ChipFind - документация

Электронный компонент: NTE16000-ECG

Скачать:  PDF   ZIP
NTE16000ECG thru NTE16022ECG
Polymeric Positive Temperature Coefficient (PTC)
Resettable Fuses
ELECTRICAL CHARACTERISTICS
I
Hold
I
Trip
Initial resistance
1 Hour (R
1
)
PostTrip
Resistance
Max. Time
To Trip at 5*lh
Tripped Power
Dissipation
Amperes at 23
5
C
Ohms at 23
5
C
Ohms at 23
5
C
Seconds at 23
5
C
Watts at 23
5
C
NTE Type No.
Diag.
No.
V max.
Volts
I max.
Amps
Hold
Trip
Min.
Max
Max.
16000ECG
629
60
40
0.10
0.20
2.50
4.50
7.50
4.0
0.38
16001ECG
629
60
40
0.17
0.34
2.00
3.20
8.00
3.0
0.48
16002ECG
629
60
40
0.20
0.40
1.50
2.84
4.40
2.2
0.40
16003ECG
629
60
40
0.25
0.50
1.00
1.95
3.00
2.5
0.45
16004ECG
629
60
40
0.30
0.60
0.76
1.36
2.10
3.0
0.50
16005ECG
629
60
40
0.40
0.80
0.52
0.86
1.29
3.8
0.55
16006ECG
629
60
40
0.50
1.00
0.41
0.77
1.17
4.0
0.75
16007ECG
629
60
40
0.65
1.30
0.27
0.48
0.72
5.3
0.90
16008ECG
629
60
40
0.75
1.50
0.18
0.40
0.60
6.3
0.90
16009ECG
629
60
40
0.90
1.80
0.14
0.31
0.47
7.2
1.00
16010ECG
630
30
40
0.90
1.80
0.07
0.12
0.22
5.9
0.60
16011ECG
629
30
40
1.10
2.20
0.10
0.18
0.27
6.6
0.70
16012ECG
629
30
40
1.35
2.70
0.065
0.115
0.17
7.3
0.80
16013ECG
629
30
40
1.60
3.20
0.055
0.105
0.15
8.0
0.90
16014ECG
629
30
40
1.85
3.70
0.04
0.07
0.11
8.7
1.00
16015ECG
630
30
40
2.50
5.00
0.025
0.048
0.07
10.3
1.20
16016ECG
630
30
40
3.00
6.00
0.02
0.05
0.08
10.8
2.00
16017ECG
630
30
40
4.00
8.00
0.01
0.03
0.05
12.7
2.50
16018ECG
630
30
40
5.00
10.00
0.01
0.03
0.05
14.5
3.00
16019ECG
630
30
40
6.00
12.00
0.005
0.02
0.04
16.0
3.50
16020ECG
630
30
40
7.00
14.00
0.005
0.02
0.03
17.5
3.80
16021ECG
630
30
40
8.00
16.00
0.005
0.02
0.03
18.8
4.00
16022ECG
630
30
40
9.00
18.00
0.005
0.01
0.02
*20.0
4.20
*
Tested at 40 Amps.
TECHNICAL DATA
Operating/Storage Temperature
40
C to +85
C
Maximum Device Surface Temperature
in Tripped State
+125
C
Passive Aging
+85
C, 1000 Hours
5% Typical Resistance Change
Humidity Aging
+85
C, 85% R.H. 1000 Hours
5% Typical Resistance Change
Thermal Shock
+125
C/40
C 10 Times
10% Typical Resistance Change
Mechanical Shock
MILSTD202, Method 213,
Condition 1 (100g, 6 Seconds)
No Resistance Change
Solvent Resistance
MILSTD202, Method 215
No Change
Vibration
MILSTD883C, Method 2007.1, Condition A
No Change
TEST PROCEDURES AND REQUIREMENTS
Test
Test Condition
Accept/Reject Criteria
Visual/Mechanical
Verify Dimensions and Materials
Per PF Physical Description
Resistance
In Still Air @ +23
C
R
min
R
R
max
Time to Trip
5 Times I
Hold
, V
max
, +23
C
T
Max. Time to Trip (Seconds)
Hold Current
30 Min. at I
Hold
No trip
Trip Cycle Life
V
max
, I
max
, 100 Cycles
No Arcing or Burning
Trip Endurance
V
max
, 48 Hours
No Arcing or Burning
Solvent Resistance
MILSTD202, Method 215
No Change
Vibration
MILSTD883C, Method 2007.1, Condition A
No Change
TYPICAL TIME TO TRIP AT +23
5
0.1
1
10
100
100
10
1
0.1
0.0
1
0.001
Fault Current (Amps)
T
ime to
T
rip (Seconds)
THERMAL DERATING CHART I
HOLD
(Amps) *
Ambient Operating Temperature
NTE Type No.
40
5
C
20
5
C
0
5
C
+23
5
C
+40
5
C
+50
5
C
+60
5
C
+70
5
C
+85
5
C
NTE16000ECG
0.16
0.14
0.12
0.10
0.08
0.07
0.06
0.05
0.04
NTE16001ECG
0.26
0.23
0.20
0.17
0.14
0.12
0.11
0.09
0.07
NTE16002ECG
0.31
0.27
0.24
0.20
0.16
0.14
0.13
0.11
0.08
NTE16003ECG
0.39
0.34
0.30
0.25
0.20
0.18
0.16
0.14
0.10
NTE16004ECG
0.47
0.41
0.36
0.30
0.24
0.22
0.19
0.16
0.12
NTE16005ECG
0.62
0.54
0.48
0.40
0.32
0.29
0.25
0.22
0.16
NTE16006ECG
0.78
0.68
0.60
0.50
0.41
0.36
0.32
0.27
0.20
NTE16007ECG
1.01
0.88
0.77
0.65
0.53
0.47
0.41
0.35
0.26
NTE16008ECG
1.16
1.02
0.89
0.75
0.61
0.54
0.47
0.41
0.30
NTE16009ECG
1.40
1.22
1.07
0.90
0.73
0.65
0.57
0.49
0.36
NTE16010ECG
1.40
1.22
1.07
0.90
0.73
0.65
0.57
0.49
0.36
NTE16011ECG
1.60
1.43
1.27
1.10
0.91
0.85
0.75
0.67
0.57
NTE16012ECG
1.96
1.76
1.55
1.35
1.12
1.04
0.92
0.82
0.70
NTE16013ECG
2.32
2.08
1.84
1.60
1.33
1.23
1.09
0.98
0.83
NTE16014ECG
2.68
2.41
2.13
1.85
1.54
1.42
1.26
1.13
0.96
NTE16015ECG
3.63
3.25
2.88
2.50
2.08
1.93
1.70
1.53
1.30
NTE16016ECG
4.35
3.90
3.45
3.00
2.49
2.31
2.04
1.83
1.56
NTE16017ECG
5.80
5.20
4.60
4.00
3.32
3.08
2.72
2.44
2.08
NTE16018ECG
7.25
6.50
5.75
5.00
4.15
3.85
3.40
3.05
2.60
NTE16019ECG
8.70
7.80
6.90
6.00
4.98
4.62
4.08
3.66
3.12
NTE16020ECG
10.15
9.10
8.05
7.00
5.81
5.39
4.76
4.27
3.64
NTE16021ECG
11.60
10.40
9.20
8.00
6.64
6.16
5.44
4.88
4.16
NTE16022ECG
13.05
11.70
10.35
9.00
7.47
6.39
6.12
5.49
4.68
*
I
Trip
= 2
I
Hold
DIMENSIONAL OUTLINE DRAWINGS
Diagram 629
Diagram 630
NOTE:
Shape changes from round to square starting
with NTE16016ECG.
A
B
C
D
E
E
A
C
B
D
PRODUCT DIMENSIONS (Dimensions are in inches(mm))
A
B
C
D
E
Physical Characteristice
NTE Type No.
Max.
Max.
Nom.
Tol.
+
Min.
Max.
Diag. No.
Lead Dia.
Material
NTE16000ECG
.290 (7.4)
.500 (12.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/NiCu
NTE16001ECG
.290 (7.4)
.500 (12.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/CuFe
NTE16002ECG
.290 (7.4)
.500 (12.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/CuFe
NTE16003ECG
.290 (7.4)
.500 (12.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/CuFe
NTE16004ECG
.290 (7.4)
.530 (13.4)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/CuFe
NTE16005ECG
.290 (7.4)
.540 (13.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/CuFe
NTE16006ECG
.310 (7.9)
.540 (13.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/Cu
NTE16007ECG
.380 (9.7)
.600 (15.2)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/Cu
NTE16008ECG
.410 (10.4)
.630 (16.0)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/Cu
NTE16009ECG
.460 (11.7)
.660 (16.7)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.122 (3.1)
629
.020 (0.51)
Sn/Cu
NTE16010ECG
.290 (7.4)
.480 (12.2)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.020 (0.51)
Sn/Cu
NTE16011ECG
.350 (8.9)
.550 (14.0)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
629
.020 (0.51)
Sn/Cu
NTE16012ECG
.350 (8.9)
.750 (18.9)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
629
.020 (0.51)
Sn/Cu
NTE16013ECG
.400 (10.2)
.660 (16.8)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
629
.020 (0.51)
Sn/Cu
NTE16014ECG
.470 (12.0)
.720 (18.4)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
629
.020 (0.51)
Sn/Cu
NTE16015ECG
.470 (12.0)
.720 (18.3)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16016ECG
.470 (12.0)
.720 (18.3)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16017ECG
.570 (14.4)
.970 (24.8)
.200 (5.1)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16018ECG
.690 (17.4)
.980 (24.9)
.400 (10.2)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16019ECG
.760 (19.3)
1.260 (31.9)
.400 (10.2)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16020ECG
.870 (22.1)
1.170 (29.8)
.400 (10.2)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16021ECG
.960 (24.2)
1.300 (32.9)
.400 (10.2)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
NTE16022ECG
.960 (24.2)
1.300 (32.9)
.400 (10.2)
.027 (0.7)
.300 (7.6)
.120 (3.0)
630
.030 (0.81)
Sn/Cu
RESETTABLE CIRCUIT PROTECTION
When it comes to Polymeric Positive Temperature
Coefficient (PPTC) circuit protection, you now have a
choice.
Polymeric fuses are made from a conductive plastic
formed into thin sheets, with electrodes attached to either
side. The conductive plastic is manufactured from a non
conductive crystalline polymer and a highly conductive
carbon balck. The electrodes ensure even distribution of
power through the device, and provide a surface for leads
to be attached or for custom mounting.
The phenomenon that allows conductive plastic materi-
als to be used for resettable overcurrent protection de-
vices is that they exhibit a very large nonlinear Positive
Temperature Coefficient (PTC) effect when heated. PTC
is a characteristic that many materials exhibit whereby re-
sistance increases with temperature. What makes the
polymeric conductive plastic material unique is the magni-
tude of its resistance increase. At a specific transition tem-
perature, the increase is resistance is so great that it is typ-
ically expressed on a log scale.
HOW POLYMERIC RESETTABLE
OVERCURRENT PROTECTORS WORK
The conductive carbon black filler material in the poly-
meric device is dispersed in a polymer that has a crystal-
line structure. The crystalline structure densely packs the
carbon particles into its crystalline boundry so they are
close enough together to allow current to flow through the
polymer insulator via these carbon "chains".
When the conductive plastic material is at normal room
temperature, there are numerous carbon chains forming
conductive paths through the material.
Under fault conditions, excessive current flows through
the polymeric device. I
2
R heating causes the conductive
plastic material's temperature to rise. As this self heating
continues, the material's temperature continues to rise
until it exceeds its phase transformation temperature. As
the material passes through this phase transformation
temperature, the densely packed crystalline polymer ma-
trix changes to an amorphous structure. This phase
change is accompanied by a small expansion. As the con-
ductive particles move apart from each other, most of
them no longer conduct current and the resistance of the
device increases sharply.
0
20
40
60
80
100
120
140
TEMPERATURE
C
10
1
10
0
10
2
10
3
10
4
10
5
10
6
10
7
LOG R OHMS
The material will stay "hot", remaining in this high resist-
ance state as long as the power is applied. The device will
remain latched, providing continuous protection, until the
fault is cleared and the power is removed. Reversing the
phase transformation allows the carbon chains to reform
as the polymer recrystallizes. The resistance quickly re-
turns to its original value.
PRODUCT SELECTION
To select the correct polymeric circuit protection device,
complete the imformation listed below for application, and
then refer to thwe resettable overcurrent protector data
sheets.
1. Determine the nromal operating current:
__________ amps
2. Determine the maximum circuit voltage (V
max
):
__________ volts
3. Determine the fault current (I
max
):
__________ amps
4. Determine the operating temperature range:
Minimum Temperature: __________
C
Maximum Temperature: __________
C
5. Select a product family so that the maximum rating for
V
max
and I
max
is higher than the maximum circuit volt-
age and fault current in the application.
6. Using the I
Hold
vs. Temperature Table on the product
family data sheet, select the polymeric device at the
maximum operating temperature with an I
Hold
greater
than or equal to the normal operating current.
7. Verify that the selected device will trip under fault con-
ditions by checking in the I
Trip
table that the fault cur-
rent is greater than I
Trip
for the selected device, at the
lowest operating temperature.
8. Order samples and test in application.
APPLICATIONS
The benefits of polymeric Resettable Overcurrent Pro-
tectors are being recognized by more and more design
engineers, and new applications are being discovered ev-
ery day.
The use of polymeric types of devices have been widely
accepted in the following applications and industries:
D
Personal computers
D
Laptop computers
D
Personal digital assistants
D
Transformers
D
Small and medium electric motors
D
Audio equipment and speakers
D
Test and measurement equipment
D
Security and fire alarm systems
D
Personal care products
D
Pointofsale equipment
D
Industrial controls
D
Automotive electronics and harness protection
D
Marine electronics
D
Batteryoperated toys