ChipFind - документация

Электронный компонент: AQV1

Скачать:  PDF   ZIP

Document Outline

AQV112KL
8
GU (General Use) Type DIP
6-Pin Series 1-Channel
(Form A) with Short Circuit
Protection (Non Latch Type)
VDE
mm
inch
6.4
.252
3.9
.154
8.8
.346
6.4
.252
3.6
.142
8.8
.346
1
2
3
6
5
4
FEATURES
1. Protects Circuit from excess current
The short circuit protection function
prevents the continued flow of short
current. After short current is detected,
load current is monitored, and if the load
returns to normal, the relay returns to
normal operation.
2. No need for fuses, polyswitches, or
other protectors
The built-in short circuit protection
function eliminates the need for
overcurrent protectors, reducing
mounting costs and space requirements.
3. High capacity
Can control up to 0.5A (60 VDC) load
current.
TYPICAL APPLICATIONS
Industrial equipment
Traffic signal control
Security equipment
TYPES
*Indicate the DC values.
Note: For space reasons, the package type indicator "X" and "Z" are omitted from the seal.
Type
I/O isolation
voltage
Output rating*
Part No.
Packing quantity
Through hole
terminal
Surface-mount terminal
Load
voltage
Load
current
Tube packing style
Tape and reel packing style
Tube
Tape and reel
Picked from the
1/2/3-pin side
Picked from the
4/5/6-pin side
DC
type
1,500 V
60 V
500 mA
AQV112KL
AQV112KLA
AQV112KLAX
AQV112KLAZ
1 tube contains
50 pcs.
1 batch contains
500 pcs.
1,000 pcs.
RATING
1. Absolute maximum ratings (Ambient temperature: 25
C
77
F
)
Item
Symbol
AQV112KL
Input
LED forward current
I
F
50 mA
LED reverse voltage
V
R
5 V
Peak forward current
I
FP
1 A
Power dissipation
P
in
75 mW
Output
Load voltage (peak AC)
V
L
7 to 60V
Continuous load current (peak AC)
I
L
0.5 A
Power dissipation
P
out
500 mW
Total power dissipation
P
T
550 mW
I/O isolatiom voltage
V
iso
1,500 V AC
Temperature limits
Operating
T
opr
40
C to +85
C
40
F to +185
F
Storage
T
stg
40
C to +100
C
40
F to +212
F
PhotoMOS
RELAYS
AQV112KL
9
2. Electrical characteristics (Ambient temperature: 25
C
77
F
)
For type of connection, see Page 11.
Note: Recommendable LED forward current IF = 10 mA.
*Turn on/Turn off time
Item
Symbol
AQV112KL
Condition
Input
LED operate current
Typical
I
Fon
0.8 mA
I
L
= 100mA
Maximum
10 mA
LED turn off current
Minimum
I
Foff
0.3 mA
I
L
= 100mA
Typical
0.7 mA
LED dropout voltage
Typical
V
F
1.17 V
I
F
= 10 mA
Maximum
1.5 V
Output
On resistance
Typical
R
on
0.55
I
F
= 10 mA
I
L
= Max.
Maximum
2.0
Load short circuit detection voltage
Typical
V
LSHT
5 V
I
F
= 10 mA
Maximum
7 V
Off state leakage current
Maximum
I
Leak
1
A
I
F
= 0 mA
V
L
= Max.
Transfer
characteristics
Turn on time*
Typical
T
on
2.0 ms
I
F
= 10 mA
I
L
= 100 mA
V
L
= 10 V
Maximum
5.0 ms
Turn off time*
Typical
T
off
0.1 ms
I
F
= 10 mA
I
L
= 100 mA
V
L
= 10 V
Maximum
1.0 ms
I/O capacitance
Typical
C
iso
0.8 pF
f = 1 MHz
V
B
= 0
Maximum
1.5 pF
Initial I/O isolation resistance
Minimum
R
iso
1,000 M
500 V DC
Toff
Input
Output
Ton
90%
10%
REFERENCE DATA
1. Load current vs. ambient temperature
characteristics
Allowable ambient temperature: 40
C to +85
C
40
F to +185
F
2. On resistance vs. ambient temperature
characteristics
Measured portion: between terminals 4 and 6;
LED current: 10 mA; Load current: Max.(DC)
3. Turn on time vs. ambient temperature
characteristics
Measured portion: between terminals 4 and 6;
LED current: 10 mA; Load voltage: 10V (DC);
Load current: 100 mA
0
100
200
300
400
500
600
0
20
40
60
8085 100
40
20
Ambient temperature,
C
Load current, mA
0
0.5
1
1.5
2
40
20
0
20
40
60
8085
Ambient temperature,
C
On resistance,
0
2
3
40
20
5
0
20
40
60
80
1
4
85
Ambient temperature,
C
Turn on time, ms
AQV112KL
10
4. Turn off time vs. ambient temperature
characteristics
Measured portion: between terminals 4 and 6;
LED current: 10 mA; Load voltage: 10 V (DC);
Load current: 100 mA (DC)
5. LED operate current vs. ambient
temperature characteristics
Measured portion: between terminals 4 and 6;
Load current: 100 mA
6. LED turn off current vs. ambient temperature
characteristics
Measured portion: between terminals 4 and 6;
Load current: 100 mA
0
0.05
0.1
0.15
0.2
0.25
40
20
0.3
0
20
40
60
8085
Ambient temperature,
C
Turn off time, ms
0
0.5
1
1.5
2
2.5
40
20
3
0
20
40
60
8085
Ambient temperature,
C
LED operate current, mA
0
0.5
1
1.5
2
2.5
40
20
3
0
20
40
60
8085
Ambient temperature,
C
LED turn off current, mA
7. Off state leakage current
Measured portion: between terminals 4 and 6;
Ambient temperature: 25
C
77
F
8. Voltage vs. current characteristics of output
at MOS portion
Measured portion: between terminals 4 and 6;
Ambient temperature: 25
C
77
F
9. LED dropout voltage vs. ambient
temperature characteristics
Measured portion: between terminals 1 and 2;
LED current: 10 to 50 mA
20
30
40
50
60
10
0
10
-12
10
-11
10
-10
10
-9
10
-8
10
-7
10
-6
Load voltage, V
Off state leakage current, A
0.6
0.4
0.2
0
0.2
0.4
0.6
1
0.5
0
0.5
1
Voltage, V
Current, A
1
1.2
1.3
40
20
1.5
0
20
40
60
80
1.1
1.4
85
Ambient temperature,
C
LED dropout voltage, V
50mA
30mA
20mA
10mA
10. LED forward current vs. turn on time
characteristics
Measured portion: between terminals 4 and 6;
Load voltage: 10 V (DC); Load current: 100 mA (DC);
Ambient temperature: 25
C
77
F
11. LED forward current vs. turn off time
characteristics
Measured portion: between terminals 4 and 6;
Load voltage: 10 V (DC); Load current: 100 mA (DC);
Ambient temperature: 25
C
77
F
12. Applied voltage vs. output capacitance
characteristics
Measured portion: between terminals 4 and 6;
Frequency: 1 MHz; Ambient temperature: 25
C
77
F
1
4
3
2
1
0
5
0
10
20
30
40
50
LED forward current, mA
Turn on time, ms
0
0.05
0.1
0.15
0.2
0
10
20
30
40
50
LED forward current, mA
Turn off time, ms
0
100
200
300
400
500
0
10
20
30
40
50
60
Applied voltage, V
Output capacitance, pF
13. Short circuit peak current vs. time
characteristics
Measured portion: between terminals 4 and 6;
LED current: 10 mA; Load resistance: 0;
Ambient temperature: 25
C
77
F
14. Short current monitoring interval vs. time
characteristics
Measured portion: between terminals 4 and 6;
LED current: 10 mA; Load resistance: 0;
Ambient temperature: 25
C
77
F
1
1.5
2
V
L
=12V
V
L
=24V
V
L
=60V
2.5
3
4
3.5
0
10
20
30
40
50
60
Time, S
Short circuit peak current, A
V
L
=12V
V
L
=24V
V
L
=60V
0
5
10
15
20
30
25
0
10
20
30
40
50
60
Time, S
Short current monitoring interval, ms
AQV112KL
11
What is short circuit protection Non-latch type?
If the load current reaches a
predetermined overcurrent level, the
output-side short circuit protection
function cuts off the load current. It then
monitors the load current, and if it returns
to normal, automatically recovers to
normal relay operation.
In order to operate the short circuit
protection function, ensure that the input
current is at least I
F
= 10 mA.
Operation chart (Non-latch type)
Input Current
Output Current
1
Load short detected
2
Function operation
3
Load turn off
DIMENSIONS
Terminal thickness = 0.25
.010
General tolerance:
0.1
.004
PC board pattern (BOTTOM VIEW)
Tolerance:
0.1
.004
6.4
0.05
.252
.002
7.62
0.05
.300
.002
3.4
.134
3.9
0.2
.154
.008
3
.118
8.8
0.05
.346
.002
Max. 10
Max. 10
0.47
.019
0.47
.019
0.47
.019
1.25
.049
2.54
.100
2.54
.100
1.25
.049
1.25
.049
5.08
.200
6-0.8 dia.
6-.031 dia.
7.62
.300
6.4
.252
2.54
.100
2.54
.100
mm
inch
SCHEMATIC AND WIRING DIAGRAMS
E
1
: Power source at input side; I
F
: LED forward current; V
L
: Load voltage; I
L
: Load current
Schematic
Output
configuration
Load
Wiring diagram
1a
DC
*Can be also connected as 2 Form A type. (However, the sum of the continuous load
current should not exceed the absolute maximum rating.)
1
2
3
6
5
4
1
I
F
I
L
2
3
6
5
4
Load
V
L
(DC)
E
1
I
L
6
4
V
L
(DC)
Load
+
+
AQY2/AQV1
12
CAUTIONS FOR USE
1. Surge voltages at the input
If reverse surge voltages are present at
the input terminals, connect a diode in
reverse parallel across the input terminals
and keep the reverse voltages below the
reverse breakdown voltage.
2. Unused terminals
The No. 3 and 5 terminal is used with the
circuit inside the relay. Therefore, do not
connect it to the external circuitry with
either connection method A, B or C. (Non-
latch type)
3. It is possible that in-rush current will
be detected as short current, and
oscillation will be initiated. Please
confirm before use.
4. Please avoid exposing the unit to
short status for longer than 24 hours.
Long periods of exposure to short
status could damage the internal IC
(non-latch type only).
5. Short across terminals
Do not short circuit between terminals
when relay is energized. There is
possibility of breaking the internal IC.
6. Output spike voltages
1) If an inductive load generates spike
voltages which exceed the absolute
maximum rating, the spike voltage must
be limited. Typical circuits are shown
below.
Latch type
Non-latch type
2) If spike voltages generated at the load
are limited with a clamp diode and the
circuit wires are long, spike voltages will
occur by inductance. Keep wires as short
as possible to minimize inductance.
7. Ripple in the input power supply
If ripple is present in the input power
supply, observe the following:
2) Keep the LED operate current at E
min
,
maintain min. 5 mA (Latch type), 10 mA
(Non-latch type).
1) For LED operate current 50 mA or less
at E
max
.
8. When soldering terminals, keep
soldering time to within 10 s at 260
C
500
F
.
9. Cleaning solvents compatibility
The PhotoMOS relay forms an optical
path by coupling a light-emitting diode
(LED) and photodiode via transparent
silicon resin. For this reason, unlike other
directory element molded resin products
(e.g., MOS transistors and bipolar
transistors), avoid ultrasonic cleansing if
at all possible. We recommend cleaning
with an organic solvent. If you cannot
avoid using ultrasonic cleansing, please
ensure that the following conditions are
met, and check beforehand for defects.
Frequency: 27 to 29 kHz
Ultrasonic output:
No greater than 0.25W/cm
2
Cleaning time:
No longer than 30 s
Cleanser used: Asahiklin AK-225
Other:
Submerge in solvent in order to prevent
the PCB and elements from being
contacted directly by the ultrasonic
vibrations.
Note: Applies to unit area ultrasonic output for
ultrasonic baths.
10. Transportation and storage
1) Extreme vibration during transport will
warp the lead or damage the relay.
Handle the outer and inner boxes with
care.
2) Storage under extreme conditions will
cause soldering degradation, external
appearance defects, and deterioration of
the characteristics. The following storage
conditions are recommended:
Temperature: 0 to 45
C
32 to 113
F
Humidity: Less than 70% R.H.
Atomosphere: No harmful gasses such
as sulfurous acid gas, minimal dust.
11. Soldering
1) When soldering PC board terminals,
keep soldering time to within 10 s at
260
C
500
F
.
2) When soldering surface-mount
terminals, the following conditions are
recommended.
(1) IR (Infrared reflow) soldering method
(2) Vapor phase soldering method
(3) Double wave soldering method
(4) Soldering iron method
Tip temperature: 280 to 300
C
536 to
572
F
Wattage: 30 to 60 W
Soldering time: within 5 s
(5) Others
Check mounting conditions before using
other soldering methods (hot-air, hot
plate, pulse heater, etc.)
The temperature profile indicates the
temperature of the soldered terminal on
the surface of the PC board. The ambient
temperature may increase excessively.
Check the temperature under mounting
conditions.
The conditions for the infrared reflow
soldering apply when preheating using
the VPS method.
1
2
4
3
1
2
4
Load
Add a clamp diode
to the load
Add a CR snubber
circuit to the load
Load
3
1
2
4
3
1
2
3
6
5
Load
4
Add a clamp diode
to the load
E
min.
E
max.
T
1
T
2
T
3
T
1
= 155 to 165
C
311 to 329
F
T
2
= 180
C 200
C
356 to 392
F
T
3
= 245
C
473
F
or less
t
1
= 120 s or less
t
2
= 30 s or less
t
1
t
2
T
2
T
1
t
1
t
2
T
1
= 180 to 200
C
366 to 392
F
T
2
= 215
C
419
F
or less
t
1
= 40 s
t
2
= 90 s or less
T
2
T
1
t
1
t
2
t
3
T
1
= 155 to 165
C
311 to 329
F
T
2
= 260
C
500
F
or less
t
1
= 60 s or less
t
2+
t
3
= 5 s or less