ChipFind - документация

Электронный компонент: XPC860TCZP66D3

Скачать:  PDF   ZIP

Document Outline

This document contains detailed information on power considerations, DC/AC
electrical characteristics, and AC timing specifications for the MPC860 family.
This document contains the following topics:
Topic
Page
Part I, "Overview"
1
Part II, "Features"
2
Part III, "Maximum Tolerated Ratings"
6
Part IV, "Thermal Characteristics"
7
Part V, "Power Dissipation"
8
Part VI, "DC Characteristics"
9
Part VII, "Thermal Calculation and Measurement"
10
Part VIII, "Layout Practices"
13
Part IX, "Bus Signal Timing"
13
Part X, "IEEE 1149.1 Electrical Specifications"
41
Part XI, "CPM Electrical Characteristics"
43
Part XII, "UTOPIA AC Electrical Specifications"
65
Part XIII, "FEC Electrical Characteristics"
66
Part XIV, "Mechanical Data and Ordering Information"
70
Part XV, "Document Revision History"
74
Part I Overview
The MPC860 Quad Integrated Communications Controller (PowerQUICCTM)
is a versatile one-chip integrated microprocessor and peripheral combination
designed for a variety of controller applications. It particularly excels in both
communications and networking systems. The PowerQUICC unit is referred to
as the MPC860 in this manual.
The MPC860 is a derivative of Motorola's MC68360 Quad Integrated
Communications Controller (QUICC
TM
), referred to here as the QUICC, that
implements the PowerPC architecture. The CPU on the MPC860 is a 32-bit
Hardware Specification
MPC860EC/D
Rev. 6.1, 11/2002
MPC860 Family
Hardware Specifications
2
MPC860 Family Hardware Specifications
MOTOROLA
Features
MPC8xx core that incorporates memory management units (MMUs) and instruction and
data caches and that implements the PowePC instruction set. The communications
processor module (CPM) from the MC68360 QUICC has been enhanced by the addition of
the inter-integrated controller (I
2
C) channel. The memory controller has been enhanced,
enabling the MPC860 to support any type of memory, including high-performance
memories and new types of DRAMs. A PCMCIA socket controller supports up to two
sockets. A real-time clock has also been integrated.
Table 1 shows the functionality supported by the members of the MPC860 family.
Part II Features
The following list summarizes the key MPC860 features:
Embedded single-issue, 32-bit MPC8xx core (implementing the PowerPC
architecture) with thirty-two 32-bit general-purpose registers (GPRs)
-- The core performs branch prediction with conditional prefetch, without
conditional execution
-- 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)
16-Kbyte instruction caches are four-way, set-associative with 256 sets;
4-Kbyte instruction caches are two-way, set-associative with 128 sets.
8-Kbyte data caches are two-way, set-associative with 256 sets; 4-Kbyte data
caches are two-way, set-associative with 128 sets.
Cache coherency for both instruction and data caches is maintained on 128-bit
(4-word) cache blocks.
Table 1. MPC860 Family Functionality
Part
Cache (Kbytes)
Ethernet
ATM
SCC Ref.
1
1
Supporting documentation for these devices refers to the following:
1. MPC860 PowerQUICC User's Manual (MPC860UM/D, Rev. 1).
2. MPC8XX ATM Supplement (MPC860SARUM/AD).
3. MPC860T (Rev. D), Fast Ethernet Controller Supplement (MPC860TREVDSUPP).
4. MPC855T User's Manual (MPC855TUM/D, Rev. 1).
Instruction
Cache
Data Cache
10T
10/100
MPC860DE
4
4
Up to 2
--
--
2
1
MPC860DT
4
4
Up to 2
1
yes
2
1,2,3
MPC860DP
16
8
Up to 2
1
yes
2
1,2,3
MPC860EN
4
4
Up to 4
--
--
4
1
MPC860SR
4
4
Up to 4
--
yes
4
1,2
MPC860T
4
4
Up to 4
1
yes
4
1,2,3
MPC860P
16
8
Up to 4
1
yes
4
1,2,3
MPC855T
4
4
1
1
yes
1
4
MOTOROLA
MPC860 Family Hardware Specifications
3
Features
Caches are physically addressed, implement a least recently used (LRU)
replacement algorithm, and are lockable on a cache block basis.
-- Instruction and data caches are two-way, set-associative, physically addressed,
LRU replacement, and lockable on-line granularity.
-- MMUs with 32-entry TLB, fully associative instruction, and data TLBs
-- MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16
virtual address spaces and 16 protection groups
-- Advanced on-chip-emulation debug mode
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
32 address lines
Operates at up to 80 MHz
Memory controller (eight banks)
-- Contains complete dynamic RAM (DRAM) controller
-- Each bank can be a chip select or RAS to support a DRAM bank
-- Up to 15 wait states programmable per memory bank
-- Glueless interface to DRAM, SIMMS, SRAM, EPROM, Flash EPROM, and
other memory devices.
-- DRAM controller programmable to support most size and speed memory
interfaces
-- Four CAS lines, four WE lines, one OE line
-- Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
-- Variable block sizes (32 Kbyte to 256 Mbyte)
-- Selectable write protection
-- On-chip bus arbitration logic
General-purpose timers
-- Four 16-bit timers or two 32-bit timers
-- Gate mode can enable/disable counting
-- Interrupt can be masked on reference match and event capture
System integration unit (SIU)
-- Bus monitor
-- Software watchdog
-- Periodic interrupt timer (PIT)
-- Low-power stop mode
-- Clock synthesizer
4
MPC860 Family Hardware Specifications
MOTOROLA
Features
-- Decrementer, time base, and real-time clock (RTC) from the PowerPC
architecture
-- Reset controller
-- IEEE 1149.1 test access port (JTAG)
Interrupts
-- Seven external interrupt request (IRQ) lines
-- 12 port pins with interrupt capability
-- 23 internal interrupt sources
-- Programmable priority between SCCs
-- Programmable highest priority request
10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u Standard (not
available when using ATM over UTOPIA interface)
ATM support compliant with ATM forum UNI 4.0 specification
-- Cell processing up to 5070 Mbps at 50-MHz system clock
-- Cell multiplexing/demultiplexing
-- Support of AAL5 and AAL0 protocols on a per-VC basis. AAL0 support enables
OAM and software implementation of other protocols).
-- ATM pace control (APC) scheduler, providing direct support for constant bit rate
(CBR) and unspecified bit rate (UBR) and providing control mechanisms
enabling software support of available bit rate (ABR)
-- Physical interface support for UTOPIA (10/100-Mbps is not supported with this
interface) and byte-aligned serial (for example, T1/E1/ADSL)
-- UTOPIA-mode ATM supports level-1 master with cell-level handshake,
multi-PHY (up to 4 physical layer devices), connection to 25-, 51-, or 155-Mbps
framers, and UTOPIA/system clock ratios of 1/2 or 1/3.
-- Serial-mode ATM connection supports transmission convergence (TC) function
for T1/E1/ADSL lines; cell delineation; cell payload scrambling/descrambling;
automatic idle/unassigned cell insertion/stripping; header error control (HEC)
generation, checking, and statistics.
Communications processor module (CPM)
-- RISC communications processor (CP)
-- Communication-specific commands (for example,
GRACEFUL
STOP
TRANSMIT
,
ENTER
HUNT
MODE
, and
RESTART
TRANSMIT
)
-- Supports continuous mode transmission and reception on all serial channels
-- Up to 8Kbytes of dual-port RAM
-- 16 serial DMA (SDMA) channels
MOTOROLA
MPC860 Family Hardware Specifications
5
Features
-- Three parallel I/O registers with open-drain capability
Four baud-rate generators (BRGs)
-- Independent (can be connected to any SCC or SMC)
-- Allow changes during operation
-- Autobaud support option
Four serial communications controllers (SCCs)
-- Ethernet/IEEE 802.3 optional on SCC14, supporting full 10-Mbps operation
(available only on specially programmed devices).
-- HDLC/SDLC
(all channels supported at 2 Mbps)
-- HDLC bus (implements an HDLC-based local area network (LAN))
-- Asynchronous HDLC to support PPP (point-to-point protocol)
-- AppleTalk
-- Universal asynchronous receiver transmitter (UART)
-- Synchronous UART
-- Serial infrared (IrDA)
-- Binary synchronous communication (BISYNC)
-- Totally transparent (bit streams)
-- Totally transparent (frame based with optional cyclic redundancy check (CRC))
Two SMCs (serial management channels)
-- UART
-- Transparent
-- General circuit interface (GCI) controller
-- Can be connected to the time-division multiplexed (TDM) channels
One SPI (serial peripheral interface)
-- Supports master and slave modes
-- Supports multimaster operation on the same bus
One I
2
C (inter-integrated circuit) port
-- Supports master and slave modes
-- Multiple-master environment support
Time-slot assigner (TSA)
-- Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
-- Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user
defined
-- 1- or 8-bit resolution
6
MPC860 Family Hardware Specifications
MOTOROLA
Maximum Tolerated Ratings
-- Allows independent transmit and receive routing, frame synchronization,
clocking
-- Allows dynamic changes
-- Can be internally connected to six serial channels (four SCCs and two SMCs)
Parallel interface port (PIP)
-- Centronics interface support
-- Supports fast connection between compatible ports on the MPC860 or the
MC68360
PCMCIA interface
-- Master (socket) interface, release 2.1 compliant
-- Supports two independent PCMCIA sockets
-- Eight memory or I/O windows supported
Low power support
-- Full on--all units fully powered
-- Doze--core functional units disabled, except time base decrementer, PLL,
memory controller, RTC, and CPM in low-power standby
-- Sleep--all units disabled, except RTC and PIT, PLL active for fast wake up
-- Deep sleep--all units disabled including PLL, except RTC and PIT
-- Power down mode-- all units powered down, except PLL, RTC, PIT, time base,
and decrementer
Debug interface
-- Eight comparators: four operate on instruction address, two operate on data
address, and two operate on data
-- Supports conditions:
=
< >
-- Each watchpoint can generate a break-point internally
3.3 V operation with 5-V TTL compatibility except EXTAL and EXTCLK
357-pin ball grid array (BGA) package
Part III Maximum Tolerated Ratings
This section provides the maximum tolerated voltage and temperature ranges for the
MPC860. Table 3-2 provides the maximum ratings.
This device contains circuitry protecting against damage due to high-static voltage or
electrical fields; however, it is advised that normal precautions be taken to avoid application
of any voltages higher than maximum-rated voltages to this high-impedance circuit.
Reliability of operation is enhanced, if unused inputs are tied to an appropriate logic voltage
level (for example, either GND or V
dd
).
MOTOROLA
MPC860 Family Hardware Specifications
7
Thermal Characteristics
Part IV Thermal Characteristics
Table 4-3 shows the thermal characteristics for the MPC860.
Table 3-2. Maximum Tolerated Ratings
(GND = 0 V)
Rating
Symbol
Value
Unit
Supply Voltage
1
1
The power supply of the device must start its ramp from 0.0 V.
V
DDH
0.3 to 4.0
V
V
DDL
0.3 to 4.0
V
KAPWR
0.3 to 4.0
V
VDDSYN
0.3 to 4.0
V
Input Voltage
2
2
Functional operating conditions are provided with the DC electrical specifications in Table 6-5. Absolute maximum
ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may
affect device reliability or cause permanent damage to the device.
Caution
: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies
to power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater than 2.5 V must not be
applied to its inputs).
V
in
GND 0.3 to VDDH
V
Temperature
3
(Standard)
3
Minimum temperatures are guaranteed as ambient temperature, T
A
. Maximum temperatures are guaranteed as
junction temperature, T
j
.
T
A(min)
0
C
T
j(max)
95
C
Temperature
3
(Extended)
T
A(min)
40
C
T
j(max)
95
C
Storage Temperature Range
T
stg
55 to 150
C
Table 4-3. MPC860 Thermal Resistance Data
Rating
Environment
Symbol
Rev A
Rev
B, C, D
Unit
Junction to Ambient
1
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
Natural Convection
Single layer board (1s)
R
JA
2
31
40
C/W
Four layer board (2s2p)
R
JMA
3
20
25
Air Flow (200 ft/min)
Single layer board (1s)
R
JMA
3
26
32
Four layer board (2s2p)
R
JMA
3
16
21
Junction to Board
4
R
JB
8
15
Junction to Case
5
R
JC
5
7
Junction to Package Top
6
Natural Convection
JT
1
2
Air Flow (200 ft/min)
2
3
8
MPC860 Family Hardware Specifications
MOTOROLA
Power Dissipation
Part V Power Dissipation
Table 5-4 provides power dissipation information. The modes are 1:1, where CPU and bus
speeds are equal, and 2:1 mode, where CPU frequency is twice bus speed.
NOTE
Values in Table 5-4" represent V
DDL
-based power dissipation
and do not include I/O power dissipation over V
DDH
. I/O power
dissipation varies widely by application due to buffer current,
depending on external circuitry.
2
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3
Per JEDEC JESD51-6 with the board horizontal.
4
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.
5
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed
pad packages where the pad would be expected to be soldered, junction to case thermal resistance is a simulated
value from the junction to the exposed pad without contact resistance.
6
Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
Table 5-4. Power Dissipation (P
D
)
Die Revision
Frequency (MHz)
Typical
1
1
Typical power dissipation is measured at 3.3 V.
Maximum
2
2
Maximum power dissipation is measured at 3.5 V.
Unit
A.3 and Previous
25
450
550
mW
40
700
850
mW
50
870
1050
mW
B.1 and C.1
33
375
TBD
mW
50
575
TBD
mW
66
750
TBD
mW
D.3 and D.4
(1:1 Mode)
50
656
735
mW
66
TBD
TBD
mW
D.3 and D.4
(2:1 Mode)
66
722
762
mW
80
851
909
mW
MOTOROLA
MPC860 Family Hardware Specifications
9
DC Characteristics
Part VI DC Characteristics
Table 6-5 provides the DC electrical characteristics for the MPC860.
Table 6-5. DC Electrical Specifications
Characteristic
Symbol
Min
Max
Unit
Operating Voltage at 40 MHz or Less
V
DDH
, V
DDL
, VDDSYN
3.0
3.6
V
KAPWR
(power-down mode)
2.0
3.6
V
KAPWR
(all other operating modes)
V
DDH
0.4
V
DDH
V
Operating Voltage Greater than 40 MHz
V
DDH
, V
DDL
, KAPWR,
VDDSYN
3.135
3.465
V
KAPWR
(power-down mode)
2.0
3.6
V
KAPWR
(all other operating modes)
V
DDH
0.4
V
DDH
V
Input High Voltage (All Inputs Except EXTAL
and EXTCLK)
V
IH
2.0
5.5
V
Input Low Voltage
V
IL
GND
0.8
V
EXTAL, EXTCLK Input High Voltage
V
IHC
0.7
(V
DDH
)
V
DDH
+ 0.3
V
Input Leakage Current, V
in
= 5.5 V (Except
TMS, TRST, DSCK, and DSDI Pins)
I
in
--
100
A
Input Leakage Current, V
in
= 3.6 V (Except
TMS, TRST, DSCK, and DSDI Pins)
I
In
--
10
A
Input Leakage Current, V
in
= 0 V (Except
TMS, TRST, DSCK, and DSDI Pins)
I
In
--
10
A
Input Capacitance
1
1
Input capacitance is periodically sampled.
C
in
--
20
pF
Output High Voltage, I
OH
= 2.0 mA,
V
DDH
= 3.0 V (Except XTAL, XFC, and Open
Drain Pins)
V
OH
2.4
--
V
Output Low Voltage
IOL = 2.0 mA, CLKOUT
IOL = 3.2 mA
2
IOL = 5.3 mA
3
IOL = 7.0 mA, TXD1/PA14, TXD2/PA12
IOL = 8.9 mA, TS, TA, TEA, BI, BB,
HRESET, SRESET
V
OL
--
0.5
V
10
MPC860 Family Hardware Specifications
MOTOROLA
Thermal Calculation and Measurement
Part VII Thermal Calculation and Measurement
For the following discussions, P
D
= (V
DD
I
DD
) + PI/O, where PI/O is the power
dissipation of the I/O drivers.
7.1
Estimation with Junction-to-Ambient Thermal
Resistance
An estimation of the chip junction temperature, T
J
, in C can be obtained from the equation:
T
J
= T
A
+ (R
JA
P
D
)
where:
T
A
= ambient temperature (C)
R
JA
= package junction-to-ambient thermal resistance (C/W)
P
D
= power dissipation in package
The junction-to-ambient thermal resistance is an industry standard value which provides a
quick and easy estimation of thermal performance. However, the answer is only an
estimate; test cases have demonstrated that errors of a factor of two (in the quantity T
J
T
A
)
are possible.
7.2
Estimation with Junction-to-Case Thermal
Resistance
Historically, the thermal resistance has frequently been expressed as the sum of a
junction-to-case thermal resistance and a case-to-ambient thermal resistance:
R
JA
= R
JC
+ R
CA
2
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/
VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0,
IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8,
TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5,
TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/
PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29,
BRGO4/SPIMISO/
PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/
PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19,
L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/
DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11,
TGATE1/CD1/PC10, CTS2/PC9, TGATE2/CD2/PC8, SDACK2/L1TSYNCB/PC7, L1RSYNCB/PC6, SDACK1/
L1TSYNCA/PC5, L1RSYNCA/PC4, PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PD5, PD6, PD7, PD4,
PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].
3
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD,
WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/
GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A,
CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).
MOTOROLA
MPC860 Family Hardware Specifications
11
Estimation with Junction-to-Board Thermal Resistance
where:
R
JA
= junction-to-ambient thermal resistance (C/W)
R
JC
= junction-to-case thermal resistance (C/W)
R
CA
= case-to-ambient thermal resistance (C/W)
R
JC
is device related and cannot be influenced by the user. The user adjusts the thermal
environment to affect the case-to-ambient thermal resistance, R
CA
. For instance, the user
can change the air flow around the device, add a heat sink, change the mounting
arrangement on the printed circuit board, or change the thermal dissipation on the printed
circuit board surrounding the device. This thermal model is most useful for ceramic
packages with heat sinks where some 90% of the heat flows through the case and the heat
sink to the ambient environment. For most packages, a better model is required.
7.3
Estimation with Junction-to-Board Thermal
Resistance
A simple package thermal model which has demonstrated reasonable accuracy (about 20%)
is a two resistor model consisting of a junction-to-board and a junction-to-case thermal
resistance. The junction-to-case covers the situation where a heat sink is used or where a
substantial amount of heat is dissipated from the top of the package. The junction-to-board
thermal resistance describes the thermal performance when most of the heat is conducted
to the printed circuit board. It has been observed that the thermal performance of most
plastic packages and especially PBGA packages is strongly dependent on the board
temperature; see Figure 7-1.
Figure 7-1. Effect of Board Temperature Rise on Thermal Behavior
0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
1 0 0
0
2 0
4 0
6 0
8 0
Board Temperture Rise Above Ambient Divided by Package
Junction Temperature Rise Above
Ambient Divided by Package Power
Board Temperature Rise Above Ambient Divided by Package Power
J
unction
T
emper
ature Rise Abo
v
e
Ambient Divided b
y
P
a
c
kage P
o
w
e
r
12
MPC860 Family Hardware Specifications
MOTOROLA
Estimation Using Simulation
If the board temperature is known, an estimate of the junction temperature in the
environment can be made using the following equation:
T
J
= T
B
+ (R
JB
P
D
)
where:
R
JB
= junction-to-board thermal resistance (C/W)
T
B
= board temperature (C)
P
D
= power dissipation in package
If the board temperature is known and the heat loss from the package case to the air can be
ignored, acceptable predictions of junction temperature can be made. For this method to
work, the board and board mounting must be similar to the test board used to determine the
junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground
plane) and vias attaching the thermal balls to the ground plane.
7.4
Estimation Using Simulation
When the board temperature is not known, a thermal simulation of the application is
needed. The simple two resistor model can be used with the thermal simulation of the
application [2], or a more accurate and complex model of the package can be used in the
thermal simulation.
7.5
Experimental Determination
To determine the junction temperature of the device in the application after prototypes are
available, the thermal characterization parameter (
JT
) can be used to determine the
junction temperature with a measurement of the temperature at the top center of the
package case using the following equation:
T
J
= T
T
+ (
JT
P
D
)
where:
JT
= thermal characterization parameter
T
T
= thermocouple temperature on top of package
P
D
= power dissipation in package
The thermal characterization parameter is measured per JEDEC JESD51-2 specification
using a 40 gauge type T thermocouple epoxied to the top center of the package case. The
thermocouple should be positioned so that the thermocouple junction rests on the package.
A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of
wire extending from the junction. The thermocouple wire is placed flat against the package
case to avoid measurement errors caused by cooling effects of the thermocouple wire.
MOTOROLA
MPC860 Family Hardware Specifications
13
References
7.6
References
Semiconductor Equipment and Materials International
(415) 964-5111
805 East Middlefield Rd
Mountain View, CA 94043
MIL-SPEC and EIA/JESD (JEDEC) specifications
800-854-7179 or
(Available from Global Engineering Documents)
303-397-7956
JEDEC Specifications
http://www.jedec.org
1. 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA
Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San
Diego, 1998, pp. 47
54.
2. 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board
Thermal Resistance and Its Application in Thermal Modeling," Proceedings of
SemiTherm, San Diego, 1999, pp. 212
220.
Part VIII Layout Practices
Each V
DD
pin on the MPC860 should be provided with a low-impedance path to the board's
supply. Each GND pin should likewise be provided with a low-impedance path to ground.
The power supply pins drive distinct groups of logic on chip. The V
DD
power supply should
be bypassed to ground using at least four 0.1 F-bypass capacitors located as close as
possible to the four sides of the package. The capacitor leads and associated printed circuit
traces connecting to chip V
DD
and GND should be kept to less than half an inch per
capacitor lead. A four-layer board is recommended, employing two inner layers as V
CC
and
GND planes.
All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace
interconnection length should be minimized in order to minimize undershoot and
reflections caused by these fast output switching times. This recommendation particularly
applies to the address and data busses. Maximum PC trace lengths of 6 inches are
recommended. Capacitance calculations should consider all device loads as well as
parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing
becomes especially critical in systems with higher capacitive loads because these loads
create higher transient currents in the V
CC
and GND circuits. Pull up all unused inputs or
signals that will be inputs during reset. Special care should be taken to minimize the noise
levels on the PLL supply pins.
Part IX Bus Signal Timing
Table 9-6 provides the bus operation timing for the MPC860 at 33, 40, 50, and 66 MHz.
The maximum bus speed supported by the MPC860 is 66 MHz. Higher-speed parts must
be operated in half-speed bus mode (for example, an MPC860 used at 80 MHz must be
configured for a 40 MHz bus).
14
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
The timing for the MPC860 bus shown assumes a 50-pF load for maximum delays and a
0-pF load for minimum delays.
Table 9-6. Bus Operation Timings
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
B1
CLKOUT period
30.30
30.30
25.00
30.30
20.00
30.30
15.15
30.30
ns
B1a
EXTCLK to CLKOUT phase skew
(EXTCLK > 15 MHz and MF <= 2)
0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90
ns
B1b
EXTCLK to CLKOUT phase skew
(EXTCLK > 10 MHz and MF < 10)
2.30
2.30
2.30
2.30
2.30
2.30
2.30
2.30
ns
B1c
CLKOUT phase jitter (EXTCLK >
15 MHz and MF <= 2)
1
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
ns
B1d
CLKOUT phase jitter
1
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
ns
B1e
CLKOUT frequency jitter (MF < 10)
1
--
0.50
--
0.50
--
0.50
--
0.50
%
B1f
CLKOUT frequency jitter (10 < MF
< 500)
1
--
2.00
--
2.00
--
2.00
--
2.00
%
B1g
CLKOUT frequency jitter (MF > 500)
1
--
3.00
--
3.00
--
3.00
--
3.00
%
B1h
Frequency jitter on EXTCLK
2
--
0.50
--
0.50
--
0.50
--
0.50
%
B2
CLKOUT pulse width low
12.12
--
10.00
--
8.00
--
6.06
--
ns
B3
CLKOUT width high
12.12
--
10.00
--
8.00
--
6.06
--
ns
B4
CLKOUT rise time
3
--
4.00
--
4.00
--
4.00
--
4.00
ns
B5
33
CLKOUT fall time
3
--
4.00
--
4.00
--
4.00
--
4.00
ns
B7
CLKOUT to A(0:31), BADDR(28:30),
RD/WR, BURST, D(0:31), DP(0:3)
invalid
7.58
--
6.25
--
5.00
--
3.80
--
ns
B7a
CLKOUT to TSIZ(0:1), REG, RSV,
AT(0:3), BDIP, PTR invalid
7.58
--
6.25
--
5.00
--
3.80
--
ns
B7b
CLKOUT to BR, BG, FRZ, VFLS(0:1),
VF(0:2) IWP(0:2), LWP(0:1), STS
invalid
4
7.58
--
6.25
--
5.00
--
3.80
--
ns
B8
CLKOUT to A(0:31), BADDR(28:30)
RD/WR, BURST, D(0:31), DP(0:3)
valid
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
B8a
CLKOUT to TSIZ(0:1), REG, RSV,
AT(0:3) BDIP, PTR valid
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
B8b
CLKOUT to BR, BG, VFLS(0:1),
VF(0:2), IWP(0:2), FRZ, LWP(0:1),
STS valid
4
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
B9
CLKOUT to A(0:31), BADDR(28:30),
RD/WR, BURST, D(0:31), DP(0:3),
TSIZ(0:1), REG, RSV, AT(0:3), PTR
High-Z
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
MOTOROLA
MPC860 Family Hardware Specifications
15
Bus Signal Timing
B11
CLKOUT to TS, BB assertion
7.58
13.58
6.25
12.25
5.00
11.00
3.80
11.29
ns
B11a CLKOUT to TA, BI assertion (when
driven by the memory controller or
PCMCIA interface)
2.50
9.25
2.50
9.25
2.50
9.25
2.50
9.75
ns
B12
CLKOUT to TS, BB negation
7.58
14.33
6.25
13.00
5.00
11.75
3.80
8.54
ns
B12a CLKOUT to TA, BI negation (when
driven by the memory controller or
PCMCIA interface)
2.50
11.00
2.50
11.00
2.50
11.00
2.50
9.00
ns
B13
CLKOUT to TS, BB High-Z
7.58
21.58
6.25
20.25
5.00
19.00
3.80
14.04
ns
B13a CLKOUT to TA, BI High-Z (when
driven by the memory controller or
PCMCIA interface)
2.50
15.00
2.50
15.00
2.50
15.00
2.50
15.00
ns
B14
CLKOUT to TEA assertion
2.50
10.00
2.50
10.00
2.50
10.00
2.50
9.00
ns
B15
CLKOUT to TEA High-Z
2.50
15.00
2.50
15.00
2.50
15.00
2.50
15.00
ns
B16
TA, BI valid to CLKOUT (setup time)
9.75
--
9.75
--
9.75
--
6.00
--
ns
B16a TEA, KR, RETRY, CR valid to
CLKOUT (setup time)
10.00
--
10.00
--
10.00
--
4.50
--
ns
B16b BB, BG, BR, valid to CLKOUT (setup
time)
5
8.50
--
8.50
--
8.50
--
4.00
--
ns
B17
CLKOUT to TA, TEA, BI, BB, BG, BR
valid (hold time)
1.00
--
1.00
--
1.00
--
2.00
--
ns
B17a CLKOUT to KR, RETRY, CR valid
(hold time)
2.00
--
2.00
--
2.00
--
2.00
--
ns
B18
D(0:31), DP(0:3) valid to CLKOUT
rising edge (setup time)
6
6.00
--
6.00
--
6.00
--
6.00
--
ns
B19
CLKOUT rising edge to D(0:31),
DP(0:3) valid (hold time)
6
1.00
--
1.00
--
1.00
--
2.00
--
ns
B20
D(0:31), DP(0:3) valid to CLKOUT
falling edge (setup time)
7
4.00
--
4.00
--
4.00
--
4.00
--
ns
B21
CLKOUT falling edge to D(0:31),
DP(0:3) valid (hold time)
7
2.00
--
2.00
--
2.00
--
2.00
--
ns
B22
CLKOUT rising edge to CS asserted
GPCM ACS = 00
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
B22a CLKOUT falling edge to CS asserted
GPCM ACS = 10, TRLX = 0
--
8.00
--
8.00
--
8.00
--
8.00
ns
B22b CLKOUT falling edge to CS asserted
GPCM ACS = 11, TRLX = 0,
EBDF = 0
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
Table 9-6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
16
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
B22c CLKOUT falling edge to CS asserted
GPCM ACS = 11, TRLX = 0,
EBDF = 1
10.86
17.99
8.88
16.00
7.00
14.13
5.18
12.31
ns
B23
CLKOUT rising edge to CS negated
GPCM read access, GPCM write
access ACS = 00, TRLX = 0, and
CSNT = 0
2.00
8.00
2.00
8.00
2.00
8.00
2.00
8.00
ns
B24
A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 10, TRLX = 0
5.58
--
4.25
--
3.00
--
1.79
--
ns
B24a A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 11, TRLX = 0
13.15
--
10.50
--
8.00
--
5.58
--
ns
B25
CLKOUT rising edge to OE, WE(0:3)
asserted
--
9.00
--
9.00
--
9.00
--
9.00
ns
B26
CLKOUT rising edge to OE negated
2.00
9.00
2.00
9.00
2.00
9.00
2.00
9.00
ns
B27
A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 10, TRLX = 1
35.88
--
29.25
--
23.00
--
16.94
--
ns
B27a A(0:31) and BADDR(28:30) to CS
asserted GPCM ACS = 11, TRLX = 1
43.45
--
35.50
--
28.00
--
20.73
--
ns
B28
CLKOUT rising edge to WE(0:3)
negated GPCM write access
CSNT = 0
--
9.00
--
9.00
--
9.00
--
9.00
ns
B28a CLKOUT falling edge to WE(0:3)
negated GPCM write access
TRLX = 0, CSNT = 1, EBDF = 0
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
B28b CLKOUT falling edge to CS negated
GPCM write access TRLX = 0, CSNT
= 1, ACS = 10, or ACS = 11, EBDF =
0
--
14.33
--
13.00
--
11.75
--
10.54
ns
B28c CLKOUT falling edge to WE(0:3)
negated GPCM write access
TRLX = 0, CSNT = 1 write access
TRLX = 0, CSNT = 1, EBDF = 1
10.86
17.99
8.88
16.00
7.00
14.13
5.18
12.31
ns
B28d CLKOUT falling edge to CS negated
GPCM write access TRLX = 0, CSNT
= 1, ACS = 10, or ACS = 11, EBDF =
1
--
17.99
--
16.00
--
14.13
--
12.31
ns
B29
WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access
CSNT = 0, EBDF = 0
5.58
--
4.25
--
3.00
--
1.79
--
ns
B29a WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 0, CSNT = 1, EBDF = 0
13.15
--
10.5
--
8.00
--
5.58
--
ns
Table 9-6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
MOTOROLA
MPC860 Family Hardware Specifications
17
Bus Signal Timing
B29b CS negated to D(0:31), DP(0:3),
High-Z GPCM write access,
ACS = 00, TRLX = 0, and CSNT = 0
5.58
--
4.25
--
3.00
--
1.79
--
ns
B29c CS negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 0, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 0
13.15
--
10.5
--
8.00
--
5.58
--
ns
B29d WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 1, CSNT = 1, EBDF = 0
43.45
--
35.5
--
28.00
--
20.73
--
ns
B29e CS negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 1, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 0
43.45
--
35.5
--
28.00
--
29.73
--
ns
B29f
WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 0, CSNT = 1, EBDF = 1
8.86
--
6.88
--
5.00
--
3.18
--
ns
B29g CS negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 0, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 1
8.86
--
6.88
--
5.00
--
3.18
--
ns
B29h WE(0:3) negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 1, CSNT = 1, EBDF = 1
38.67
--
31.38
--
24.50
--
17.83
--
ns
B29i
CS negated to D(0:31), DP(0:3)
High-Z GPCM write access,
TRLX = 1, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 1
38.67
--
31.38
--
24.50
--
17.83
--
ns
B30
CS, WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write
access
8
5.58
--
4.25
--
3.00
--
1.79
--
ns
B30a WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM, write
access, TRLX = 0, CSNT = 1,
CS negated to A(0:31) invalid GPCM
write access, TRLX = 0, CSNT =1
ACS = 10, or ACS = 11, EBDF = 0
13.15
--
10.50
--
8.00
--
5.58
--
ns
B30b WE(0:3) negated to A(0:31),
invalid GPCM BADDR(28:30) invalid
GPCM write access, TRLX = 1,
CSNT = 1. CS negated to A(0:31),
Invalid GPCM, write access,
TRLX = 1, CSNT = 1, ACS = 10, or
ACS = 11, EBDF = 0
43.45
--
35.50
--
28.00
--
20.73
--
ns
Table 9-6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
18
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
B30c WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write
access, TRLX = 0, CSNT = 1.
CS negated to A(0:31) invalid GPCM
write access, TRLX = 0, CSNT = 1,
ACS = 10, ACS = 11, EBDF = 1
8.36
--
6.38
--
4.50
--
2.68
--
ns
B30d WE(0:3) negated to A(0:31),
BADDR(28:30) invalid GPCM write
access, TRLX = 1, CSNT =1.
CS negated to A(0:31) invalid GPCM
write access TRLX = 1, CSNT = 1,
ACS = 10, or ACS = 11, EBDF = 1
38.67
--
31.38
--
24.50
--
17.83
--
ns
B31
CLKOUT falling edge to CS valid--as
requested by control bit CST4 in the
corresponding word in UPM
1.50
6.00
1.50
6.00
1.50
6.00
1.50
6.00
ns
B31a CLKOUT falling edge to CS valid--as
requested by control bit CST1 in the
corresponding word in UPM
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
B31b CLKOUT rising edge to CS valid--as
requested by control bit CST2 in the
corresponding word in UPM
1.50
8.00
1.50
8.00
1.50
8.00
1.50
8.00
ns
B31c CLKOUT rising edge to CS valid--as
requested by control bit CST3 in the
corresponding word in UPM
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.04
ns
B31d CLKOUT falling edge to CS valid--as
requested by control bit CST1 in the
corresponding word in UPM, EBDF =
1
13.26
17.99
11.28
16.00
9.40
14.13
7.58
12.31
ns
B32
CLKOUT falling edge to BS valid--as
requested by control bit BST4 in the
corresponding word in UPM
1.50
6.00
1.50
6.00
1.50
6.00
1.50
6.00
ns
B32a CLKOUT falling edge to BS valid--as
requested by control bit BST1 in the
corresponding word in UPM, EBDF =
0
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
B32b CLKOUT rising edge to BS valid--as
requested by control bit BST2 in the
corresponding word in UPM
1.50
8.00
1.50
8.00
1.50
8.00
1.50
8.00
ns
B32c CLKOUT rising edge to BS valid--as
requested by control bit BST3 in the
corresponding word in UPM
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
B32d CLKOUT falling edge to BS valid--as
requested by control bit BST1 in the
corresponding word in UPM, EBDF =
1
13.26
17.99
11.28
16.00
9.40
14.13
7.58
12.31
ns
Table 9-6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
MOTOROLA
MPC860 Family Hardware Specifications
19
Bus Signal Timing
B33
CLKOUT falling edge to GPL
valid--as requested by control bit
GxT4 in the corresponding word in
UPM
1.50
6.00
1.50
6.00
1.50
6.00
1.50
6.00
ns
B33a CLKOUT rising edge to GPL
valid--as requested by control bit
GxT3 in the corresponding word in
UPM
7.58
14.33
6.25
13.00
5.00
11.75
3.80
10.54
ns
B34 A(0:31), BADDR(28:30), and D(0:31)
to CS valid--as requested by control
bit CST4 in the corresponding word in
UPM
5.58
--
4.25
--
3.00
--
1.79
--
ns
B34a A(0:31), BADDR(28:30), and D(0:31)
to CS valid--as requested by control
bit CST1 in the corresponding word in
UPM
13.15
--
10.50
--
8.00
--
5.58
--
ns
B34b A(0:31), BADDR(28:30), and D(0:31)
to CS valid--as requested by control
bit CST2 in the corresponding word in
UPM
20.73
--
16.75
--
13.00
--
9.36
--
ns
B35
A(0:31), BADDR(28:30) to CS
valid--as requested by control bit
BST4 in the corresponding word in
UPM
5.58
--
4.25
--
3.00
--
1.79
--
ns
B35a A(0:31), BADDR(28:30), and D(0:31)
to BS valid--as requested by control
bit BST1 in the corresponding word in
UPM
13.15
--
10.50
--
8.00
--
5.58
--
ns
B35b A(0:31), BADDR(28:30), and D(0:31)
to BS valid--as requested by control
bit BST2 in the corresponding word in
UPM
20.73
--
16.75
--
13.00
--
9.36
--
ns
B36
A(0:31), BADDR(28:30), and D(0:31)
to GPL valid--as requested by
control bit GxT4 in the corresponding
word in UPM
5.58
--
4.25
--
3.00
--
1.79
--
ns
B37
UPWAIT valid to CLKOUT falling
edge
9
6.00
--
6.00
--
6.00
--
6.00
--
ns
B38
CLKOUT falling edge to UPWAIT
valid
9
1.00
--
1.00
--
1.00
--
1.00
--
ns
B39
AS valid to CLKOUT rising edge
10
7.00
--
7.00
--
7.00
--
7.00
--
ns
B40
A(0:31), TSIZ(0:1), RD/WR, BURST,
valid to CLKOUT rising edge
7.00
--
7.00
--
7.00
--
7.00
--
ns
Table 9-6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
20
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-2 is the control timing diagram.
B41
TS valid to CLKOUT rising edge
(setup time)
7.00
--
7.00
--
7.00
--
7.00
--
ns
B42
CLKOUT rising edge to TS valid (hold
time)
2.00
--
2.00
--
2.00
--
2.00
--
ns
B43
AS negation to memory controller
signals negation
--
TBD
--
TBD
--
TBD
--
TBD
ns
1
Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.
2
If the rate of change of the frequency of EXTAL is slow (i.e., it does not jump between the minimum and maximum
values in one cycle) or the frequency of the jitter is fast (i.e., it does not stay at an extreme value for a long time) then
the maximum allowed jitter on EXTAL can be up to 2%.
3
The timings specified in B4 and B5 are based on full strength clock.
4
The timing for BR output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for BG
output is relevant when the MPC860 is selected to work with internal bus arbiter.
5
The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing
for BG input is relevant when the MPC860 is selected to work with external bus arbiter.
6
The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input
signal is asserted.
7
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only
for read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where
DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)
8
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.
9
The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified
in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 9-17.
10
The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior
specified in Figure 9-20.
Table 9-6. Bus Operation Timings (continued)
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
MOTOROLA
MPC860 Family Hardware Specifications
21
Bus Signal Timing
Figure 9-2. Control Timing
Figure 9-3 provides the timing for the external clock.
Figure 9-3. External Clock Timing
CLKOUT
Outputs
A
B
2.0 V
0.8 V
0.8 V
2.0 V
2.0 V
0.8 V
2.0 V
0.8 V
Outputs
2.0 V
0.8 V
2.0 V
0.8 V
B
A
Inputs
2.0 V
0.8 V
2.0 V
0.8 V
D
C
Inputs
2.0 V
0.8 V
2.0 V
0.8 V
C
D
A
Maximum output delay specification.
B
Minimum output hold time.
C
Minimum input setup time specification.
D
Minimum input hold time specification.
CLKOUT
B1
B5
B3
B4
B1
B2
22
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-4 provides the timing for the synchronous output signals.
Figure 9-4. Synchronous Output Signals Timing
Figure 9-5 provides the timing for the synchronous active pull-up and open-drain output
signals.
Figure 9-5. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals
Timing
CLKOUT
Output
Signals
Output
Signals
Output
Signals
B8
B7
B9
B8a
B9
B7a
B8b
B7b
CLKOUT
TS, BB
TA, BI
TEA
B13
B12
B11
B11a
B12a
B13a
B15
B14
MOTOROLA
MPC860 Family Hardware Specifications
23
Bus Signal Timing
Figure 9-6 provides the timing for the synchronous input signals.
Figure 9-6. Synchronous Input Signals Timing
Figure 9-7 provides normal case timing for input data. It also applies to normal read
accesses under the control of the UPM in the memory controller.
Figure 9-7. Input Data Timing in Normal Case
Figure 9-8 provides the timing for the input data controlled by the UPM for data beats
where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on
the falling edge of CLKOUT.)
CLKOUT
TA, BI
TEA, KR,
RETRY, CR
BB, BG, BR
B16
B17
B16a
B17a
B16b
B17
CLKOUT
TA
D[0:31],
DP[0:3]
B16
B17
B19
B18
24
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-8. Input Data Timing when Controlled by UPM in the Memory Controller
and DLT3 = 1
Figure 9-9 through Figure 9-12 provide the timing for the external bus read controlled by
various GPCM factors.
Figure 9-9. External Bus Read Timing (GPCM Controlled--ACS = 00)
CLKOUT
TA
D[0:31],
DP[0:3]
B20
B21
CLKOUT
A[0:31]
CSx
OE
WE[0:3]
TS
D[0:31],
DP[0:3]
B11
B12
B23
B8
B22
B26
B19
B18
B25
B28
MOTOROLA
MPC860 Family Hardware Specifications
25
Bus Signal Timing
Figure 9-10. External Bus Read Timing (GPCM Controlled--TRLX = 0, ACS = 10)
Figure 9-11. External Bus Read Timing (GPCM Controlled--TRLX = 0, ACS = 11)
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11
B12
B8
B22a
B23
B26
B19
B18
B25
B24
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11
B12
B22b
B8
B22c
B23
B24a
B25
B26
B19
B18
26
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-12. External Bus Read Timing (GPCM Controlled--TRLX = 1, ACS = 10,
ACS = 11)
Figure 9-13 through Figure 9-15 provide the timing for the external bus write controlled by
various GPCM factors.
CLKOUT
A[0:31]
CSx
OE
TS
D[0:31],
DP[0:3]
B11
B12
B8
B22a
B27
B27a
B22b B22c
B19
B18
B26
B23
MOTOROLA
MPC860 Family Hardware Specifications
27
Bus Signal Timing
Figure 9-13. External Bus Write Timing (GPCM Controlled--TRLX = 0, CSNT = 0)
CLKOUT
A[0:31]
CSx
WE[0:3]
OE
TS
D[0:31],
DP[0:3]
B11
B8
B22
B23
B12
B30
B28
B25
B26
B8
B9
B29
B29b
28
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-14. External Bus Write Timing (GPCM Controlled--TRLX = 0, CSNT = 1)
B23
B30a B30c
CLKOUT
A[0:31]
CSx
OE
WE[0:3]
TS
D[0:31],
DP[0:3]
B11
B8
B22
B12
B28b B28d
B25
B26
B8
B28a
B9
B28c
B29c B29g
B29a
B29f
MOTOROLA
MPC860 Family Hardware Specifications
29
Bus Signal Timing
Figure 9-15. External Bus Write Timing (GPCM Controlled--TRLX = 1, CSNT = 1)
Figure 9-16 provides the timing for the external bus controlled by the UPM.
B23
B22
B8
B12
B11
CLKOUT
A[0:31]
CSx
WE[0:3]
TS
OE
D[0:31],
DP[0:3]
B30d
B30b
B28b B28d
B25
B29e B29i
B26
B29d B29h
B28a B28c
B9
B8
B29b
30
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-16. External Bus Timing (UPM Controlled Signals)
Figure 9-17 provides the timing for the asynchronous asserted UPWAIT signal controlled
by the UPM.
CLKOUT
CSx
B31d
B8
B31
B34
B32b
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
A[0:31]
B31c
B31b
B34a
B32
B32a B32d
B34b
B36
B35b
B35a
B35
B33
B32c
B33a
B31a
MOTOROLA
MPC860 Family Hardware Specifications
31
Bus Signal Timing
Figure 9-17. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles
Timing
Figure 9-18 provides the timing for the asynchronous negated UPWAIT signal controlled
by the UPM.
Figure 9-18. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles
Timing
Figure 9-19 provides the timing for the synchronous external master access controlled by
the GPCM.
CLKOUT
CSx
UPWAIT
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
B37
B38
CLKOUT
CSx
UPWAIT
GPL_A[0:5],
GPL_B[0:5]
BS_A[0:3],
BS_B[0:3]
B37
B38
32
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-19. Synchronous External Master Access Timing (GPCM Handled ACS =
00)
Figure 9-20 provides the timing for the asynchronous external master memory access
controlled by the GPCM.
Figure 9-20. Asynchronous External Master Memory Access Timing
(GPCM Controlled--ACS = 00)
Figure 9-21 provides the timing for the asynchronous external master control signals
negation.
CLKOUT
TS
A[0:31],
TSIZ[0:1],
R/W, BURST
CSx
B41
B42
B40
B22
CLKOUT
AS
A[0:31],
TSIZ[0:1],
R/W
CSx
B39
B40
B22
MOTOROLA
MPC860 Family Hardware Specifications
33
Bus Signal Timing
Figure 9-21. Asynchronous External Master--Control Signals Negation Timing
Table 9-7 provides interrupt timing for the MPC860.
Figure 9-22 provides the interrupt detection timing for the external level-sensitive lines.
Figure 9-22. Interrupt Detection Timing for External Level Sensitive Lines
Figure 9-23 provides the interrupt detection timing for the external edge-sensitive lines.
Table 9-7. Interrupt Timing
Num
Characteristic
1
1
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as
level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference
to the CLKOUT.
The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has
no direct relation with the total system interrupt latency that the MPC860 is able to support.
All Frequencies
Unit
Min
Max
I39
IRQx valid to CLKOUT rising edge (setup time)
6.00
--
ns
I40
IRQx hold time after CLKOUT
2.00
--
ns
I41
IRQx pulse width low
3.00
--
ns
I42
IRQx pulse width high
3.00
--
ns
I43
IRQx edge-to-edge time
4
T
CLOCKOUT
--
--
AS
CSx, WE[0:3],
OE, GPLx,
BS[0:3]
B43
CLKOUT
IRQx
I39
I40
34
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-23. Interrupt Detection Timing for External Edge Sensitive Lines
Table 9-8 shows the PCMCIA timing for the MPC860.
Table 9-8. PCMCIA Timing
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
P44
A(0:31), REG valid to PCMCIA
Strobe asserted
1
20.73
--
16.75
--
13.00
--
9.36
--
ns
P45
A(0:31), REG valid to ALE negation
1
28.30
--
23.00
--
18.00
--
13.15
--
ns
P46
CLKOUT to REG valid
7.58
15.58
6.25
14.25
5.00
13.00
3.79
11.84
ns
P47
CLKOUT to REG invalid
8.58
--
7.25
--
6.00
--
4.84
--
ns
P48
CLKOUT to CE1, CE2 asserted
7.58
15.58
6.25
14.25
5.00
13.00
3.79
11.84
ns
P49
CLKOUT to CE1, CE2 negated
7.58
15.58
6.25
14.25
5.00
13.00
3.79
11.84
ns
P50
CLKOUT to PCOE, IORD, PCWE,
IOWR assert time
--
11.00
11.00
--
11.00
--
11.00
ns
P51
CLKOUT to PCOE, IORD, PCWE,
IOWR negate time
2.00
11.00
2.00
11.00
2.00
11.00
2.00
11.00
ns
P52
CLKOUT to ALE assert time
7.58
15.58
6.25
14.25
5.00
13.00
3.79
10.04
ns
P53
CLKOUT to ALE negate time
--
15.58
14.25
--
13.00
--
11.84
ns
P54
PCWE, IOWR negated to D(0:31)
invalid
1
5.58
--
4.25
--
3.00
--
1.79
--
ns
P55
WAITA and WAITB valid to CLKOUT
rising edge
1
8.00
--
8.00
--
8.00
--
8.00
--
ns
P56
CLKOUT rising edge to WAITA and
WAITB invalid
1
2.00
--
2.00
--
2.00
--
2.00
--
ns
CLKOUT
IRQx
I41
I42
I43
I43
MOTOROLA
MPC860 Family Hardware Specifications
35
Bus Signal Timing
Figure 9-24 provides the PCMCIA access cycle timing for the external bus read.
Figure 9-24. PCMCIA Access Cycles Timing External Bus Read
Figure 9-25 provides the PCMCIA access cycle timing for the external bus write.
1
PSST = 1. Otherwise add PSST times cycle time.
PSHT = 0. Otherwise add PSHT times cycle time.
These synchronous timings define when the WAITx signals are detected in order to freeze
(or relieve) the PCMCIA current cycle. The WAITx assertion will be effective only if it is
detected 2 cycles before the PSL timer expiration. See PCMCIA Interface in the MPC860
PowerQUICC User s Manual
.
CLKOUT
A[0:31]
REG
CE1/CE2
PCOE, IORD
TS
D[0:31]
ALE
B19
B18
P53
P52
P52
P51
P50
P48
P49
P46
P45
P44
P47
36
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-25. PCMCIA Access Cycles Timing External Bus Write
Figure 9-26 provides the PCMCIA WAIT signals detection timing.
Figure 9-26. PCMCIA WAIT Signals Detection Timing
Table 9-9 shows the PCMCIA port timing for the MPC860.
CLKOUT
A[0:31]
REG
CE1/CE2
CWE, IOWR
TS
D[0:31]
ALE
B9
B8
P53
P52
P52
P51
P50
P48
P49
P46
P45
P44
P47
P54
CLKOUT
WAITx
P55
P56
MOTOROLA
MPC860 Family Hardware Specifications
37
Bus Signal Timing
Figure 9-27 provides the PCMCIA output port timing for the MPC860.
Figure 9-27. PCMCIA Output Port Timing
Figure 9-28 provides the PCMCIA output port timing for the MPC860.
Figure 9-28. PCMCIA Input Port Timing
Table 9-10 shows the debug port timing for the MPC860.
Table 9-9. PCMCIA Port Timing
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
P57
CLKOUT to OPx valid
--
19.00
--
19.00
--
19.00
--
19.00
ns
P58
HRESET negated to OPx drive
1
1
OP2 and OP3 only.
25.73
--
21.75
--
18.00
--
14.36
--
ns
P59
IP_Xx valid to CLKOUT rising edge
5.00
--
5.00
--
5.00
--
5.00
--
ns
P60
CLKOUT rising edge to IP_Xx
invalid
1.00
--
1.00
--
1.00
--
1.00
--
ns
CLKOUT
HRESET
Output
Signals
OP2, OP3
P57
P58
CLKOUT
Input
Signals
P59
P60
38
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-29 provides the input timing for the debug port clock.
Figure 9-29. Debug Port Clock Input Timing
Figure 9-30 provides the timing for the debug port.
Figure 9-30. Debug Port Timings
Table 9-10. Debug Port Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
P61
DSCK cycle time
3
T
CLOCKOUT
--
--
P62
DSCK clock pulse width
1.25
T
CLOCKOUT
--
--
P63
DSCK rise and fall times
0.00
3.00
ns
P64
DSDI input data setup time
8.00
--
ns
P65
DSDI data hold time
5.00
--
ns
P66
DSCK low to DSDO data valid
0.00
15.00
ns
P67
DSCK low to DSDO invalid
0.00
2.00
ns
DSCK
D61
D61
D63
D62
D62
D63
DSCK
DSDI
DSDO
D64
D65
D66
D67
MOTOROLA
MPC860 Family Hardware Specifications
39
Bus Signal Timing
Table 9-11 shows the reset timing for the MPC860.
Figure 9-31 shows the reset timing for the data bus configuration.
Table 9-11. Reset Timing
Num
Characteristic
33 MHz
40 MHz
50 MHz
66 MHz
Unit
Min
Max
Min
Max
Min
Max
Min
Max
R69 CLKOUT to HRESET high
impedance
--
20.00
--
20.00
--
20.00
--
20.00
ns
R70 CLKOUT to SRESET high
impedance
--
20.00
--
20.00
--
20.00
--
20.00
ns
R71 RSTCONF pulse width
515.15
--
425.00
340.00
--
257.58
--
ns
R72 --
--
--
--
--
--
--
--
--
R73 Configuration data to HRESET rising
edge setup time
504.55
--
425.00
--
350.00
--
277.27
--
ns
R74 Configuration data to RSTCONF
rising edge setup time
350.00
--
350.00
--
350.00
--
350.00
--
ns
R75 Configuration data hold time after
RSTCONF negation
0.00
--
0.00
--
0.00
--
0.00
--
ns
R76 Configuration data hold time after
HRESET negation
0.00
--
0.00
--
0.00
--
0.00
--
ns
R77 HRESET and RSTCONF asserted to
data out drive
--
25.00
25.00
--
25.00
--
25.00
ns
R78 RSTCONF negated to data out high
impedance
--
25.00
--
25.00
--
25.00
--
25.00
ns
R79 CLKOUT of last rising edge before
chip three-state HRESET to data out
high impedance
--
25.00
--
25.00
--
25.00
--
25.00
ns
R80 DSDI, DSCK setup
90.91
--
75.00
--
60.00
--
45.45
--
ns
R81 DSDI, DSCK hold time
0.00
--
0.00
--
0.00
--
0.00
--
ns
R82 SRESET negated to CLKOUT rising
edge for DSDI and DSCK sample
242.42
--
200.00
--
160.00
--
121.21
--
ns
40
MPC860 Family Hardware Specifications
MOTOROLA
Bus Signal Timing
Figure 9-31. Reset Timing--Configuration from Data Bus
Figure 9-32 provides the reset timing for the data bus weak drive during configuration.
Figure 9-32. Reset Timing--Data Bus Weak Drive During Configuration
Figure 9-33 provides the reset timing for the debug port configuration.
HRESET
RSTCONF
D[0:31] (IN)
R71
R74
R73
R75
R76
CLKOUT
HRESET
D[0:31] (OUT)
(Weak)
RSTCONF
R69
R79
R77
R78
MOTOROLA
MPC860 Family Hardware Specifications
41
IEEE 1149.1 Electrical Specifications
Figure 9-33. Reset Timing--Debug Port Configuration
Part X IEEE 1149.1 Electrical Specifications
Table 10-12 provides the JTAG timings for the MPC860 shown in Figure 10-34 through
Figure 10-37.
Table 10-12. JTAG Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
J82
TCK cycle time
100.00
--
ns
J83
TCK clock pulse width measured at 1.5 V
40.00
--
ns
J84
TCK rise and fall times
0.00
10.00
ns
J85
TMS, TDI data setup time
5.00
--
ns
J86
TMS, TDI data hold time
25.00
--
ns
J87
TCK low to TDO data valid
--
27.00
ns
J88
TCK low to TDO data invalid
0.00
--
ns
J89
TCK low to TDO high impedance
--
20.00
ns
J90
TRST assert time
100.00
--
ns
J91
TRST setup time to TCK low
40.00
--
ns
J92
TCK falling edge to output valid
--
50.00
ns
J93
TCK falling edge to output valid out of high impedance
--
50.00
ns
J94
TCK falling edge to output high impedance
--
50.00
ns
J95
Boundary scan input valid to TCK rising edge
50.00
--
ns
J96
TCK rising edge to boundary scan input invalid
50.00
--
ns
CLKOUT
SRESET
DSCK, DSDI
R70
R82
R80
R80
R81
R81
42
MPC860 Family Hardware Specifications
MOTOROLA
IEEE 1149.1 Electrical Specifications
Figure 10-34. JTAG Test Clock Input Timing
Figure 10-35. JTAG Test Access Port Timing Diagram
Figure 10-36. JTAG TRST Timing Diagram
TCK
J82
J83
J82
J83
J84
J84
TCK
TMS, TDI
TDO
J85
J86
J87
J88
J89
TCK
TRST
J91
J90
MOTOROLA
MPC860 Family Hardware Specifications
43
CPM Electrical Characteristics
Figure 10-37. Boundary Scan (JTAG) Timing Diagram
Part XI CPM Electrical Characteristics
This section provides the AC and DC electrical specifications for the communications
processor module (CPM) of the MPC860.
11.1 PIP/PIO AC Electrical Specifications
Table 11-13 provides the PIP/PIO AC timings as shown in Figure 11-38 through
Figure 11-42.
Table 11-13. PIP/PIO Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
21
Data-in setup time to STBI low
0
--
ns
22
Data-In hold time to STBI high
2.5 t3
1
1
t3 = Specification 23.
--
CLK
23
STBI pulse width
1.5
--
CLK
24
STBO pulse width
1 CLK 5 ns
--
ns
25
Data-out setup time to STBO low
2
--
CLK
26
Data-out hold time from STBO high
5
--
CLK
27
STBI low to STBO low (Rx interlock)
--
2
CLK
28
STBI low to STBO high (Tx interlock)
2
--
CLK
29
Data-in setup time to clock high
15
--
ns
30
Data-in hold time from clock high
7.5
--
ns
31
Clock low to data-out valid (CPU writes data, control, or direction)
--
25
ns
TCK
Output
Signals
Output
Signals
Output
Signals
J92
J94
J93
J95
J96
44
MPC860 Family Hardware Specifications
MOTOROLA
PIP/PIO AC Electrical Specifications
Figure 11-38. PIP Rx (Interlock Mode) Timing Diagram
Figure 11-39. PIP Tx (Interlock Mode) Timing Diagram
Figure 11-40. PIP Rx (Pulse Mode) Timing Diagram
DATA-IN
STBI
23
24
22
STBO
27
21
DATA-OUT
24
23
26
28
25
STBO
(Output)
STBI
(Input)
DATA-IN
23
22
21
STBI
(Input)
STBO
(Output)
24
MOTOROLA
MPC860 Family Hardware Specifications
45
IDMA Controller AC Electrical Specifications
Figure 11-41. PIP TX (Pulse Mode) Timing Diagram
Figure 11-42. Parallel I/O Data-In/Data-Out Timing Diagram
11.2 IDMA Controller AC Electrical Specifications
Table 11-14 provides the IDMA controller timings as shown in Figure 11-43 through
Figure 11-46.
Table 11-14. IDMA Controller Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
40
DREQ setup time to clock high
7
--
ns
41
DREQ hold time from clock high
3
--
ns
42
SDACK assertion delay from clock high
--
12
ns
DATA-OUT
24
26
25
STBO
(Output)
STBI
(Input)
23
CLKO
DATA-IN
29
31
30
DATA-OUT
46
MPC860 Family Hardware Specifications
MOTOROLA
IDMA Controller AC Electrical Specifications
Figure 11-43. IDMA External Requests Timing Diagram
Figure 11-44. SDACK Timing Diagram--Peripheral Write, Externally-Generated TA
43
SDACK negation delay from clock low
--
12
ns
44
SDACK negation delay from TA low
--
20
ns
45
SDACK negation delay from clock high
--
15
ns
46
TA assertion to falling edge of the clock setup time (applies to
external TA)
7
--
ns
Table 11-14. IDMA Controller Timing (continued)
Num
Characteristic
All Frequencies
Unit
Min
Max
41
40
DREQ
(Input)
CLKO
(Output)
DATA
42
46
43
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Input)
SDACK
MOTOROLA
MPC860 Family Hardware Specifications
47
IDMA Controller AC Electrical Specifications
Figure 11-45. SDACK Timing Diagram--Peripheral Write, Internally-Generated TA
Figure 11-46. SDACK Timing Diagram--Peripheral Read, Internally-Generated TA
DATA
42
44
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Output)
SDACK
DATA
42
45
CLKO
(Output)
TS
(Output)
R/W
(Output)
TA
(Output)
SDACK
48
MPC860 Family Hardware Specifications
MOTOROLA
Baud Rate Generator AC Electrical Specifications
11.3 Baud Rate Generator AC Electrical Specifications
Table 11-15 provides the baud rate generator timings as shown in Figure 11-47.
Figure 11-47. Baud Rate Generator Timing Diagram
11.4 Timer AC Electrical Specifications
Table 11-16 provides the general-purpose timer timings as shown in Figure 11-48.
Table 11-15. Baud Rate Generator Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
50
BRGO rise and fall time
--
10
ns
51
BRGO duty cycle
40
60
%
52
BRGO cycle
40
--
ns
Table 11-16. Timer Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
61
TIN/TGATE rise and fall time
10
--
ns
62
TIN/TGATE low time
1
--
CLK
63
TIN/TGATE high time
2
--
CLK
64
TIN/TGATE cycle
time
3
--
CLK
65
CLKO low to TOUT valid
3
25
ns
52
50
51
BRGOX
50
51
MOTOROLA
MPC860 Family Hardware Specifications
49
Serial Interface AC Electrical Specifications
Figure 11-48. CPM General-Purpose Timers Timing Diagram
11.5 Serial Interface AC Electrical Specifications
Table 11-17 provides the serial interface timings as shown in Figure 11-49 through
Figure 11-53.
Table 11-17. SI Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
70
L1RCLK, L1TCLK frequency (DSC = 0)
1,
2
--
SYNCCLK/2.5
MHz
71
L1RCLK, L1TCLK width low (DSC = 0)
2
P + 10
--
ns
71a
L1RCLK, L1TCLK width high (DSC = 0)
3
P + 10
--
ns
72
L1TXD, L1ST(14), L1RQ, L1CLKO rise/fall time
--
15.00
ns
73
L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)
20.00
--
ns
74
L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)
35.00
--
ns
75
L1RSYNC, L1TSYNC rise/fall time
--
15.00
ns
76
L1RXD valid to L1CLK edge (L1RXD setup time)
17.00
--
ns
77
L1CLK edge to L1RXD invalid (L1RXD hold time)
13.00
--
ns
78
L1CLK edge to L1ST(14) valid
4
10.00
45.00
ns
78A
L1SYNC valid to L1ST(14) valid
10.00
45.00
ns
79
L1CLK edge to L1ST(14) invalid
10.00
45.00
ns
80
L1CLK edge to L1TXD valid
10.00
55.00
ns
80A
L1TSYNC valid to L1TXD valid
4
10.00
55.00
ns
81
L1CLK edge to L1TXD high impedance
0.00
42.00
ns
82
L1RCLK, L1TCLK frequency (DSC =1)
--
16.00 or
SYNCCLK/2
MHz
CLKO
TIN/TGATE
(Input)
TOUT
(Output)
64
65
61
62
63
61
60
50
MPC860 Family Hardware Specifications
MOTOROLA
Serial Interface AC Electrical Specifications
Figure 11-49. SI Receive Timing Diagram with Normal Clocking (DSC = 0)
83
L1RCLK, L1TCLK width low (DSC =1)
P + 10
--
ns
83a
L1RCLK, L1TCLK width high (DSC = 1)
3
P + 10
--
ns
84
L1CLK edge to L1CLKO valid (DSC = 1)
--
30.00
ns
85
L1RQ valid before falling edge of L1TSYNC
4
1.00
--
L1TCL
K
86
L1GR setup time
2
42.00
--
ns
87
L1GR hold time
42.00
--
ns
88
L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0,
DSC = 0)
--
0.00
ns
1
The ratio SYNCCLK/L1RCLK must be greater than 2.5/1.
2
These specs are valid for IDL mode only.
3
Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.
4
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.
Table 11-17. SI Timing (continued)
Num
Characteristic
All Frequencies
Unit
Min
Max
L1RXD
(Input)
L1RCLK
(FE=0, CE=0)
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
71
72
70
71a
RFSD=1
75
73
74
77
78
76
79
BIT0
MOTOROLA
MPC860 Family Hardware Specifications
51
Serial Interface AC Electrical Specifications
Figure 11-50. SI Receive Timing with Double-Speed Clocking (DSC = 1)
L1RXD
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RCLK
(FE=0, CE=0)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
72
RFSD=1
75
73
74
77
78
76
79
83a
82
L1CLKO
(Output)
84
BIT0
52
MPC860 Family Hardware Specifications
MOTOROLA
Serial Interface AC Electrical Specifications
Figure 11-51. SI Transmit Timing Diagram (DSC = 0)
L1TXD
(Output)
L1TCLK
(FE=0, CE=0)
(Input)
L1TCLK
(FE=1, CE=1)
(Input)
L1TSYNC
(Input)
L1ST(4-1)
(Output)
71
70
72
73
75
74
80a
80
78
TFSD=0
81
79
BIT0
MOTOROLA
MPC860 Family Hardware Specifications
53
Serial Interface AC Electrical Specifications
Figure 11-52. SI Transmit Timing with Double Speed Clocking (DSC = 1)
L1TXD
(Output)
L1RCLK
(FE=0, CE=0)
(Input)
L1RCLK
(FE=1, CE=1)
(Input)
L1RSYNC
(Input)
L1ST(4-1)
(Output)
72
TFSD=0
75
73
74
78a
80
79
83a
82
L1CLKO
(Output)
84
BIT0
78
81
54
MPC860 Family Hardware Specifications
MOTOROLA
Serial Interface AC Electrical Specifications
Figure 11-53. IDL Timing
B17
B16
B14
B13
B12
B11
B10
D1
A
B27
B26
B25
B24
B23
B22
B21
B20
D2
M
B15
L1RXD
(Input)
L1TXD
(Output)
L1ST(4-1)
(Output)
L1RQ
(Output)
73
77
123456789
10
11
12
13
14
15
16
17
18
19
20
74
80
B17
B16
B15
B14
B13
B12
B11
B10
D1
A
B27
B26
B25
B24
B23
B22
B21
B20
D2
M
71
71
L1GR
(Input)
78
85
72
76
87
86
L1RSYNC
(Input)
L1RCLK
(Input)
81
MOTOROLA
MPC860 Family Hardware Specifications
55
SCC in NMSI Mode Electrical Specifications
11.6 SCC in NMSI Mode Electrical Specifications
Table 11-18 provides the NMSI external clock timing.
Table 11-19 provides the NMSI internal clock timing.
Figure 11-54 through Figure 11-56 show the NMSI timings.
Table 11-18. NMSI External Clock Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
100
RCLK1 and TCLK1 width high
1
1
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2.25/1.
1/SYNCCLK
--
ns
101
RCLK1 and TCLK1 width low
1/SYNCCLK + 5
--
ns
102
RCLK1 and TCLK1 rise/fall time
--
15.00
ns
103
TXD1 active delay (from TCLK1 falling edge)
0.00
50.00
ns
104
RTS1 active/inactive delay (from TCLK1 falling edge)
0.00
50.00
ns
105
CTS1 setup time to TCLK1 rising edge
5.00
--
ns
106
RXD1 setup time to RCLK1 rising edge
5.00
--
ns
107
RXD1 hold time from RCLK1 rising edge
2
2
Also applies to CD and CTS hold time when they are used as an external sync signal.
5.00
--
ns
108 CD1 setup Time to RCLK1 rising edge
5.00
--
ns
Table 11-19. NMSI Internal Clock Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
100
RCLK1 and TCLK1 frequency
1
1
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater or equal to 3/1.
0.00
SYNCCLK/3
MHz
102
RCLK1 and TCLK1 rise/fall time
--
--
ns
103
TXD1 active delay (from TCLK1 falling edge)
0.00
30.00
ns
104
RTS1 active/inactive delay (from TCLK1 falling edge)
0.00
30.00
ns
105
CTS1 setup time to TCLK1 rising edge
40.00
--
ns
106
RXD1 setup time to RCLK1 rising edge
40.00
--
ns
107
RXD1 hold time from RCLK1 rising edge
2
2
Also applies to CD and CTS hold time when they are used as an external sync signals.
0.00
--
ns
108
CD1 setup time to RCLK1 rising edge
40.00
--
ns
56
MPC860 Family Hardware Specifications
MOTOROLA
SCC in NMSI Mode Electrical Specifications
Figure 11-54. SCC NMSI Receive Timing Diagram
Figure 11-55. SCC NMSI Transmit Timing Diagram
RCLK1
CD1
(Input)
102
100
107
108
107
RxD1
(Input)
CD1
(SYNC Input)
102
101
106
TCLK1
CTS1
(Input)
102
100
104
107
TxD1
(Output)
CTS1
(SYNC Input)
102
101
RTS1
(Output)
105
103
104
MOTOROLA
MPC860 Family Hardware Specifications
57
Ethernet Electrical Specifications
Figure 11-56. HDLC Bus Timing Diagram
11.7 Ethernet Electrical Specifications
Table 11-20 provides the Ethernet timings as shown in Figure 11-57 through Figure 11-61.
Table 11-20. Ethernet Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
120
CLSN width high
40
--
ns
121
RCLK1 rise/fall time
--
15
ns
122
RCLK1 width low
40
--
ns
123
RCLK1 clock period
1
80
120
ns
124
RXD1 setup time
20
--
ns
125
RXD1 hold time
5
--
ns
126
RENA active delay (from RCLK1 rising edge of the last data bit)
10
--
ns
127
RENA width low
100
--
ns
128
TCLK1 rise/fall time
--
15
ns
129
TCLK1 width low
40
--
ns
130
TCLK1 clock period
1
99
101
ns
131
TXD1 active delay (from TCLK1 rising edge)
10
50
ns
132
TXD1 inactive delay (from TCLK1 rising edge)
10
50
ns
133
TENA active delay (from TCLK1 rising edge)
10
50
ns
TCLK1
CTS1
(Echo Input)
102
100
104
TxD1
(Output)
102
101
RTS1
(Output)
103
104
107
105
58
MPC860 Family Hardware Specifications
MOTOROLA
Ethernet Electrical Specifications
Figure 11-57. Ethernet Collision Timing Diagram
Figure 11-58. Ethernet Receive Timing Diagram
134
TENA inactive delay (from TCLK1 rising edge)
10
50
ns
135
RSTRT active delay (from TCLK1 falling edge)
10
50
ns
136
RSTRT inactive delay (from TCLK1 falling edge)
10
50
ns
137
REJECT width low
1
--
CLK
138
CLKO1 low to SDACK asserted
2
--
20
ns
139
CLKO1 low to SDACK negated
2
--
20
ns
1
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater or equal to 2/1.
2
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.
Table 11-20. Ethernet Timing (continued)
Num
Characteristic
All Frequencies
Unit
Min
Max
CLSN(CTS1)
120
(Input)
RCLK1
121
RxD1
(Input)
121
RENA(CD1)
(Input)
125
124
123
127
126
Last Bit
MOTOROLA
MPC860 Family Hardware Specifications
59
Ethernet Electrical Specifications
Figure 11-59. Ethernet Transmit Timing Diagram
Figure 11-60. CAM Interface Receive Start Timing Diagram
Figure 11-61. CAM Interface REJECT Timing Diagram
TCLK1
128
TxD1
(Output)
128
TENA(RTS1)
(Input)
NOTES:
Transmit clock invert (TCI) bit in GSMR is set.
If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the
CSL bit is set in the buffer descriptor at the end of the frame transmission.
1.
2.
RENA(CD1)
(Input)
133
134
132
131
121
129
(NOTE 2)
RCLK1
RxD1
(Input)
RSTRT
(Output)
0
136
125
1
1
BIT1
BIT2
Start Frame
REJECT
137
60
MPC860 Family Hardware Specifications
MOTOROLA
SMC Transparent AC Electrical Specifications
11.8 SMC Transparent AC Electrical Specifications
Table 11-21 provides the SMC transparent timings as shown in Figure 11-62.
Figure 11-62. SMC Transparent Timing Diagram
11.9 SPI Master AC Electrical Specifications
Table 11-22 provides the SPI master timings as shown in Figure 11-63 and Figure 11-64.
Table 11-21. SMC Transparent Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
150
SMCLK clock period
1
1
SYNCCLK must be at least twice as fast as SMCLK.
100
--
ns
151
SMCLK width low
50
--
ns
151A
SMCLK width high
50
--
ns
152
SMCLK rise/fall time
--
15
ns
153
SMTXD active delay (from SMCLK falling edge)
10
50
ns
154
SMRXD/SMSYNC setup time
20
--
ns
155
RXD1/SMSYNC hold time
5
--
ns
SMCLK
SMRXD
(Input)
152
150
SMTXD
(Output)
152
151
SMSYNC
151
154
153
155
154
155
NOTE
NOTE:
This delay is equal to an integer number of character-length clocks.
1.
MOTOROLA
MPC860 Family Hardware Specifications
61
SPI Master AC Electrical Specifications
Figure 11-63. SPI Master (CP = 0) Timing Diagram
Table 11-22. SPI Master Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
160
MASTER cycle time
4
1024
t
cyc
161
MASTER clock (SCK) high or low time
2
512
t
cyc
162
MASTER data setup time (inputs)
50
--
ns
163
Master data hold time (inputs)
0
--
ns
164
Master data valid (after SCK edge)
--
20
ns
165
Master data hold time (outputs)
0
--
ns
166
Rise time output
--
15
ns
167
Fall time output
--
15
ns
SPIMOSI
(Output)
SPICLK
(CI=0)
(Output)
SPICLK
(CI=1)
(Output)
SPIMISO
(Input)
162
Data
166
167
161
161
160
msb
lsb
msb
msb
Data
lsb
msb
167
166
163
166
167
165
164
62
MPC860 Family Hardware Specifications
MOTOROLA
SPI Slave AC Electrical Specifications
Figure 11-64. SPI Master (CP = 1) Timing Diagram
11.10 SPI Slave AC Electrical Specifications
Table 11-23 provides the SPI slave timings as shown in Figure 11-65 and Figure 11-66.
Table 11-23. SPI Slave Timing
Num
Characteristic
All Frequencies
Unit
Min
Max
170
Slave cycle time
2
--
t
cyc
171
Slave enable lead time
15
--
ns
172
Slave enable lag time
15
--
ns
173
Slave clock (SPICLK) high or low time
1
--
t
cyc
174
Slave sequential transfer delay (does not require deselect)
1
--
t
cyc
175
Slave data setup time (inputs)
20
--
ns
176
Slave data hold time (inputs)
20
--
ns
177
Slave access time
--
50
ns
SPIMOSI
(Output)
SPICLK
(CI=0)
(Output)
SPICLK
(CI=1)
(Output)
SPIMISO
(Input)
Data
166
167
161
161
160
msb
lsb
msb
msb
Data
lsb
msb
167
166
163
166
167
165
164
162
MOTOROLA
MPC860 Family Hardware Specifications
63
SPI Slave AC Electrical Specifications
Figure 11-65. SPI Slave (CP = 0) Timing Diagram
Figure 11-66. SPI Slave (CP = 1) Timing Diagram
SPIMOSI
(Input)
SPICLK
(CI=0)
(Input)
SPICLK
(CI=1)
(Input)
SPIMISO
(Output)
180
Data
181
182
173
173
170
msb
lsb
msb
181
177
182
175
179
SPISEL
(Input)
171
172
174
Data
msb
lsb
msb
Undef
181
178
176
182
SPIMOSI
(Input)
SPICLK
(CI=0)
(Input)
SPICLK
(CI=1)
(Input)
SPIMISO
(Output)
180
Data
181
182
msb
lsb
181
177
182
175
179
SPISEL
(Input)
174
Data
msb
lsb
Undef
178
176
182
msb
msb
172
173
173
171
170
181
64
MPC860 Family Hardware Specifications
MOTOROLA
I2C AC Electrical Specifications
11.11 I
2
C AC Electrical Specifications
Table 11-24 provides the I
2
C (SCL < 100 kHz) timings.
Table 11-25 provides the I
2
C (SCL > 100 kHz) timings.
Table 11-24. I
2
C Timing (SCL < 100 kH
Z
)
Num
Characteristic
All Frequencies
Unit
Min
Max
200
SCL clock frequency (slave)
0
100
kHz
200
SCL clock frequency (master)
1
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3
pre_scaler
2).
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater or equal to 4/1.
1.5
100
kHz
202
Bus free time between transmissions
4.7
--
s
203
Low period of SCL
4.7
--
s
204
High period of SCL
4.0
--
s
205
Start condition setup time
4.7
--
s
206
Start condition hold time
4.0
--
s
207
Data hold time
0
--
s
208
Data setup time
250
--
ns
209
SDL/SCL rise time
--
1
s
210
SDL/SCL fall time
--
300
ns
211
Stop condition setup time
4.7
--
s
Table 11-25. . I
2
C Timing (SCL > 100 kH
Z
)
Num
Characteristic
Expression
All Frequencies
Unit
Min
Max
200
SCL clock frequency (slave)
fSCL
0
BRGCLK/48
Hz
200
SCL clock frequency (master)
1
fSCL
BRGCLK/16512
BRGCLK/48
Hz
202
Bus free time between transmissions
1/(2.2 * fSCL)
--
s
203
Low period of SCL
1/(2.2 * fSCL)
--
s
204
High period of SCL
1/(2.2 * fSCL)
--
s
205
Start condition setup time
1/(2.2 * fSCL)
--
s
206
Start condition hold time
1/(2.2 * fSCL)
--
s
207
Data hold time
0
--
s
208
Data setup time
1/(40 * fSCL)
--
s
209
SDL/SCL rise time
--
1/(10 * fSCL)
s
210
SDL/SCL fall time
--
1/(33 * fSCL)
s
211
Stop condition setup time
1/2(2.2 * fSCL)
--
s
MOTOROLA
MPC860 Family Hardware Specifications
65
UTOPIA AC Electrical Specifications
Figure 11-67 shows the I
2
C bus timing.
Figure 11-67. I
2
C Bus Timing Diagram
Part XII UTOPIA AC Electrical Specifications
Table 12-26 shows the AC electrical specifications for the UTOPIA interface.
Figure 12-68 shows signal timings during UTOPIA receive operations.
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3)
pre_scaler
2).
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater or equal to 4/1.
Table 12-26. UTOPIA AC Electrical Specifications
Num
Signal Characteristic
Direction
Min
Max
Unit
U1
UtpClk rise/fall time (Internal clock option)
Output
--
3.5
ns
Duty cycle
50
50
%
Frequency
--
50
MHz
U1a
UtpClk rise/fall time (external clock option)
Input
--
3.5
ns
Duty cycle
40
60
%
Frequency
--
50
MHz
U2
RxEnb and TxEnb active delay
Output
2
16
ns
U3
UTPB, SOC, Rxclav and Txclav setup time
Input
8
--
ns
U4
UTPB, SOC, Rxclav and Txclav hold time
Input
1
--
ns
U5
UTPB, SOC active delay (and PHREQ and PHSEL active delay
in MPHY mode)
Output
2
16
ns
SCL
202
205
203
207
204
208
206
209
211
210
SDA
66
MPC860 Family Hardware Specifications
MOTOROLA
FEC Electrical Characteristics
Figure 12-68. UTOPIA Receive Timing
Figure 12-69 shows signal timings during UTOPIA transmit operations.
Figure 12-69. UTOPIA Transmit Timing
Part XIII FEC Electrical Characteristics
This section provides the AC electrical specifications for the Fast Ethernet controller (FEC).
Note that the timing specifications for the MII signals are independent of system clock
frequency (part speed designation). Also, MII signals use TTL signal levels compatible
with devices operating at either 5.0 V or 3.3 V.
UtpClk
UTPB
RxEnb
U1
3
2
SOC
4
RxClav
PHREQn
3
4
HighZ at MPHY
HighZ at MPHY
U1
U5
U3
U4
U4
U3
U2
UtpClk
UTPB
TxEnb
1
2
SOC
5
TxClav
PHSELn
3
4
5
HighZ at MPHY
HighZ at MPHY
U1
U1
U5
U5
U2
U3
U4
MOTOROLA
MPC860 Family Hardware Specifications
67
MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER, MII_RX_CLK)
13.1 MII Receive Signal Timing (MII_RXD[3:0],
MII_RX_DV, MII_RX_ER, MII_RX_CLK)
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz
+1%. There is no minimum frequency requirement. In addition, the processor clock
frequency must exceed the MII_RX_CLK frequency 1%.
Table 13-27 provides information on the MII receive signal timing.
Figure 13-70 shows MII receive signal timing.
Figure 13-70. MII Receive Signal Timing Diagram
13.2 MII Transmit Signal Timing (MII_TXD[3:0],
MII_TX_EN, MII_TX_ER, MII_TX_CLK)
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of
25 MHz +1%. There is no minimum frequency requirement. In addition, the processor
clock frequency must exceed the MII_TX_CLK frequency 1%.
Table 13-28 provides information on the MII transmit signal timing.
Table 13-27. MII Receive Signal Timing
Num
Characteristic
Min
Max
Unit
M1
MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup
5
--
ns
M2
MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold
5
--
ns
M3
MII_RX_CLK pulse width high
35%
65%
MII_RX_CLK
period
M4
MII_RX_CLK pulse width low
35%
65%
MII_RX_CLK
period
M1
M2
MII_RX_CLK (Input)
MII_RXD[3:0] (Inputs)
MII_RX_DV
MII_RX_ER
M3
M4
68
MPC860 Family Hardware Specifications
MOTOROLA
MII Async Inputs Signal Timing (MII_CRS, MII_COL)
Figure 13-71 shows the MII transmit signal timing diagram.
Figure 13-71. MII Transmit Signal Timing Diagram
13.3 MII Async Inputs Signal Timing (MII_CRS,
MII_COL)
Table 13-29 provides information on the MII async inputs signal timing.
Figure 13-72 shows the MII asynchronous inputs signal timing diagram.
Figure 13-72. MII Async Inputs Timing Diagram
Table 13-28. MII Transmit Signal Timing
Num
Characteristic
Min
Max
Unit
M5
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid
5
--
ns
M6
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid
--
25
M7
MII_TX_CLK pulse width high
35
65%
MII_TX_CLK
period
M8
MII_TX_CLK pulse width low
35%
65%
MII_TX_CLK
period
Table 13-29. MII Async Inputs Signal Timing
Num
Characteristic
Min
Max
Unit
M9
MII_CRS, MII_COL minimum pulse width
1.5
--
MII_TX_CLK
period
M6
MII_TX_CLK (Input)
MII_TXD[3:0] (Outputs)
MII_TX_EN
MII_TX_ER
M5
M7
M8
MII_CRS, MII_COL
M9
MOTOROLA
MPC860 Family Hardware Specifications
69
MII Serial Management Channel Timing (MII_MDIO, MII_MDC)
13.4 MII Serial Management Channel Timing
(MII_MDIO, MII_MDC)
Table 13-30 provides information on the MII serial management channel signal timing. The
FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact
upper bound is under investigation.
Figure 13-73 shows the MII serial management channel timing diagram.
Figure 13-73. MII Serial Management Channel Timing Diagram
Table 13-30. MII Serial Management Channel Timing
Num
Characteristic
Min
Max
Unit
M10
MII_MDC falling edge to MII_MDIO output invalid (minimum
propagation delay)
0
--
ns
M11
MII_MDC falling edge to MII_MDIO output valid (max prop delay)
--
25
ns
M12
MII_MDIO (input) to MII_MDC rising edge setup
10
--
ns
M13
MII_MDIO (input) to MII_MDC rising edge hold
0
--
ns
M14
MII_MDC pulse width high
40%
60%
MII_MDC
period
M15
MII_MDC pulse width low
40%
60%
MII_MDC
period
M11
MII_MDC (Output)
MII_MDIO (Output)
M12
M13
MII_MDIO (Input)
M10
M14
MM15
70
MPC860 Family Hardware Specifications
MOTOROLA
Mechanical Data and Ordering Information
Part XIV Mechanical Data and Ordering
Information
Table 14-31 provides information on the MPC860 revision D.3 and D.4 derivative devices.
Table 14-32 identifies the packages and operating frequencies available for the MPC860.
Table 14-31. MPC860 Family Revision D.3 and D.4 Derivatives
Device
Number of
SCCs
1
1
Serial communications controller (SCC).
Ethernet Support
2
(Mbps)
2
Up to 4 channels at 40 MHz or 2 channels at 25 MHz.
Multi-Channel
HDLC Support
ATM
Support
MPC855T
1
10/100
yes
yes
MPC860DE
2
10
N/A
N/A
MPC860DT
10/100
Yes
Yes
MPC860DP
10/100
Yes
Yes
MPC860EN
4
10
N/A
N/A
MPC860SR
10
Yes
Yes
MPC860T
10/100
Yes
Yes
MPC860P
10/100
Yes
Yes
Table 14-32. MPC860 Family Package/Frequency Availability
Package Type
Frequency
(MHz)
Temperature
(Tj)
Order Number
MOTOROLA
MPC860 Family Hardware Specifications
71
Mechanical Data and Ordering Information
Table 14-33 identifies the packages and operating frequencies available for the MPC860P.
Ball grid array
(ZP suffix)
50
0 to 95C
XPC860DEZP50nn
1
XPC860DTZP50nn
XPC860ENZP50nn
XPC860SRZP50nn
XPC860TZP50nn
XPC855TZP50D4
66
0 to 95C
XPC860DEZP66nn
XPC860DTZP66nn
XPC860ENZP66nn
XPC860SRZP66nn
XPC860TZP66nn
XPC855TZP66D4
80
0 to 95C
XPC860DEZP80nn
XPC860DTZP80nn
XPC860ENZP80nn
XPC860SRZP80nn
XPC860TZP80nn
XPC855TZP80D4
Ball grid array
(CZP suffix)
50
40 to 95C
XPC860DECZP50nn
XPC860DTCZP50nn
XPC860ENCZP50nn
XPC860SRCZP50nn
XPC860TCZP50nn
XPC855TCZP50D4
66
40 to 95C
XPC860DECZP66nn
XPC860DTCZP66nn
XPC860ENCZP66nn
XPC860SRCZP66nn
XPC860TCZP66nn
XPC855TCZP66D4
1
Where nn specifies version D.3 (as D3) or D.4 (as D4).
Table 14-33. MPC860P Package/Frequency Availability
Package Type
Frequency
(MHz)
Temperature
(Tj)
Order Number
Ball grid array
(ZP suffix)
50
0 to 95C
XPC860DPZP50nn
1
XPC860PZP50nn
1
Where nn specifies version D.3 (as D3) or D.4 (as D4).
66
0 to 95C
XPC860DPZP66nn
XPC860PZP66nn
80
0 to 95C
XPC860DPZP80nn
XPC860PZP80nn
Ball grid array
(CZP suffix)
50
40 to 95C
XPC860DPCZP50nn
XPC860PCZP50nn
66
40 to 95C
XPC860DPCZP66nn
XPC860PCZP66nn
Table 14-32. MPC860 Family Package/Frequency Availability (continued)
72
MPC860 Family Hardware Specifications
MOTOROLA
Pin Assignments
14.1 Pin Assignments
Figure 14-74 shows the top view pinout of the PBGA package. For additional information,
see the MPC860 PowerQUICC User's Manual, or the MPC855T User's Manual.
NOTE: This is the top view of the device.
Figure 14-74. Pinout of the PBGA Package
PD3
IRQ7
D0
D4
D1
D2
D3
D5
VDDL
D6
D7
D29
CLKOUT IPA3
DP2
A2
A7
A14
A27
A29
A30
A28
A31
VDDL BSA2
WE1
WE3
CE2A
CS1
CS4
A5
A11
18
16
14
13
12
11
10
9
8
7
6
5
3
2
4
17
15
1
19
A1
A6
A13
A17
A21
A23
A22
TSIZ0 BSA3 M_CRS WE2 GPLA2
CE1A
WR
CS5
A4
A10
GPLB4
A0
PA15
A3
A12
A16
A20
A24
A26
TSIZ1 BSA1
WE0 GPLA1 GPLA3
CS0
TA
CS7
PB31
A9
GPLA4
PB30
PC14
PC15
N/C
N/C
A15
A19
A25
A18
BSA0 GPLA0
N/C
CS6
GPLA5 BDIP
CS2
PA14
A8
TEA
PB28
PC13
PB29
VDDH
VDDH
BI
BG
CS3
PA13
BB
PB27
PC12
VDDL
GND
GND
TS
IRQ3
VDDL
PA12
BURST
PB26
TMS
PA11
IRQ6
IPB4
BR
TDO
IPB3
TRST
M_MDIO
TCK
IRQ2
IPB0
M_COL
TDI
IPB7
VDDL
PB24
PB25
IPB1
IPB2
IPB5
PA10
ALEB
PC11
PA9
PB21
GND
IPB6 ALEA
BADDR30
PB23
IRQ4
PC10
PC9
PB20
AS
OP1
OP0
PA8
MODCK1
PB22
PC8
PC7
BADDR28
BADDR29
MODCK2
PA6
VDDL
PA7
PA5
PB16
TEXP
EXTCLK
HRESET
PB18
EXTAL
PB19
PB17
VDDL
GND
RSTCONF SRESET
VDDL
PA3
GND
XTAL
PA4
PA2
PD12
VDDH
WAIT_A
PORESET
WAIT_B
PB15
VDDH
KAPWR
PC6
PC5
PD11
VDDH D12
D17
D9
D15
D22
D25
D31
IPA6
IPA0
IPA7
XFC
IPA1
PC4
PD7
VDDSYN
PA1
PB14
PD4
IRQ1
D8
D23
D11
D16
D19
D21
D26
D30
IPA5
IPA2
N/C
IPA4
PD15
PD5
VSSSYN
PA0
PD13
PD6
IRQ0 D13
D27
D10
D14
D18
D20
D24
D28
DP1
DP0
N/C
DP3
PD9
M_Tx_EN
VSSSYN1
PD14
B
A
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
PD10
PD8
MOTOROLA
MPC860 Family Hardware Specifications
73
Mechanical Dimensions of the PBGA Package
14.2 Mechanical Dimensions of the PBGA Package
For more information on the printed circuit board layout of the PBGA package, including
thermal via design and suggested pad layout, please refer to Motorola Application Note,
Plastic Ball Grid Array (order number: AN1231/D), available from your local Motorola
sales office. Figure 14-75 shows the mechanical dimensions of the PBGA package.
Figure 14-75. Mechanical Dimensions and Bottom Surface Nomenclature
of the PBGA Package
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SIDE VIEW
BOTTOM VIEW
18X
4X
357X
b
TOP VIEW
A2
A3
e
0.3 M C
D
A
A1
D2
0.15 M C
E
E2
0.2 C
A
B
0.2
D1
E1
A B
0.25 C
0.35 C
C
NOTES:
1. Dimensions and tolerancing per ASME Y14.5M, 1994.
2. Dimensions in millimeters.
3. Dimension b is the maximum solder ball diameter
measured parallel to datum C.
DIM
MIN
MAX
MILLIMETERS
A
---
2.05
0.50
0.70
A2
0.95
1.35
A3
0.70
0.90
b
0.60
0.90
D
25.00 BSC
D1
22.86 BSC
D2
22.40
22.60
e
1.27 BSC
E
25.00 BSC
E1
22.86 BSC
E2
22.40
22.60
A1
Case No. 1103-01
74
MPC860 Family Hardware Specifications
MOTOROLA
Document Revision History
Part XV Document Revision History
Table 15-34 lists significant changes between revisions of this document.
Table 15-34. Document Revision History
Revision
Date
Change
5.1
11/2001
Revised template format, removed references to MAC functionality, changed Table 9-6
B23 max value @ 66 Mhz from 2ns to 8ns, added this revision history table
6
10/2002
Added the MPC855T. Corrected Figure 9-25 on page 36.
6.1
11/2002
Corrected UTOPIA RXenb* and TXenb* timing values. Changed incorrect usage of Vcc
to Vdd. Corrected dual port RAM to 8Kbytes.
MOTOROLA
MPC860 Family Hardware Specifications
75
Document Revision History
THIS PAGE INTENTIONALLY LEFT BLANK
MPC860EC/D
HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447
JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569
ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre, 2 Dai King Street
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334
TECHNICAL INFORMATION CENTER:
1-800-521-6274
HOME PAGE:
http://www.motorola.com/semiconductors
DOCUMENT COMMENTS:
FAX (512) 933-2625
Attn: RISC Applications Engineering
Information in this document is provided solely to enable system and software implementers to use
Motorola products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits or integrated circuits based on the information in this document.
Motorola reserves the right to make changes without further notice to any products herein.
Motorola makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Motorola assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. "Typical" parameters which may be provided in
Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including "Typicals" must be validated
for each customer application by customer's technical experts. Motorola does not convey any
license under its patent rights nor the rights of others. Motorola products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which
the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.
digital dna is a trademark of Motorola, Inc. All other product or service names are the property of
their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Motorola, Inc. 2002