ChipFind - документация

Электронный компонент: 2SK2409

Скачать:  PDF   ZIP

Document Outline

MOS FIELD EFFECT TRANSISTOR
DESCRIPTION
The 2SK2409 is N-Channel MOS Field Effect Transistor de-
signed for solenoid, motor, and lamp driver.
FEATURES
Low On-Resistance
R
DS(on)
27 m
(V
GS
= 10 V, I
D
= 20 A)
R
DS(on)
40 m
(V
GS
= 4 V, I
D
= 20 A)
Low C
iss
C
iss
= 2040 pF TYP
.
Built-in Gate Protection Diode
QUALITY GRADE
Standard
Please refer to "Quality grade on NEC Semiconductor Device"
(Document number IEI-1209) published by NEC Corporation to
know the specification of quality grade on the devices and its
recommended applications.
ABSOLUTE MAXIMUM RATINGS (T
a
= 25 C)
Drain to Source Voltage
V
DSS
60
V
Gate to Source Voltage
V
GSS
20
V
Drain Current (DC)
I
D(DC)
40
A
Drain Current (pulse)
I
D(pulse)
*
160
A
Total Power Dissipation (T
a
= 25 C)
P
T1
2.0
W
Total Power Dissipation (T
c
= 25 C)
P
T2
35
W
Channel Temperature
T
ch
150
C
Storage Temperature
T
stg
55 to +150
C
Single Avalanche Current
I
AS
**
40
A
Single Avalanche Energy
E
AS
**
160
mJ
*
PW
10
s, Duty Cycle
1 %
** Starting T
ch
= 25 C, R
G
= 25
, V
GS
= 20 V
0
Document No. TC-2489
(O. D. No. TC-8028)
Date Published September 1994 P
Printed in Japan
2SK2409
SWITCHING
N-CHANNEL POWER MOS FET
INDUSTRIAL USE
PACKAGE DIMENSION
(in millimeters)
0.7 0.1
1.3 0.2
2.54
2.54
1.5 0.2
4 0.2
13.5
MIN.
15.0 0.3
3 0.1
12.0 0.2
10.0 0.3
3.2 0.2
1 2 3
1.
2.
3.
Gate
Drain
Source
4.5 0.2
2.7 0.2
0.65 0.1
2.5 0.1
MP-45F (ISOLATED TO-220)
Drain
Body
Diode
Gate
Gate Protection
Diode
Source
1994
DATA SHEET
The information in this document is subject to change without notice.
2SK2409
2
ELECTRICAL CHARACTERISTICS (T
a
= 25 C)
CHARACTERISTIC
SYMBOL
MIN.
TYP.
MAX.
TEST CONDITIONS
Drain to Source On-State Resistance
R
DS(on)1
22
27
V
GS
= 10 V, I
D
= 20 A
Drain to Source On-State Resistance
R
DS(on)2
30
40
V
GS
= 4 V, I
D
= 20 A
Gate to Source Cutoff Voltage
V
GS(off)
1.0
1.5
2.0
V
DS
= 10 V, I
D
= 1 mA
Forward Transfer Admittance
| y
fs
|
20
35
V
DS
= 10 V, I
D
= 20 A
Drain Cutoff Current
I
DSS
10
V
DS
= 60 V, V
GS
= 0
Gate to Source Leakage Current
I
GSS
10
V
GS
=
20 V, V
DS
= 0
Input Capacitance
C
iss
2040
V
DS
= 10 V
Output Capacitance
C
oss
1080
V
GS
= 0
Reverse Transfer Capacitance
C
rss
300
f = 1 MHz
Turn-On Delay Time
t
d(on)
30
I
D
= 20 A
Rise Time
t
r
350
V
GS(on)
= 10 V
Turn-Off Delay Time
t
d(off)
210
V
DD
= 30 V
Fall Time
t
f
260
R
G
= 10
Total Gate Charge
Q
G
72
I
D
= 40 A
Gate to Source Charge
Q
GS
6.0
V
DD
= 48 V
Gate to Drain Charge
Q
GD
24
V
GS
= 10 V
Body Diode Forward Voltage
V
F(S-D)
1.1
I
F
= 40 A, V
GS
= 0
Reverse Recovery Time
t
rr
110
I
F
= 40 A, V
GS
= 0
Reverse Recovery Charge
Q
rr
360
di/dt = 100 A/
s
Test Circuit 1 Avalanche Capability
Test Circuit 2 Switching Time
50
R
G
= 25
DUT
L
V
DD
I
AS
I
D
V
DD
Starting T
ch
V
DS
BV
DSS
V
GS
0
t
t = 1 s
Duty Cycle
1%
V
GS
= 20 0 V
PG
R
G
= 10
DUT
R
L
V
DD
PG.
V
GS
Wave
Form
I
D
Wave
Form
V
GS(on)
10 %
0
V
GS
I
D
I
D
10 %
0
90 %
10 %
90 %
t
d (on)
t
r
t
on
t
d (off)
t
f
t
off
90 %
R
G
Test Circuit 3 Gate Charge
50
DUT
R
L
V
DD
PG.
I
G
= 2 mA
UNIT
m
m
V
S
A
A
pF
pF
pF
ns
ns
ns
ns
nC
nC
nC
V
ns
nC
2SK2409
3
TYPICAL CHARACTERISTICS (T
a
= 25 C)
DERATING FACTOR OF FORWARD BIAS
SAFE OPERATING AREA
100
80
60
40
20
0
20
40
60
80
100
120
140 160
dT - Percentage of Rated Power - %
Tc - Case Temperature - C
TOTAL POWER DISSIPATION vs.
CASE TEMPERATURE
50
40
30
0
20
40
60
80
100
120
140 160
P
T
- Total Power Dissipation - W
Tc - Case Temperature - C
20
10
FORWARD BIAS SAFE OPERATING AREA
1000
100
10
1
0.1
100
I
D
- Drain Current - A
V
DS
- Drain to Source Voltage - V
DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE
100
0
4
8
12
16
I
D
- Drain Current - A
V
DS
- Drain to Source Voltage - V
80
60
40
20
V
GS
= 10 V
V
GS
= 6 V
V
GS
= 4 V
Pulsed
T
C
= 25 C
Single Pulse
1
10
R
DS(on)
Limited
(at V
GS
= 10 V)
I
D(DC)
Power Dissipation Limited
DC
200 ms
10 ms
100 s
1 ms
I
D(pulse)
PW = 10 s
FORWARD TRANSFER CHARACTERISTICS
1000
100
10
1
0
I
D
- Drain Current - A
V
GS
- Gate to Source Voltage - V
5
10
Pulsed
V
DS
=10 V
125 C
25 C
T
a
= 25 C
2SK2409
4
FORWARD TRANSFER ADMITTANCE vs.
DRAIN CURRENT
1000
100
10
1
1
I
yfs
I - Forward Transfer Admittance - S
I
D
- Drain Current - A
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
GATE TO SOURCE VOLTAGE
50
0
10
R
DS (on)
- Drain to Source On-State Resistance - m
V
GS
- Gate to Source Voltage - V
40
30
20
10
Pulsed
10
100
Ta = 25 C
25 C
75 C
125 C
V
DS
= 10 V
Pulsed
I
D
= 20 A
60
20
30
DRAIN TO SOURCE ON-STATE
RESISTANCE vs. DRAIN CURRENT
40
20
0
1
100
R
DS (on)
- Drain to Source On-State Resistance - m
I
D
- Drain Current - A
GATE TO SOURCE CUTOFF VOLTAGE vs.
CHANNEL TEMPERATURE
2.0
50
0
V
GS (off)
- Gate to Source Cutoff Voltage - V
T
ch
- Channel Temperature - C
1.5
1.0
0
10
50
V
GS
= 4 V
V
GS
= 10 V
60
V
DS
= 10 V
I
D
= 1 mA
100
150
0.5
1000
100
10
1
0.1
0.01
0.001
10
100
1 m
10 m
100 m
1
10
100
1000
PW - Pulse Width - s
r
th(t)
- Transient Thermal Resistance - C/W
TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH
Rth (ch-c) = 3.75 C/W
Single Pulse
Rth (ch-a) = 62.5 C/W
Pulsed
30
10
50
2SK2409
5
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
CHANNEL TEMPERATURE
80
50
R
DS (on)
- Drain to Source On-State Resistance - m
Tch - Channel Temperature - C
1000
0
1.0
I
SD
- Diode Forward Current - A
V
SD
- Source to Drain Voltage - V
CAPACITANCE vs. DRAIN TO
SOURCE VOLTAGE
10000
10
1
C
iss
, C
oss
, C
rss
- Capacitance - pF
V
DS
- Drain to Source Voltage - V
SWITCHING CHARACTERISTICS
t
d(on)
, t
r
, t
d(off)
, t
f
- Switching Time - ns
I
D
- Drain Current - A
10
REVERSE RECOVERY TIME vs.
DRAIN CURRENT
1000
10
0.1
t
rr
- Reverse Recovery time - ns
I
D
- Drain Current - A
1.0
60
40
20
0
0
50
100
150
V
GS
= 4 V
V
GS
= 10 V
I
D
= 20 A
Pulsed
100
10
1
2.0
3.0
SOURCE TO DRAIN DIODE
FORWARD VOLTAGE
V
GS
= 0
10 V
1000
100
100
V
GS
= 0
f = 1 MHz
C
iss
C
oss
C
rss
1000
100
10
1.0
0.1
1.0
10
100
100
10
100
di/dt = 50 A/ s
V
GS
= 0
DYNAMIC INPUT/OUTPUT CHARACTERISTICS
V
DS
- Drain to Source Voltage - V
80
60
40
20
V
GS
- Gate to Source Voltage - V
16
Q
g
- Gate Change - nC
20
0
40
60
80
14
12
10
8
6
4
2
I
D
= 40 A
V
DD
= 48 V
V
DS
V
GS
V
DD
= 30 V
V
GS
= 10 V
R
G
= 10
t
f
t
r
t
d(off)
t
d(on)