ChipFind - документация

Электронный компонент: 80N055

Скачать:  PDF   ZIP

Document Outline

MOS FIELD EFFECT TRANSISTOR
NP80N055CLE, NP80N055DLE, NP80N055ELE
SWITCHING
N-CHANNEL POWER MOS FET
INDUSTRIAL USE
DATA SHEET
Document No.
D14097EJ3V0DS00 (3rd edition)
Date Published
March 2001 NS CP(K)
Printed in Japan
The mark
5
5
5
5
shows major revised points.
1999,2000
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
DESCRIPTION
These products are N-channel MOS Field Effect
Transistor designed for high current switching
applications.
FEATURES
Channel temperature 175 degree rated
Super low on-state resistance
R
DS(on)1
= 11 m
MAX. (V
GS
= 10 V, I
D
= 40 A)
R
DS(on)2
= 13 m
MAX. (V
GS
= 5 V, I
D
= 40 A)
Low C
iss
: C
iss
= 2900 pF TYP.
Built-in gate protection diode
ABSOLUTE MAXIMUM RATINGS (T
A
= 25C)
Drain to Source Voltage
V
DSS
55
V
Gate to Source Voltage
V
GSS
20
V
Drain Current (DC)
Note1
I
D(DC)
80
A
Drain Current (Pulse)
Note2
I
D(pulse)
200
A
Total Power Dissipation (T
A
= 25 C)
P
T
1.8
W
Total Power Dissipation (T
C
= 25 C)
P
T
120
W
Single Avalanche Current
Note3
I
AS
45 / 30 / 10
A
Single Avalanche Energy
Note3
E
AS
2.0 / 90 / 100
mJ
Channel Temperature
T
ch
175
C
Storage Temperature
T
stg
55 to +175
C
Notes 1. Calculated constant current according to MAX. allowable channel
temperature.
2. PW
10
s, Duty cycle
1 %
3. Starting T
ch
= 25 C, R
G
= 25
, V
GS
= 20 V
0 V (see Figure
4.)
THERMAL RESISTANCE
Channel to Case
R
th(ch-C)
1.25
C/W
Channel to Ambient
R
th(ch-A)
83.3
C/W
ORDERING INFORMATION
PART NUMBER
PACKAGE
NP80N055CLE
TO-220AB
NP80N055DLE
TO-262
NP80N055ELE
TO-263
(TO-220AB)
(TO-262)
(TO-263)
Data Sheet D14097EJ3V0DS
2
NP80N055CLE, NP80N055DLE, NP80N055ELE
ELECTRICAL CHARACTERISTICS (T
A
= 25 C)
CHARACTERISTICS
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Drain to Source On-state Resistance
R
DS(on)1
V
GS
= 10 V, I
D
= 40 A
8.4
11
m
R
DS(on)2
V
GS
= 5 V, I
D
= 40 A
10.3
13
m
R
DS(on)3
V
GS
= 4.5 V, I
D
= 40 A
11.3
15
m
Gate to Source Threshold Voltage
V
GS(th)
V
DS
= V
GS
, I
D
= 250
A
1.5
2.0
2.5
V
Forward Transfer Admittance
| y
fs
|
V
DS
= 10 V, I
D
= 40 A
20
40
S
Drain Leakage Current
I
DSS
V
DS
= 55 V, V
GS
= 0 V
10
A
Gate to Source Leakage Current
I
GSS
V
GS
= 20 V, V
DS
= 0 V
10
A
Input Capacitance
C
iss
V
DS
= 25 V, V
GS
= 0 V, f = 1 MHz
2900
4400
pF
Output Capacitance
C
oss
380
570
pF
Reverse Transfer Capacitance
C
rss
170
310
pF
Turn-on Delay Time
t
d(on)
I
D
= 40
A, V
GS(on)
= 10
V, V
DD
= 28
V,
22
48
ns
Rise Time
t
r
R
G
= 1
10
25
ns
Turn-off Delay Time
t
d(off)
62
120
ns
Fall Time
t
f
11
27
ns
Total Gate Charge 1
Q
G1
I
D
= 80
A, V
DD
= 44
V, V
GS
= 10 V
50
75
nC
Total Gate Charge 2
Q
G2
I
D
= 80
A, V
DD
= 44
V, V
GS
= 5 V
26
39
nC
Gate to Source Charge
Q
GS
12
nC
Gate to Drain Charge
Q
GD
15
nC
Body Diode Forward Voltage
V
F(S-D)
I
F
= 80 A, V
GS
= 0 V
1.0
V
Reverse Recovery Time
t
rr
I
F
= 80 A, V
GS
= 0 V, di/dt = 100 A/
s
50
ns
Reverse Recovery Charge
Q
rr
100
nC
TEST CIRCUIT 3 GATE CHARGE
V
GS
= 20
0 V
PG.
R
G
= 25
50
D.U.T.
L
V
DD
TEST CIRCUIT 1 AVALANCHE CAPABILITY
PG.
D.U.T.
R
L
V
DD
TEST CIRCUIT 2 SWITCHING TIME
R
G
PG.
I
G
= 2 mA
50
D.U.T.
R
L
V
DD
I
D
V
DD
I
AS
V
DS
BV
DSS
Starting T
ch
V
GS
0
= 1
s
Duty Cycle
1%
V
GS
Wave Form
V
DS
Wave Form
V
GS
V
DS
10%
0
0
90%
90%
90%
V
GS(on)
V
DS
t
on
t
off
t
d(on)
t
r
t
d(off)
t
f
10%
10%
Data Sheet D14097EJ3V0DS
3
NP80N055CLE, NP80N055DLE, NP80N055ELE
TYPICAL CHARACTERISTICS (T
A
= 25C)
Figure1. DERATING FACTOR OF FORWARD BIAS
SAFE OPERATING AREA
dT - Percentage of Rated Power - %
0
25
50
75
100
125
150
175
200
20
40
60
80
100
T
C
- Case Temperature - C
0
Figure2. TOTAL POWER DISSIPATION vs.
CASE TEMPERATURE
T
C
- Case Temperature - C
P
T
- Total Power Dissipation - W
0
25
50
75
100 125
150 175
200
140
120
100
80
60
40
20
0
0.1
0.1
1
10
100
1000
1
10
100
Figure3. FORWARD BIAS SAFE OPERATING AREA
V
DS -
Drain to Source Voltage - V
I
D
- Drain Current - A
I
D(pulse)
I
D(DC)
PW = 10
s
DC
100
s
1 m
s
R
DS(on)
Limited
(at V
GS
= 10 V)
Pow
er Dissipation
Limited
T
C
= 25C
Single Pulse
Figure4. SINGLE AVALANCHE ENERGY
DERATING FACTOR
Starting T
ch
- Starting Channel Temperature - C
E
AS
- Single Avalanche Energy - mJ
25
50
75
100
125
150
175
120
100
80
60
40
20
0
I
AS
= 10 A
30 A
45 A
90 mJ
100 mJ
2 mJ
Figure5. TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH
PW - Pulse Width - s
r
th(t)
- Transient Thermal Resistance -

C
/W
10
0.01
0.1
1
100
1000
1 m
10 m
100 m
1
10
100
1000
Single Pulse
R
th(ch-A)
= 83.3C/W
10
100
R
th(ch-C)
= 1.25C/W
5
5
5
5
Data Sheet D14097EJ3V0DS
4
NP80N055CLE, NP80N055DLE, NP80N055ELE
Figure6. FORWARD TRANSFER CHARACTERISTICS
V
GS
- Gate to Source Voltage - V
I
D
- Drain Current - A
Pulsed
1
2
3
4
5
6
1
0.1
0.01
10
100
T
A
=
-
50C
25C
75C
150C
175C
Figure7. DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE
V
DS
- Drain to Source Voltage - V
I
D
- Drain Current - A
4
200
160
120
80
40
0
2
Pulsed
V
GS
=10 V
0
5
3
1
5 V
4.5 V
Figure8. FORWARD TRANSFER ADMITTANCE vs.
DRAIN CURRENT
I
D
- Drain Current - A
| y
fs
| - Forward Transfer Admittance - S
V
DS
=10V
Pulsed
0.01
0.1
1
10
100
10
100
0.01
0.1
1
T
A
= 175C
75C
25C
-
50C
Figure9. DRAIN TO SOURCE ON-STATE RESISTANCE vs.
GATE TO SOURCE VOLTAGE
V
GS
- Gate to Source Voltage - V
R
DS(on)
- Drain to Source On-state Resistance - m
0
0
6
2
4
8
10
12
14
16
18
Pulsed
10
20
30
40
50
I
D
= 40 A
Figure10. DRAIN TO SOURCE ON-STATE
RESISTANCE vs. DRAIN CURRENT
I
D
- Drain Current - A
R
DS(on)
- Drain to Source On-state Resistance - m
10
10
1
20
30
100
1000
Pulsed
0
V
GS
= 4.5 V
5 V
10 V
Figure11. GATE TO SOURCE THRESHOLD VOLTAGE vs.
CHANNEL TEMPERATURE
T
ch
- Channel Temperature - C
V
GS(th)
- Gate to Source Threshold Voltage - V
0.5
V
DS
= V
GS
I
D
= 250 A
1.0
1.5
2.0
2.5
3.0
-
50
0
50
100
150
0
5
5
5
5
Data Sheet D14097EJ3V0DS
5
NP80N055CLE, NP80N055DLE, NP80N055ELE
Figure12. DRAIN TO SOURCE ON-STATE RESISTANCE vs.
CHANNEL TEMPERATURE
T
ch
- Channel Temperature - C
R
DS(on)
- Drain to Source On-state Resistance - m
0
-
50
4
8
12
0
50
100
150
I
D
= 40 A
16
20
24
10 V
5 V
V
GS
= 4.5 V
Pulsed
Figure13. SOURCE TO DRAIN DIODE
FORWARD VOLTAGE
1.0
I
SD
- Diode Forward Current - A
0
1.5
V
SD
- Source to Drain Voltage - V
0.5
Pulsed
0.1
1
10
100
1000
V
GS
= 0 V
V
GS
= 10 V
Figure14. CAPACITANCE vs. DRAIN TO
SOURCE VOLTAGE
V
DS
- Drain to Source Voltage - V
C
iss
, C
oss
, C
rss
- Capacitance - pF
10
0.1
100
1000
10000
1
10
100
V
GS
= 0 V
f = 1 MHz
C
oss
C
rss
C
iss
Figure15. SWITCHING CHARACTERISTICS
I
D
- Drain Current - A
t
d(on)
, t
r
, t
d(off)
, t
f
- Switching Time - ns
10
1
1
0.1
100
1000
10
100
t
f
t
r
t
d(on)
t
d(off)
Figure16. REVERSE RECOVERY TIME vs.
DRAIN CURRENT
I
F
- Drain Current - A
t
rr
- Reverse Recovery Time - ns
di/dt = 100 A/ s
V
GS
= 0 V
1
0.1
10
1
10
100
1000
100
Figure17. DYNAMIC INPUT/OUTPUT CHARACTERISTICS
V
GS
- Gate to Source Voltage - V
Q
G
- Gate Charge - nC
V
DS
- Drain to Source Voltage - V
10
20
40
60
80
70
60
50
40
30
20
10
0
V
DD
= 44 V
28 V
11 V
V
DS
0
30
50
16
14
12
10
8
6
4
2
0
I
D
= 80 A
70
80
V
GS