5-1
FAST AND LS TTL DATA
DUAL DECADE COUNTER;
DUAL 4-STAGE
BINARY COUNTER
The SN54 / 74LS390 and SN54 / 74LS393 each contain a pair of high-speed
4-stage ripple counters. Each half of the LS390 is partitioned into a
divide-by-two section and a divide-by five section, with a separate clock input
for each section. The two sections can be connected to count in the 8.4.2.1
BCD code or they can count in a biquinary sequence to provide a square wave
(50% duty cycle) at the final output.
Each half of the LS393 operates as a Modulo-16 binary divider, with the last
three stages triggered in a ripple fashion. In both the LS390 and the LS393,
the flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs.
Each half of each circuit type has a Master Reset input which responds to a
HIGH signal by forcing all four outputs to the LOW state.
Dual Versions of LS290 and LS293
LS390 has Separate Clocks Allowing
2,
2.5,
5
Individual Asynchronous Clear for Each Counter
Typical Max Count Frequency of 50 MHz
Input Clamp Diodes Minimize High Speed Termination Effects
CONNECTION DIAGRAM DIP (TOP VIEW)
SN54 / 74LS390
SN54 / 74LS393
NOTE:
The Flatpak version
has the same pinouts
(Connection Diagram) as
the Dual In-Line Package.
14
13
12
11
10
9
1
2
3
4
5
6
8
7
VCC
CP
MR
Q0
Q1
Q2
Q3
CP
MR
Q0
Q1
Q2
Q3
GND
14
13
12
11
10
9
1
2
3
4
5
6
7
16
15
8
VCC
CP0
CP0
MR
Q0
CP1
Q2
Q1
Q3
MR
Q0
CP1
Q1
Q2
Q3
GND
SN54/74LS390
SN54/74LS393
LOW POWER SCHOTTKY
ORDERING INFORMATION
SN54LSXXXJ
Ceramic
SN74LSXXXN
Plastic
SN74LSXXXD
SOIC
J SUFFIX
CERAMIC
CASE 620-09
N SUFFIX
PLASTIC
CASE 648-08
16
1
16
1
16
1
D SUFFIX
SOIC
CASE 751B-03
DUAL DECADE COUNTER;
DUAL 4-STAGE
BINARY COUNTER
J SUFFIX
CERAMIC
CASE 632-08
N SUFFIX
PLASTIC
CASE 646-06
14
1
14
1
14
1
D SUFFIX
SOIC
CASE 751A-02
5-2
FAST AND LS TTL DATA
SN54/74LS390
SN54/74LS393
PIN NAMES
LOADING (Note a)
HIGH
LOW
CP
Clock (Active LOW going edge)
Input to +16 (LS393)
0.5 U.L.
1.0 U.L.
CP0
Clock (Active LOW going edge)
Input to
2 (LS390)
0.5 U.L.
1.0 U.L.
CP1
Clock (Active LOW going edge)
Input to
5 (LS390)
0.5 U.L.
1.5 U.L.
MR
Master Reset (Active HIGH) Input
0.5 U.L.
0.25 U.L.
Q0 Q3
Flip-Flop outputs (Note b)
10 U.L.
5 (2.5) U.L.
NOTES:
a) 1 TTL Unit Load (U.L.) = 40
A HIGH/1.6 mA LOW.
b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74)
b)
Temperature Ranges.
FUNCTIONAL DESCRIPTION
Each half of the SN54 / 74LS393 operates in the Modulo 16
binary sequence, as indicated in the
16 Truth Table. The first
flip-flop is triggered by HIGH-to-LOW transitions of the CP
input signal. Each of the other flip-flops is triggered by a
HIGH-to-LOW transition of the Q output of the preceding
flip-flop. Thus state changes of the Q outputs do not occur
simultaneously. This means that logic signals derived from
combinations of these outputs will be subject to decoding
spikes and, therefore, should not be used as clocks for other
counters, registers or flip-flops. A HIGH signal on MR forces
all outputs to the LOW state and prevents counting.
Each half of the LS390 contains a
5 section that is
independent except for the common MR function. The
5
section operates in 4.2.1 binary sequence, as shown in the
5
Truth Table, with the third stage output exhibiting a 20% duty
cycle when the input frequency is constant. To obtain a
10
function having a 50% duty cycle output, connect the input
signal to CP1 and connect the Q3 output to the CP0 input; the
Q0 output provides the desired 50% duty cycle output. If the
input frequency is connected to CP0 and the Q0 output is
connected to CP1, a decade divider operating in the 8.4.2.1
BCD code is obtained, as shown in the BCD Truth Table. Since
the flip-flops change state asynchronously, logic signals
derived from combinations of LS390 outputs are also subject
to decoding spikes. A HIGH signal on MR forces all outputs
LOW and prevents counting.
SN54 / 74LS390 LOGIC DIAGRAM (one half shown)
SN54 / 74LS393 LOGIC DIAGRAM (one half shown)
CP1
CP0
MR
MR
CP
K CP
J
CD
Q
K CP
J
CD
Q
K CP
J
CD
Q
K CP
J
CD
Q
K CP
J
CD
Q
K CP
J
CD
Q
K CP
J
CD
Q
K CP
J
CD
Q
Q0
Q0
Q1
Q1
Q2
Q2
Q3
Q3
5-3
FAST AND LS TTL DATA
SN54/74LS390
SN54/74LS393
SN54 / 74LS390 BCD
TRUTH TABLE
(Input on CP0; Q0 CP1)
SN54/ 74LS390
5
TRUTH TABLE
(Input on CP1)
SN54 / 74LS393
TRUTH TABLE
COUNT
OUTPUTS
Q3 Q2 Q1 Q0
0
1
2
3
4
5
6
7
8
9
L
L
L
L
L
L
L
L
H
H
L
L
H
H
L
L
H
H
L
L
L
H
L
H
L
H
L
H
L
H
L
L
L
L
H
H
H
H
L
L
COUNT
OUTPUTS
Q3 Q2 Q1
0
1
2
3
4
L
L
L
L
H
L
H
L
H
L
L
L
H
H
L
COUNT
OUTPUTS
Q3 Q2 Q1 Q0
0
1
2
3
4
5
6
7
8
9
10
11
L
L
L
L
H
H
H
H
H
H
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
H
L
H
L
H
L
H
L
H
L
H
L
L
L
L
L
L
L
L
H
H
H
H
12
13
14
15
L
L
L
L
L
L
H
H
L
H
L
H
H
H
H
H
SN54 / 74LS390
10 (50% @ Q0)
TRUTH TABLE
(Input on CP1, Q3 to CP0)
COUNT
OUTPUTS
Q3 Q2 Q1 Q0
0
1
2
3
4
5
6
7
8
9
L
L
L
L
H
L
L
L
L
H
L
H
L
H
L
L
H
L
H
L
L
L
L
L
L
H
H
H
H
H
L
L
H
H
L
L
L
H
H
L
H = HIGH Voltage Level
L = LOW Voltage Level
GUARANTEED OPERATING RANGES
Symbol
Parameter
Min
Typ
Max
Unit
VCC
Supply Voltage
54
74
4.5
4.75
5.0
5.0
5.5
5.25
V
TA
Operating Ambient Temperature Range
54
74
55
0
25
25
125
70
C
IOH
Output Current -- High
54, 74
0.4
mA
IOL
Output Current -- Low
54
74
4.0
8.0
mA
5-4
FAST AND LS TTL DATA
SN54/74LS390
SN54/74LS393
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE
(unless otherwise specified)
S
b l
P
Limits
U i
T
C
di i
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
VIH
Input HIGH Voltage
2.0
V
Guaranteed Input HIGH Voltage for
All Inputs
VIL
Input LOW Voltage
54
0.7
V
Guaranteed Input LOW Voltage for
VIL
Input LOW Voltage
74
0.8
V
p
g
All Inputs
VIK
Input Clamp Diode Voltage
0.65
1.5
V
VCC = MIN, IIN = 18 mA
VOH
Output HIGH Voltage
54
2.5
3.5
V
VCC = MIN, IOH = MAX, VIN = VIH
VOH
Output HIGH Voltage
74
2.7
3.5
V
CC
, OH
,
IN
IH
or VIL per Truth Table
VOL
Output LOW Voltage
54, 74
0.25
0.4
V
IOL = 4.0 mA
VCC = VCC MIN,
VIN = VIL or VIH
VOL
Output LOW Voltage
74
0.35
0.5
V
IOL = 8.0 mA
VIN = VIL or VIH
per Truth Table
IIH
Input HIGH Current
20
A
VCC = MAX, VIN = 2.7 V
IIH
Input HIGH Current
0.1
mA
VCC = MAX, VIN = 7.0 V
I
I
LOW C
MR
0.4
mA
V
MAX V
0 4 V
IIL
Input LOW Current
CP, CP0
1.6
mA
VCC = MAX, VIN = 0.4 V
CP1
2.4
mA
IOS
Short Circuit Current (Note 1)
20
100
mA
VCC = MAX
ICC
Power Supply Current
26
mA
VCC = MAX
Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS
(TA = 25
C, VCC = 5.0 V)
S
b l
P
Limits
U i
T
C
di i
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
fMAX
Maximum Clock Frequency
CP0 to Q0
25
35
MHz
C
15 F
fMAX
Maximum Clock Frequency
CP1 to Q1
20
MHz
C
15 F
tPLH
tPHL
Propagation Delay,
CP to Q0
LS393
12
13
20
20
ns
C
15 F
tPLH
tPHL
CP0 to Q0
LS390
12
13
20
20
ns
C
15 F
tPLH
tPHL
CP to Q3
LS393
40
40
60
60
ns
CL = 15 pF
tPLH
tPHL
CP0 to Q2
LS390
37
39
60
60
ns
L
p
tPLH
tPHL
CP1 to Q1
LS390
13
14
21
21
ns
tPLH
tPHL
CP1 to Q2
LS390
24
26
39
39
ns
tPLH
tPHL
CP1 to Q3
LS390
13
14
21
21
ns
tPHL
MR to Any Output
LS390/393
24
39
ns
5-5
FAST AND LS TTL DATA
SN54/74LS390
SN54/74LS393
AC SETUP REQUIREMENTS
(TA = 25
C, VCC = 5.0 V)
S
b l
P
Limits
U i
T
C
di i
Symbol
Parameter
Min
Typ
Max
Unit
Test Conditions
tW
Clock Pulse Width
LS393
20
ns
V
5 0 V
tW
CP0 Pulse Width
LS390
20
ns
V
5 0 V
tW
CP1 Pulse Width
LS390
40
ns
VCC = 5.0 V
tW
MR Pulse Width
LS390/393
20
ns
trec
Recovery Time
LS390/393
25
ns
AC WAVEFORMS
*The number of Clock Pulses required between tPHL and tPLH measurements can be determined from the appropriate Truth Table.
*CP
Q
Q
MR & MS
CP
1.3 V
1.3 V
1.3 V
1.3 V
1.3 V
1.3 V
1.3 V
1.3 V
tPHL
tPHL
tPLH
Figure 1
Figure 2
tW
tW
trec