ChipFind - документация

Электронный компонент: 2EZ22

Скачать:  PDF   ZIP
2EZ11 THRU 2EZ200
GLASS PASSIVATED JUNCTION SILICON ZENER DIODE
VOLTAGE - 11 TO 200 Volts Power - 2.0 Watts
FEATURES
l
Low profile package
l
Built-in strain relief
l
Glass passivated junction
l
Low inductance
l
Excellent clamping capability
l
Typical I
D
less than 1
g
A above 11V
l
High temperature soldering :

260
J
/10 seconds at terminals
l
Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
MECHANICAL DATA
Case: JEDEC DO-15, Molded plastic over passivated junction
Terminals: Solder plated, solderable per MIL-STD-750,
method 2026
Polarity: Color band denotes positive end (cathode)
Standard Packaging: 52mm tape
Weight: 0.015 ounce, 0.04 gram
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25
J
ambient temperature unless otherwise specified.
SYMBOL
VALUE
UNITS
Peak Pulse Power Dissipation (Note A)
Derate above 75
J
P
D
2
24
Watts
mW/
J
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated
load(JEDEC Method) (Note B)
I
FSM
15
Amps
Operating Junction and Storage Temperature Range
T
J
,T
STG
-55 to +150
J
NOTES:
A. Mounted on 5.0mm
2
(.013mm thick) land areas.
B. Measured on 8.3ms, single half sine-wave or equivalent square wave, duty cycle = 4 pulses
per minute maximum.
DO-15
2EZ11 THRU 2EZ200
ELECTRICAL CHARACTERISTICS (T
A
=25
J
unless otherwise noted) V
F
=1.2 V max , I
F
=500 mA for all types
Maximum Zener Impedance (Note 3.)
Leakage Current
Type No.
(Note 1.)
Nominal Zener
Voltage Vz @ I
ZT
volts
(Note 2.)
Test
current
I
ZT
mA
Z
ZT
@ I
ZT
Ohms
Z
Zk
@ I
ZK
Ohms
I
ZK
mA
I
R
g
A Max @
V
R
Volts
Maximum Zener
Current
I
ZM
Madc
Surge Current
@ T
A
= 25
J
ir - mA
(Note 4.)
2EZ11
2EZ12
2EZ13
11.0
12.0
13.0
45.5
41.5
38.5
4.0
4.5
5.0
700
700
700
0.25
0.25
0.25
1.0
1.0
0.5
8.4
9.1
9.9
166
152
138
1.82
1.66
1.54
2EZ14
2EZ15
2EZ16
2EZ17
2EZ18
14.0
15.0
16.0
17.0
18.0
35.7
33.4
31.2
29.4
27.8
5.5
7.0
8.0
9.0
10.0
700
700
700
750
750
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
10.6
11.4
12.2
13.0
13.7
130
122
114
107
100
1.43
1.33
1.25
1.18
1.11
2EZ19
2EZ20
2EZ22
2EZ24
2EZ27
19.0
20.0
22.0
24.0
27.0
26.3
25.0
22.8
20.8
18.5
11.0
11.0
12.0
13.0
18.0
750
750
750
750
750
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
14.4
15.2
16.7
18.2
20.6
95
90
82
76
68
1.05
1.00
0.91
0.83
0.74
2EZ30
2EZ33
2EZ36
2EZ39
2EZ43
30.0
33.0
36.0
39.0
43.0
16.6
15.1
13.9
12.8
11.6
20.0
23.0
25.0
30.0
35.0
1000
1000
1000
1000
1500
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
22.5
25.1
27.4
29.7
32.7
60
55
50
47
43
0.67
0.61
0.56
0.51
0.45
2EZ47
2EZ51
2EZ56
2EZ62
2EZ68
47.0
51.0
56.0
62.0
68.0
10.6
9.8
9.0
8.1
7.4
40.0
48.0
55.0
60.0
75.0
1500
1500
2000
2000
2000
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
35.8
38.8
42.6
47.1
51.7
39
36
32
29
27
0.42
0.39
0.36
0.32
0.29
2EZ75
2EZ82
2EZ91
2EZ100
2EZ110
75.0
82.0
91.0
100.0
110.0
6.7
6.1
5.5
5.0
4.5
90.0
100.0
125.0
175.0
250.0
2000
3000
3000
3000
4000
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
56.0
62.2
69.2
76.0
83.6
24
22
20
18
17
0.27
0.24
0.22
0.20
0.18
2EZ120
2EZ130
2EZ140
2EZ150
2EZ160
120.0
130.0
140.0
150.0
160.0
4.2
3.8
3.6
3.3
3.1
325.0
400.0
500.0
575.0
650.0
4500
5000
5500
6000
6500
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
91.2
98.8
106.4
114.0
121.6
15
14
13
12
11
0.16
0.15
0.14
0.13
0.12
2EZ170
2EZ180
2EZ190
2EZ200
170.0
180.0
190.0
200.0
2.9
2.8
2.6
2.5
675.0
725.0
825.0
900.0
7000
7000
8000
8000
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
130.4
136.8
144.8
152.0
11
10
10
9
0.12
0.11
0.10
0.10
NOTES:
1. TOLERANCES - Suffix indicates 5% tolerance any other tolerance will be considered as a special device.
2. ZENER VOLTAGE (Vz) MEASUREMENT - guarantees the zener voltage when measured at 40 ms
10ms
from the diode body, and an ambient temperature of 25
J
(
68
J
, -2
J
).
3.ZENER IMPEDANCE (Zz) DERIVATION - The zener impedance is derived from the 60 cycle ac voltage,
which results when an ac current having an rms falue equal to 10% of the dc zener current (I
ZT
or I
ZK
) is
superimposed on I
ZT
or I
ZK
.
4. SURGE CURRENT (Ir) NON-REPETITIVE - The rating listed in the electrical characteristics table is
maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse
of 1/120 second duration superimposed on the test current, I
ZT
, per JEDEC standards, however, actual
device capability is as described in Figure 3.
RATING AND CHARACTERISTICS CURVES
2EZ11 THRU 2EZ200
30
20
10
7
5
3
2
1
0.7
0.5
0.3
0.0001
0.0002
0.0005
0.001
0.002
0.005
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10
D = 0.5
0.2
0.1
0.05
0.02
0.01
D = 0
NOTE BELOW 0.1 SECOND,
THERMAL RESPONSE
CURVE IS APPLICABLE TO
ANY LEAD LENGTH (L)
SINGLE PULSE
G
TJL =
K
JL(t)PPK
REPETITIVE PULSES
G
TJL =
K
JL(t,D)PPK
Fig. 2-TYPICAL THERMAL RESPONSE L,
500
250
150
100
50
30
20
10
.1 .2 .3 5 1
2
3
5 10 20
50 100
RECTANGULAR NONREPETITIVE
WAVEFORM TJ = 25
J
PRIOR TO
INITIAL PULSE
P.W. PULSE WIDTH (ms)
0.1
0.05
0.03
0.02
0.01
0.005
0.003
0.002
0.001
0.0005
0.0003
0.0002
0.0001
1
2
5
10
20
50
100
200
500
1K
NOMINAL VZ (VOLTS)
Fig. 3-MAXIMUM SURGE POWER
Fig. 4-TYPICAL REVERSE LEAKAGE
8
6
4
2
0
-2
-4
3 4 6 8 10 12
RANGE
VZ, ZENER VOLTAGE @IZT (VOLTS)
200
100
50
40
30
20
10
0
20
40
60
80
100
120
140
160
180
200
RANGE
VZ, ZENER VOLTAGE @IZT (VOLTS)
Fig. 5-UNITS TO 12 VOLTS
Fig. 6-UNITS 10 TO 200 VOLTS
c
J
L

(
t
,
D
)

T
R
A
N
S
I
E
N
T

T
H
E
R
M
A
L
R
E
S
I
S
T
A
N
C
E
J
U
N
C
T
I
O
N
-
T
O
-
L
E
A
D
(
J
/
W
)
P
P
K
,

P
E
A
K

S
U
R
G
E

P
O
W
E
R
(
W
A
T
T
S
)
I
R
,

R
E
V
E
R
S
E

L
E
A
D
A
G
E
(
u
A
d
c
)
@
V
R

A
S

S
P
E
C
I
F
I
E
D

I
N

E
L
E
C
.
C
H
A
R
.

T
A
B
L
E
c
V
Z
,

T
E
M
P
E
R
A
T
U
R
E
C
O
E
F
F
I
C
I
E
N
T
(
m
V
/
J
)

@

I
Z
T
c
V
Z
,

T
E
M
P
E
R
A
T
U
R
E
C
O
E
F
F
I
C
I
E
N
T
(
m
V
/
J
)

@

I
Z
T
RATING AND CHARACTERISTICS CURVES
2EZ11 THRU 2EZ200
100
50
30
20
10
5
3
2
1
0.5
0.3
0.2
0.1
0 1 2 3 4 5 6 7 8 9 10
VZ, ZENER VOLTAGE (VOLTS)
100
50
30
20
10
5
3
2
1
0.5
0.3
0.2
0.1
0
10
20
30
40
50
60 70
80
90 100
VZ, ZENER VOLTAGE (VOLTS)
Fig. 7-VZ = 3.9 THRU 10 VOLTS
Fig. 8-VZ = 12 THRU 82 VOLTS
100
50
30
20
10
5
3
2
1
0.5
0.3
0.2
0.1
100 120 140 160 180 200
VZ, ZENER VOLTAGE (VOLTS)
80
70
60
50
40
30
20
10
0
0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
PRIMARY PATH OF
CONDUCTION IS THROUGH
THE CATHODE LEAD
L, LEAD LENGTH TO HEAT SINK (INCH)
Fig. 9-VZ = 100 THRU 200 VOLTS
Fig. 10-TYPICAL THERMAL RESISTANCE
I
Z
,

Z
E
N
E
R

C
U
R
R
E
N
T

(
m
A
)
I
Z
,

Z
E
N
E
R

C
U
R
R
E
N
T

(
m
A
)
I
Z
,

Z
E
N
E
R

C
U
R
R
E
N
T

(
m
A
)
c
J
L
,

J
U
N
C
T
I
O
N
-
L
E
A
D

T
H
E
R
M
A
L
R
E
S
I
S
T
A
N
C
E

(
J
/
W
)
APPLICATION NOTE:
Since the actual voltage available from a given zener
diode is temperature dependent, it is necessary to
determine junction temperature under any set of
operating conditions in order to calculate its value. The
following procedure is recommended:
Lead Temperature, T
L
, should be determined from:
TL =
c
LA
P
D
+ T
A
c
LA
is the lead-to-ambient thermal resistance (
J
/W)
and P
D
is the power dissipation. The value for
c
LA
will
vary and depends on the device mounting method.
c
LA
is generally 30-40
J
/W for the various chips and
tie points in common use and for printed circuit board
wiring.
The temperature of the lead can also be measured using
a thermocouple placed on the lead as close as possible to
the tie point. The thermal mass connected to the tie point
is normally large enough so that it will not significantly
respond to heat surges generated in the diode as a result
of pulsed operation once steady-state conditions are
achieved. Using the measured value of T
L
, the junction
temperature may be determined by:
T
J
= T
L
+
G
T
JL
G
T
JL
is the increase in junction temperature above the
lead temperature and may be found from Figure 2 for a
train of power pulses or from Figure 10 for dc power.
G
T
JL
=
c
LA
P
D
For worst-case design, using expected limits of Iz, limits
of P
D
and the extremes of T
J
(
G
T
JL
) may be estimated.
Changes in voltage, Vz, can then be found from:
G
V =
c
VZ
G
T
J
c
VZ
, the zener voltage temperature coefficient, is
found from Figures 5 and 6.
Under high power-pulse operation, the zener voltage
will vary with time and may also be affected significantly
be the zener resistance. For best regulation, keep current
excursions as low as possible.
Data of Figure 2 should not be used to compute surge
capability. Surge limitations are given in Figure 3. They
are lower than would be expected by considering only
junction temperature, as current crowding effects cause
temperatures to be extremely high in small spots resulting
in device degradation should the limits of Figure 3 be
exceeded.