V
RL = 2.0 k
TA = 25
C
Phase
Gain
, INPUT
BIAS CURRENT
(nA)
I IB
A
, DC VOL
T
AGE
GAIN
(dB)
VOL
+
RL = 2.0 k
TA = 25
C
TA = 25
C
LM833
4
MOTOROLA ANALOG IC DEVICE DATA
V
O
,
OUTPUT
VOL
T
AGE (V
)
pp
V
O
,
OUTPUT
VOL
T
AGE (V
)
pp
Figure 9. Gain Bandwidth Product versus
Supply Voltage
Figure 10. Slew Rate versus Temperature
Figure 11. Slew Rate versus Supply Voltage
Figure 12. Output Voltage versus Frequency
Figure 13. Maximum Output Voltage
versus Supply Voltage
Figure 14. Output Saturation Voltage
versus Temperature
TA, AMBIENT TEMPERATURE (
C)
VCC, |VEE|, SUPPLY VOLTAGE (V)
f, FREQUENCY (Hz)
GBW
, GAIN BANDWIDTH PRODUCT
(MHz)
VCC, |VEE|, SUPPLY VOLTAGE (V)
VCC, |VEE|, SUPPLY VOLTAGE (V)
TA, AMBIENT TEMPERATURE (
C)
SR,
SLEW
RA
TE (V/ s)
SR,
SLEW
RA
TE (V/ s)
V , OUTPUT
SA
TURA
TION
VOL
T
AGE |V|
sat
30
20
10
0
5.0
10
15
20
10
8.0
6.0
4.0
2.0
55
25
0
25
50
75
100
125
10
8.0
6.0
4.0
2.0
0
35
30
25
20
15
10
5.0
0
10
100
1.0 k
10 k
1.0 M
10 M
100 k
20
15
10
5.0
0
5.0
10
15
20
15
14
13
5.0
10
15
20
5.0
10
15
20
55
25
0
25
50
75
100
125
f = 100 kHz
TA = 25
C
RL = 2.0k
AV = +1.0
TA = 25
C
Vin
VO
RL
VO
VO +
RL = 10 k
TA = 25
C
+Vsat
Vsat
VCC = +15 V
VEE = 15 V
RL = 10 k
+
VCC = +15 V
VEE = 15 V
RL = 2.0 k
AV = +1.0
Vin
VO
RL
+
Falling
Rising
VCC = +15 V
VEE = 15 V
RL = 2.0 k
THD
v
1.0%
TA = 25
C
Falling
Rising
LM833
5
MOTOROLA ANALOG IC DEVICE DATA
e , INPUT

NOISE VOL
T
AGE (nV/ )
f, FREQUENCY (Hz)
2.0
1.0
0.7
0.5
0.4
0.3
0.2
10
100
1.0 k
10 k
100 k
Figure 15. Power Supply Rejection
versus Frequency
Figure 16. Common Mode Rejection
versus Frequency
, INPUT
NOISE CURRENT
(pA/
Figure 17. Total Harmonic Distortion
versus Frequency
Figure 18. Input Referred Noise Voltage
versus Frequency
Figure 19. Input Referred Noise Current
versus Frequency
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
RS, SOURCE RESISTANCE (
)
PSR, POWER SUPPL
Y
REJECTION (dB)
CMR, COMMON MODE REJECTION (dB)
THD,
T
O
T
A
L
HARMONIC DIST
OR
TION (%)
n
140
120
100
80
60
40
20
0
100
1.0 k
10 k
100 k
1.0 M
10 M
1.0
0.1
0.01
0.001
10
5.0
2.0
1.0
100
10
1.0
10
100
1.0 k
10 k
100 k
1.0
10
100
1.0 k
10 k
100 k
1.0 M
140
120
100
80
60
40
20
160
100
1.0 k
10 k
100 k
1.0 M
10 M
10
100
1.0 k
10 k
100 k
VCC = +15 V
VEE = 15 V
TA = 25
C
PSR
VCM
V0
ADM
ADM
+
VCM
VO
CMR = 20 Log
VO
RL
+
n
+PSR = 20 Log
PSR = 20 Log
VEE
VO/ADM
(
)
VCC
VO/ADM
(
)
+PSR
VCC
ADM
+
VEE
VO
i
)
e , INPUT
NOISE VOL
T
AGE (nV/ )
n
Figure 20. Input Referred Noise Voltage
versus Source Resistance
VCC = +15 V
VEE = 15 V
Vn(total) = (inRS)2 +en2 +
TA = 25
C
4KTRS
Hz
VCC = +15 V
VEE = 15 V
VCM = 0 V
VCM =
1.5 V
TA = 25
C
VCC = +15 V
VEE = 15 V
RS = 100
TA = 25
C
VCC = +15 V
VEE = 15 V
RL = 2.0 k
TA = 25
C
VCC = +15 V
VEE = 15 V
TA = 25
C
VO = 1.0 Vrms
VO = 3.0 Vrms
Hz
Hz