ChipFind - документация

Электронный компонент: k246

Скачать:  PDF   ZIP

Document Outline

MOS FIELD EFFECT TRANSISTOR
DESCRIPTION
The 2SK2461 is N-Channel MOS Field Effect Transistor de-
signed for high speed switching applications.
FEATURES
Low On-Resistance
R
DS(on)1
= 80 m
MAX. (@ V
GS
= 10 V, I
D
= 10 A)
R
DS(on)2
= 0.1
MAX. (@ V
GS
= 4 V, I
D
= 10 A)
Low C
iss
C
iss
= 1400 pF TYP.
Built-in G-S Gate Protection Diodes
High Avalanche Capability Ratings
ABSOLUTE MAXIMUM RATINGS (T
A
= 25 C)
Drain to Source Voltage
V
DSS
100
V
Gate to Source Voltage
V
GSS
20
V
Drain Current (DC)
I
D(DC)
20
A
Drain Current (pulse)*
I
D(pulse)
80
A
Total Power Dissipation (T
c
= 25 C)
P
T1
35
W
Total Power Dissipation (T
A
= 25 C) P
T2
2.0
W
Channel Temperature
T
ch
150
C
Storage Temperature
T
stg
55 to +150
C
Single Avalanche Current**
I
AS
20
A
Single Avalanche Energy**
E
AS
40
mJ
*
PW
10
s, Duty Cycle
1 %
** Starting T
ch
= 25 C, R
G
= 25
, V
GS
= 20 V
0
2SK2461
SWITCHING
N-CHANNEL POWER MOS FET
INDUSTRIAL USE
1995
DATA SHEET
Document No. TC-2529
(O. D. No. TC-8078)
Date Published April 1995 P
Printed in Japan
Body
Diode
Source
Drain
Gate
Gate Protection
Diode
MP-45F (ISOLATED TO-220)
10.0 0.3
3.2 0.2
4.5 0.2
2.7 0.2
2.5 0.1
0.65 0.1
1.5 0.2
2.54
1.3 0.2
2.54
0.7 0.1
4 0.2
15.0 0.3
12.0 0.2
3 0.1
1
2 3
1. Gate
2. Drain
3. Source
13.5
MIN.
PACKAGE DIMENSIONS
(in millimeters)
2SK2461
2
ELECTRICAL CHARACTERISTICS (T
A
= 25 C)
CHARACTERISTIC
SYMBOL
MIN.
TYP.
MAX.
TEST CONDITIONS
Drain to Source On-Resistance
R
DS(on)1
58
80
V
GS
= 10 V, I
D
= 10 A
Drain to Source On-Resistance
R
DS(on)2
70
100
V
GS
= 4 V, I
D
= 10 A
Gate to Source Cutoff Voltage
V
GS(off)
1.0
1.7
2.0
V
DS
= 10 V, I
D
= 1 mA
Forward Transfer Admittance
| y
fs
|
12
19
V
DS
= 10 V, I
D
= 10 A
Drain Leakage Current
I
DSS
10
V
DS
= 100 V, V
GS
= 0
Gate to Source Leakage Current
I
GSS
10
V
GS
=
20 V, V
DS
= 0
Input Capacitance
C
iss
1400
V
DS
= 10 V
Output Capacitance
C
oss
470
V
GS
= 0
Reverse Transfer Capacitance
C
rss
150
f = 1 MHz
Turn-On Delay Time
t
d(on)
21
I
D
= 10 A
Rise Time
t
r
110
V
GS(on)
= 10 V
Turn-Off Delay Time
t
d(off)
140
V
DD
= 50 V
Fall Time
t
f
110
R
G
= 10
Total Gate Charge
Q
G
51
I
D
= 20 A
Gate to Source Charge
Q
GS
4.9
V
DD
= 80 V
Gate to Drain Charge
Q
GD
15
V
GS
= 10 V
Body Diode Forward Voltage
V
F(S-D)
1.1
I
F
= 20 A, V
GS
= 0
Reverse Recovery Time
t
rr
170
I
F
= 20 A, V
GS
= 0
Reverse Recovery Charge
Q
rr
770
di/dt = 100 A/
s
Test Circuit 3 Gate Charge
V
GS
= 20
0 V
PG.
R
G
= 25
50
D.U.T.
L
V
DD
Test Circuit 1 Avalanche Capability
PG.
R
G
= 10
D.U.T.
R
L
V
DD
Test Circuit 2 Switching Time
R
G
PG.
I
G
= 2 mA
50
D.U.T.
R
L
V
DD
I
D
V
DD
I
AS
V
DS
BV
DSS
Starting T
ch
V
GS
0
t = 1 s
Duty Cycle
1 %
V
GS
Wave Form
I
D
Wave Form
V
GS
I
D
10 %
10 %
0
0
90 %
90 %
90 %
10 %
V
GS (on)
I
D
t
on
t
off
t
d (on)
t
r
t
d (off)
t
f
t
UNIT
m
m
V
S
A
A
pF
pF
pF
ns
ns
ns
ns
nC
nC
nC
V
ns
nC
The application circuits and their parameters are for references only and are not intended for use in actual design-in's.
2SK2461
3
TYPICAL CHARACTERISTICS (T
A
= 25 C)
FORWARD BIAS SAFE OPERATING AREA
V
DS -
Drain to Source Voltage - V
I
D
- Drain Current - A
DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE
V
DS
- Drain to Source Voltage - V
I
D
- Drain Current - A
FORWARD TRANSFER CHARACTERISTICS
V
GS -
Gate to Source Voltage - V
I
D
- Drain Current - A
1
DERATING FACTOR OF FORWARD BIAS
SAFE OPERATING AREA
T
C
- Case Temperature - C
dT - Percentage of Rated Power - %
TOTAL POWER DISSIPATION vs.
CASE TEMPERATURE
T
C
- Case Temperature - C
P
T
- Total Power Dissipation - W
0
20
0
20
40
60
80
100
120
140
160
20
40
60
80
100
40
60
80
100
120
140
160
70
60
50
40
30
20
10
0.1
1
1
10
100
10
100
1000
T
C
= 25 C
Single Pulse
0
4
6
8
10
20
30
40
5
10
15
10
100
1000
Pulsed
50
2
0
I
D(pulse)
1 ms
PW=10 s
Power Dissipation Limited
R
DS(on)
Limited
(at V
GS
= 10 V)
Pulsed
V
GS
= 4 V
V
GS
= 6 V
V
GS
= 10 V
DC
200 ms
I
D(DC)
V
DS
= 10 V
100
s
10 ms
T
A
= 25 C
25 C
125 C
2SK2461
4
TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH
PW - Pulse Width - s
r
th(t)
- Transient Thermal Resistance - C/
W
FORWARD TRANSFER ADMITTANCE vs.
DRAIN CURRENT
I
D
- Drain Current - A
| y
fs
| - Forward Transfer Admittance - S
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
GATE TO SOURCE VOLTAGE
V
GS
- Gate to Source Voltage - V
R
DS(on)
- Drain to Source On-State Resistance - m
0
10
DRAIN TO SOURCE ON-STATE
RESISTANCE vs. DRAIN CURRENT
GATE TO SOURCE CUTOFF VOLTAGE vs.
CHANNEL TEMPERATURE
T
ch
- Channel Temperature - C
V
GS(off)
- Gate to Source Cutoff Voltage - V
I
D
- Drain Current - A
R
DS(on)
- Drain to Source On-State Resistance - m
40
1
10
0.001
0.01
0.1
1
100
1 000
1 m
10 m
100 m
1
10
100
1 000
10
100
V
DS
=10 V
Pulsed
0.1
1
10
100
1000
10
100
40
60
120
20
30
Pulsed
80
10
100
Pulsed
Single Pulse
0
120
0.5
V
DS
= 10 V
I
D
= 1 mA
1.0
1.5
2.0
50
0
50
100
150
0
160
R
th(ch-a)
= 62.5 C/W
R
th(ch-c)
= 3.57 C/W
T
A
=25 C
25 C
75 C
125 C
I
D
= 8.0 A
V
GS
= 10 V
1
20
80
100
140
V
GS
= 4 V
2SK2461
5
DRAIN TO SOURCE ON-STATE RESISTANCE vs.
CHANNEL TEMPERATURE
T
ch
- Channel Temperature - C
R
DS(on)
- Drain to Source On-State Resistance - m
SOURCE TO DRAIN DIODE
FORWARD VOLTAGE
V
SD
- Source to Drain Voltage - V
I
SD
- Diode Forward Current - A
CAPACITANCE vs. DRAIN TO
SOURCE VOLTAGE
V
DS
- Drain to Source Voltage - V
C
iss
, C
oss
, C
rss
- Capacitance - pF
SWITCHING CHARACTERISTICS
I
D
- Drain Current - A
t
d(on)
, t
r
, t
d(off)
, t
f
- Switching Time - ns
1.0
0.1
0
50
40
80
120
0
50
100
150
I
D
= 10 A
1
0
10
100
1000
1.0
Pulsed
10
1
100
1 000
10 000
10
100
1 000
V
GS
= 0
f = 1 MHz
10
100
1 000
1.0
10
100
V
GS
- Gate to Source Voltage - V
REVERSE RECOVERY TIME vs.
DRAIN CURRENT
I
D
- Drain Current - A
t
rr
- Reverse Recovery time - ns
di/dt = 50 A/ s
V
GS
= 0
10
0.1
100
1 000
10 000
1.0
10
100
2.0
3.0
160
V
DD
= 50 V
V
GS
=10 V
R
G
=10
DYNAMIC INPUT/OUTPUT CHARACTERISTICS
Q
g -
Gate Charge - nC
V
DS
- Drain to Source Voltage - V
0
20
40
60
80
20
40
60
80
V
DD
= 80 V
I
D
= 20 A
2
4
6
8
10
12
14
16
V
GS
= 4 V
V
GS
= 10 V
4 V
V
GS
= 0
C
rss
C
oss
C
iss
t
r
t
d(on)
t
f
t
d(off)
V
GS
V
DS
0