ChipFind - документация

Электронный компонент: PI6C39911-2J

Скачать:  PDF   ZIP
1
PS8497E 09/13/02
Features
All output pair skew <100ps typical (250 Max.)
12.5 MHz to 133 MHz output operation
3.125 MHz to 133 MHz input operation (input as low as 3.125
MHz for 4x operation, or 6.25 MHz for 2x operation)
User-selectable output functions
-- Selectable skew to 18ns
-- Inverted and non-inverted
-- Operation at and input frequency
-- Operation at 2X and 4X input frequency
Zero input-to-output delay
50% duty-cycle outputs
Inputs are 5V Tolerant
LVTTL outputs drive 50-Ohm terminated lines
Operates from a single 3.3V supply
Low operating current
32-pin PLCC package
Jitter < 200ps peak-to-peak (< 25ps RMS)
Description
The PI6C39911 offers selectable control over system clock func-
tions. These multiple-output clock drivers provide the system
integrator with functions necessary to optimize the timing
of high-performance computer systems. Eight individual drivers,
arranged as four pairs of user-controllable outputs, can each drive
terminated transmission lines with impedances as low as 50-Ohms
while delivering minimal and specified output skews and full-swing
logic levels.
Each output can be hardwired to one of nine skews or function
configurations. Delay increments of 0.7ns to 1.5ns are determined
by the operating frequency with outputs able to skew up to 6 time
units from their nominal "zero" skew position. The completely
integrated PLL allows external load and transmission line delay
effects to be canceled. The user can create output-to-output skew
of up to 12 time units.
Divide-by-two and divide-by-four output functions are provided
for additional flexibility in designing complex clock systems. When
combined with the internal PLL, these divide functions allow distri-
bution of a low-frequency clock that can be multiplied by two or four
at the clock destination. This feature allows flexibility and simpli-
fies system timing distribution design for complex high-speed
systems.
Logic Block Diagram
Pin Configuration
2F0
GND
1F1
1F0
V
CCN
1Q0
1Q1
GND
GND
3F1
4F0
4F1
V
CCQ
V
CCN
4Q1
4Q0
GND
GND
5
6
7
8
9
10
11
12
13
29
28
27
26
25
24
23
22
21
3Q1
3Q0
V
CCN
FB
V
CCN
2Q1
2Q0
3F0
FS
V
CC
Q
REF
GND
TES
T
2F1
4
3
2
1
32 31
30
14 15 16 17 18 19
20
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
32 Pin
J
1Q0
1Q1
1F0
1F1
2Q0
2Q1
2F0
2F1
3Q0
3Q1
3F0
3F1
4Q0
4Q1
4F0
4F1
Select Inputs
(three level)
Matrix
Select
Skew
Test
Filter
Phase
Freq.
DET
FB
REF
FS
VCO and
Time Unit
Generator
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
2
PS8497E 09/13/02
Pin Descriptions
l
a
n
g
i
S
e
m
a
N
O
/
I
n
o
i
t
p
i
r
c
s
e
D
F
E
R
I
.
d
e
r
u
s
a
e
m
s
i
n
o
it
a
i
r
a
v
l
a
n
o
it
c
n
u
f
ll
a
h
c
i
h
w
t
s
n
i
a
g
a
g
n
i
m
it
d
n
a
y
c
n
e
u
q
e
r
f
e
h
t
s
e
il
p
p
u
s
t
u
p
n
i
y
c
n
e
u
q
e
r
f
e
c
n
e
r
e
f
e
R
B
F
I
)
s
t
u
p
t
u
o
t
h
g
i
e
e
h
t
f
o
e
n
o
o
t
d
e
t
c
e
n
n
o
c
y
ll
a
c
i
p
y
t
(
t
u
p
n
i
k
c
a
b
d
e
e
f
L
L
P
S
F
I
.
1
e
l
b
a
T
e
e
s
.t
c
e
l
e
s
e
g
n
a
r
y
c
n
e
u
q
e
r
f
l
e
v
e
l
-
e
e
r
h
T
1
F
1
,
0
F
1
I
.
2
e
l
b
a
T
e
e
s
.
)
1
Q
1
,
0
Q
1
(
1
ri
a
p
t
u
p
t
u
o
r
o
f
s
t
u
p
n
i
t
c
e
l
e
s
n
o
it
c
n
u
f
l
e
v
e
l
-
e
e
r
h
T
1
F
2
,
0
F
2
I
.
2
e
l
b
a
T
e
e
s
.
)
1
Q
2
,
0
Q
2
(
2
ri
a
p
t
u
p
t
u
o
r
o
f
s
t
u
p
n
i
t
c
e
l
e
s
n
o
it
c
n
u
f
l
e
v
e
l
-
e
e
r
h
T
1
F
3
,
0
F
3
I
.
2
e
l
b
a
T
e
e
s
.
)
1
Q
3
,
0
Q
3
(
3
ri
a
p
t
u
p
t
u
o
r
o
f
s
t
u
p
n
i
t
c
e
l
e
s
n
o
it
c
n
u
f
l
e
v
e
l
-
e
e
r
h
T
1
F
4
,
0
F
4
I
.
2
e
l
b
a
T
e
e
s
.
)
1
Q
4
,
0
Q
4
(
4
ri
a
p
t
u
p
t
u
o
r
o
f
s
t
u
p
n
i
t
c
e
l
e
s
n
o
it
c
n
u
f
l
e
v
e
l
-
e
e
r
h
T
T
S
E
T
I
s
n
o
it
p
i
r
c
s
e
d
m
a
r
g
a
i
d
k
c
o
l
b
e
h
t
r
e
d
n
u
n
o
it
c
e
s
e
d
o
m
t
s
e
t
e
e
S
.t
c
e
l
e
s
l
e
v
e
l
-
e
e
r
h
T
1
Q
1
,
0
Q
1
O
2
e
l
b
a
T
e
e
s
.
1
ri
a
p
t
u
p
t
u
O
1
Q
2
,
0
Q
2
O
2
e
l
b
a
T
e
e
s
.
2
ri
a
p
t
u
p
t
u
O
1
Q
3
,
0
Q
3
O
2
e
l
b
a
T
e
e
s
.
3
ri
a
p
t
u
p
t
u
O
1
Q
4
,
0
Q
4
O
2
e
l
b
a
T
e
e
s
.
4
ri
a
p
t
u
p
t
u
O
V
N
C
C
R
W
P
s
r
e
v
i
r
d
t
u
p
t
u
o
r
o
f
y
l
p
p
u
s
r
e
w
o
P
V
Q
C
C
R
W
P
y
r
ti
u
c
ri
c
l
a
n
r
e
t
n
i
r
o
f
y
l
p
p
u
s
r
e
w
o
P
D
N
G
R
W
P
d
n
u
o
r
G
S
F
)
2
,
1
(
F
M
O
N
)
z
H
M
(
t
U
=
=
N
e
r
e
h
w
e
t
a
m
i
x
o
r
p
p
A
t
a
)
z
H
M
(
.
q
e
r
F
t
h
c
i
h
w
U
s
n
0
.
1
=
.
n
i
M
.
x
a
M
W
O
L
5
.
2
1
0
3
4
4
7
.
2
2
D
I
M
5
2
0
5
6
2
5
.
8
3
H
G
I
H
0
4
3
3
1
6
1
5
.
2
6
Table 1. Frequency Range Select and t
U
Calculation
(1)
1
f
NOM
N
s
t
c
e
l
e
S
n
o
i
t
c
n
u
F
s
n
o
i
t
c
n
u
F
t
u
p
t
u
O
,
1
F
2
,
1
F
1
1
F
4
,
1
F
3
,
0
F
2
,
0
F
1
0
F
4
,
0
F
3
,
1
Q
1
,
0
Q
1
1
Q
2
,
0
Q
2
1
Q
3
,
0
Q
3
1
Q
4
,
0
Q
4
W
O
L
W
O
L
t
4
U
2
y
b
e
d
i
v
i
D
2
y
b
e
d
i
v
i
D
W
O
L
D
I
M
t
3
U
t
6
U
t
6
U
W
O
L
H
G
I
H
t
2
U
t
4
U
t
4
U
D
I
M
W
O
L
t
1
U
t
2
U
t
2
U
D
I
M
D
I
M
t
0
U
t
0
U
t
0
U
D
I
M
H
G
I
H
t
1
+
U
t
2
+
U
t
2
+
U
H
G
I
H
W
O
L
t
2
+
U
t
4
+
U
t
4
+
U
H
G
I
H
D
I
M
t
3
+
U
t
6
+
U
t
6
+
U
H
G
I
H
H
G
I
H
t
4
+
U
4
y
b
e
d
i
v
i
D
d
e
t
r
e
v
n
I
Table 2. Programmable Skew Configurations
(1)
Notes:
1. For all three-state inputs, HIGH indicates a connection to V
CC
, LOW indicates a connection to GND, and MID indicates an open
connection. Internal termination circuitry holds an unconnected input to V
CC
/2.
2. The level to be set on FS is determined by the "normal" operating frequency (f
NOM
) and Time Unit Generator (see Logic Block Diagram).
Nominal frequency (f
NOM
) always appears at 1Q0 and the other outputs when they are operated in their undivided modes (see Table
2). The frequency appearing at the REF and FB inputs will be f
NOM
when the output connected to FB is undivided. The frequency
of the REF and FB inputs will be f
NOM
/2 or f
NOM
/4 when the part is configured for a frequency multiplication by using a divided output
as the FB input.
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
3
PS8497E 09/13/02
t
0
6
t
U
t
0
5
t
U
t
0
4
t
U
t
0
3
t
U
t
0
2
t
U
t
0
1
t
U
t
0
t
0
+1
t
U
t
0
+2
t
U
t
0
+3
t
U
t
0
+4
t
U
t
0
+5
t
U
t
0
+6
t
U
FB Input
REF Input
(N/A)
HH
Invert
(N/A) LL/HH Divided
(N/A)
LM
6t
U
LL
LH
4t
U
LM
(N/A)
3t
U
LH
ML
2t
U
ML
(N/A)
1t
U
MM
MM
0t
U
MH
(N/A)
+1t
U
HL
MH
+2t
U
HM
(N/A)
+3t
U
HH
HL
+4t
U
(N/A)
HM
+6t
U
1Fx
2Fx
3Fx
4Fx
Figure 1. Typical Outputs with FB Connected to a Zero-Skew Output
(3)
Operating Range
e
g
n
a
R
e
r
u
t
a
r
e
p
m
e
T
t
n
e
i
b
m
A
V
C
C
l
a
i
c
r
e
m
m
o
C
C
0
7
+
o
t
C
0
%
0
1
V
3
.
3
l
a
i
r
t
s
u
d
n
I
C
5
8
+
o
t
C
0
4
%
0
1
V
3
.
3
Test Mode
The TEST input is a three-level input. In normal system operation,
this pin is connected to ground, allowing the PI6C39911 to operate
as explained briefly above (for testing purposes, any of the three
level inputs can have a removable jumper to ground, or be tied LOW
through a 100 Ohm resistor. This will allow an external tester to
change the state of these pins.)
If the TEST input is forced to its MID or HIGH state, the device will
operate with its internal phase locked loop disconnected, and input
levels supplied to REF will directly control all outputs. Relative
output to output functions are the same as in normal mode.
In contrast with normal operation (TEST tied LOW). All outputs
will function based only on the connection of their own function
select inputs (xF0 and xF1) and the waveform characteristics of the
REF input.
Storage Temperature ..................................... 65C to +150C
Ambient Temperature with
Power Applied ............................................... 55C to +125C
Supply Voltage to Ground Potential ................ 0.5V to +5.0V
DC Input Voltage .............................................. 0.5V to +5.0V
Output Current into Outputs (LOW) .............................. 64mA
Static Discharge Voltage ............................................... >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current .........................................................>200mA
Maximum Power Dissipation at T
A
=85C
(2,3) ..............
0.80watts
Maximum Ratings
Note:
3. FB connected to an output selected for "zero" skew (i.e., xF1 = xF0 = MID)
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
4
PS8497E 09/13/02
r
e
t
e
m
a
r
a
P
n
o
i
t
p
i
r
c
s
e
D
s
n
o
i
t
i
d
n
o
C
t
s
e
T
.
n
i
M
.
x
a
M
s
t
i
n
U
V
H
O
e
g
a
tl
o
V
H
G
I
H
t
u
p
t
u
O
V
C
C
I
,.
n
i
M
=
H
O
A
m
8
1
=
4
.
2
V
V
L
O
e
g
a
tl
o
V
W
O
L
t
u
p
t
u
O
V
C
C
I
,.
n
i
M
=
L
O
A
m
5
3
=
5
4
.
0
V
H
I
e
g
a
tl
o
V
H
G
I
H
t
u
p
n
I
)
y
l
n
o
s
t
u
p
n
i
B
F
d
n
a
F
E
R
(
0
.
2
V
C
C
V
L
I
e
g
a
tl
o
V
W
O
L
t
u
p
n
I
)
y
l
n
o
s
t
u
p
n
i
B
F
d
n
a
F
E
R
(
5
.
0
8
.
0
V
H
H
I
e
g
a
tl
o
V
H
G
I
H
t
u
p
n
I
l
e
v
e
L
-
e
e
r
h
T
)
n
F
x
,
S
F
,t
s
e
T
(
)
4
(
.
n
i
M
V
C
C
.
x
a
M
V
7
8
.
0
C
C
V
C
C
V
M
M
I
e
g
a
tl
o
V
D
I
M
t
u
p
n
I
l
e
v
e
L
-
e
e
r
h
T
)
n
F
x
,
S
F
,t
s
e
T
(
)
4
(
.
n
i
M
V
C
C
.
x
a
M
V
7
4
.
0
C
C
V
3
5
.
0
C
C
V
L
L
I
e
g
a
tl
o
V
W
O
L
t
u
p
n
I
l
e
v
e
L
-
e
e
r
h
T
)
n
F
x
,
S
F
,t
s
e
T
(
)
4
(
.
n
i
M
V
C
C
.
x
a
M
0
.
0
V
3
1
.
0
C
C
I
H
I
t
n
e
r
r
u
C
e
g
a
k
a
e
L
H
G
I
H
t
u
p
n
I
)
y
l
n
o
s
t
u
p
n
i
B
F
d
n
a
F
E
R
(
V
C
C
V
,.
x
a
M
=
N
I
.
x
a
M
=
0
2
A
I
L
I
t
n
e
r
r
u
C
e
g
a
k
a
e
L
W
O
L
t
u
p
n
I
)
y
l
n
o
s
t
u
p
n
i
B
F
d
n
a
F
E
R
(
V
C
C
V
,.
x
a
M
=
N
I
V
4
.
0
=
0
2
I
H
H
I
)
n
F
x
,
S
F
,t
s
e
T
(
t
n
e
r
r
u
C
H
G
I
H
t
u
p
n
I
V
N
I
V
=
C
C
0
0
2
I
M
M
I
)
n
F
x
,
S
F
,t
s
e
T
(
t
n
e
r
r
u
C
D
I
M
t
u
p
n
I
V
N
I
V
=
C
C
2
/
0
5
0
5
I
L
L
I
)
n
F
x
,
S
F
,t
s
e
T
(
t
n
e
r
r
u
C
W
O
L
t
u
p
n
I
V
N
I =
D
N
G
0
0
2
I
S
O
t
n
e
r
r
u
C
ti
u
c
ri
C
t
r
o
h
S
)
5
(
V
C
C
V
,.
x
a
M
=
T
U
O
)
y
l
n
o
C
5
2
(
D
N
G
=
0
0
2
A
m
I
Q
C
C
l
a
n
r
e
t
n
I
y
b
d
e
s
U
t
n
e
r
r
u
C
g
n
it
a
r
e
p
O
y
r
ti
u
c
ri
C
V
N
C
C
V
=
Q
C
C
,.
x
a
M
=
n
e
p
O
s
t
c
e
l
e
S
t
u
p
n
I
ll
A
l'
m
o
C
5
9
d
n
I
/l
i
M
0
0
1
I
N
C
C
ri
a
P
t
u
p
t
u
O
r
e
p
t
n
e
r
r
u
C
r
e
f
f
u
B
t
u
p
t
u
O
V
N
C
C
V
=
Q
C
C
I
,.
x
a
M
=
T
U
O
A
m
0
=
f
,
n
e
p
O
s
t
c
e
l
e
S
t
u
p
n
I
ll
A
X
A
M
9
1
D
P
ri
a
P
t
u
p
t
u
O
r
e
p
n
o
it
a
p
i
s
s
i
D
r
e
w
o
P
V
N
C
C
V
=
Q
C
C
I
,.
x
a
M
=
T
U
O
A
m
0
=
f
,
n
e
p
O
s
t
c
e
l
e
S
t
u
p
n
I
ll
A
X
A
M
4
0
1
W
m
Electrical Characteristics
(Over the Operating Range)
Notes:
4. These inputs are normally wired to V
CC
, GND, or left unconnected (actual threshold voltages vary as a percentage of V
CC
).
Internal termination resistors hold unconnected inputs at V
CC
/2. If these inputs are switched, the function and timing of the
outputs may glitch and the PLL may require an additional t
LOCK
time before all data sheet limits are achieved.
5. PI6C39911 should be tested one output at a time, output shorted for less than one second, less than 10% duty cycle.
Room temperature only.
6. Applies to REF and FB inputs only. Tested initially and after any design or process changes that may affect these parameters.
7. Test measurement levels for the PI6C39911 are 1.5V to 1.5V. Test conditions assume signal transition times of 2ns or less and output
loading as shown in the AC Test Loads and Waveforms unless otherwise specified.
8. Guaranteed by statistical correlation.
r
e
t
e
m
a
r
a
P
n
o
i
t
p
i
r
c
s
e
D
s
n
o
i
t
i
d
n
o
C
t
s
e
T
.
x
a
M
s
t
i
n
U
C
N
I
e
c
n
a
ti
c
a
p
a
C
t
u
p
n
I
T
A
V
,
z
H
M
1
=
f
,
C
5
2
=
C
C
V
3
.
3
=
0
1
F
p
Capacitance
(6)
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
5
PS8497E 09/13/02
r
e
t
e
m
a
r
a
P
n
o
i
t
p
i
r
c
s
e
D
2
-
1
1
9
9
3
C
6
I
P
5
-
1
1
9
9
3
C
6
I
P
1
1
9
9
3
C
6
I
P
-
t
i
n
U
s
.
n
i
M
.
p
y
T
.
x
a
M
.
n
i
M
.
p
y
T
.
x
a
M
.
n
i
M
.
p
y
T
.
x
a
M
f
M
O
N
)
2
,
1
(
g
n
it
a
r
e
p
O
k
c
o
l
C
y
c
n
e
u
q
e
r
F
z
H
M
n
i
W
O
L
=
S
F
)
2
,
1
(
5
.
2
1
0
3
5
.
2
1
0
3
5
.
2
1
0
3
z
H
M
D
I
M
=
S
F
)
2
,
1
(
5
2
0
5
5
2
0
5
5
2
0
5
H
G
I
H
=
S
F
)
2
,
1
(
0
4
3
3
1
0
4
3
3
1
0
4
3
3
1
t
H
W
P
R
H
G
I
H
h
t
d
i
W
e
s
l
u
P
F
E
R
0
.
3
0
.
3
0
.
3
s
n
t
L
W
P
R
W
O
L
h
t
d
i
W
e
s
l
u
P
F
E
R
0
.
3
0
.
3
0
.
3
t
U
ti
n
U
w
e
k
S
e
l
b
a
m
m
a
r
g
o
r
P
1
e
l
b
a
T
e
e
S
1
e
l
b
a
T
e
e
S
1
e
l
b
a
T
e
e
S
t
R
P
W
E
K
S
d
e
h
c
t
a
M
t
u
p
t
u
O
o
r
e
Z
)
1
Q
X
,
0
Q
X
(
w
e
k
S
ri
a
P
-
)
0
1
,
9
(
1
.
0
5
2
.
0
1
.
0
5
2
.
0
1
.
0
5
2
.
0
s
n
t
0
W
E
K
S
)
s
t
u
p
t
u
O
ll
A
(
w
e
k
S
t
u
p
t
u
O
o
r
e
Z
)
1
1
,
9
(
0
2
.
0
5
2
.
0
5
2
.
0
5
.
0
3
.
0
5
7
.
0
t
1
W
E
K
S
,l
l
a
F
-l
l
a
F
,
e
s
i
R
-
e
s
i
R
(
w
e
k
S
t
u
p
t
u
O
)
s
t
u
p
t
u
O
s
s
a
l
C
e
m
a
S
)
3
1
,
9
(
4
.
0
5
.
0
6
.
0
7
.
0
6
.
0
0
.
1
t
2
W
E
K
S
,
d
e
t
r
e
v
n
I
-l
a
n
i
m
o
N
,l
l
a
F
-
e
s
i
R
(
w
e
k
S
t
u
p
t
u
O
)
d
e
d
i
v
i
D
-
d
e
d
i
v
i
D
)
3
1
,
9
(
6
.
0
8
.
0
5
.
0
0
.
1
0
.
1
5
.
1
t
3
W
E
K
S
,l
l
a
F
-l
l
a
F
,
e
s
i
R
-
e
s
i
R
(
w
e
k
S
t
u
p
t
u
O
)
s
t
u
p
t
u
O
s
s
a
l
C
t
n
e
r
e
f
fi
D
)
3
1
,
9
(
4
.
0
5
.
0
5
.
0
7
.
0
7
.
0
2
.
1
t
4
W
E
K
S
,
d
e
d
i
v
i
D
-l
a
n
i
m
o
N
,l
l
a
F
-
e
s
i
R
(
w
e
k
S
t
u
p
t
u
O
)
d
e
t
r
e
v
n
I
-
d
e
d
i
v
i
D
)
3
1
,
9
(
5
.
0
8
.
0
5
.
0
0
.
1
2
.
1
7
.
1
t
V
E
D
w
e
k
S
e
c
i
v
e
D
-
o
t
-
e
c
i
v
e
D
)
4
1
,
8
(
0
.
1
5
2
.
1
5
6
.
1
t
D
P
e
s
i
R
B
F
o
t
e
s
i
R
F
E
R
,
y
a
l
e
D
n
o
it
a
g
a
p
o
r
P
3
.
0
0
.
0
3
.
0
+
5
.
0
0
.
0
5
.
0
+
7
.
0
0
.
0
7
.
0
+
t
V
C
D
O
n
o
it
a
i
r
a
V
e
l
c
y
C
y
t
u
D
t
u
p
t
u
O
)
5
1
(
0
.
1
0
.
0
0
.
1
+
0
.
1
0
.
0
0
.
1
+
2
.
1
0
.
0
2
.
1
+
t
H
W
P
%
0
5
m
o
r
f
n
o
it
a
i
v
e
D
e
m
i
T
H
G
I
H
t
u
p
t
u
O
)
6
1
(
5
.
2
5
.
2
0
.
3
t
L
W
P
%
0
5
m
o
r
f
n
o
it
a
i
v
e
D
e
m
i
T
W
O
L
t
u
p
t
u
O
)
6
1
(
0
.
3
0
.
3
5
.
3
t
E
S
I
R
O
e
m
i
T
e
s
i
R
t
u
p
t
u
O
)
7
1
,
6
1
(
5
1
.
0
0
.
1
5
.
1
5
1
.
0
0
.
1
5
.
1
5
1
.
0
0
.
1
5
.
1
t
L
L
A
F
O
e
m
i
T
ll
a
F
t
u
p
t
u
O
)
7
1
,
6
1
(
5
1
.
0
0
.
1
5
.
1
5
1
.
0
0
.
1
5
.
1
5
1
.
0
0
.
1
5
.
1
t
K
C
O
L
e
m
i
T
k
c
o
L
L
L
P
)
8
1
(
5
.
0
5
.
0
5
.
0
s
m
t
R
J
e
l
c
y
c
-
o
t
-
e
l
c
y
C
r
e
tt
i
J
t
u
p
t
u
O
S
M
R
)
8
(
5
2
5
2
5
2
s
p
k
a
e
p
-
o
t
-
k
a
e
P
)
8
(
0
0
2
0
0
2
0
0
2
Switching Characteristics
(Over the Operating Range)
(2,7)
Notes:
9.
SKEW is defined as the time between the earliest and the latest output transition among all outputs for which the same t
U
delay has been
selected when all are loaded with 30pF and terminated with 50 ohms to V
CC
/2.
10. t
SKEWPR
is defined as the skew between a pair of outputs (XQ0 and XQ1) when all eight outputs are selected for 0t
U
.
11. t
SKEW0
is defined as the skew between outputs when they are selected for 0t
U
. Other outputs are divided or inverted but not shifted.
12. C
L
= 0pF. For C
L
= 30pF, t
SKEW0
= 0.35ns.
13. There are three classes of outputs: Nominal (multiple of t
U
delay), Inverted (4Q0 and 4Q1 only with 4F0 = 4F1 = HIGH), and Divided (3Qx
and 4Qx only in Divide-by-2 or Divide-by-4 mode).
14. t
DEV
is the output-to-output skew between any two devices operating under the same conditions (V
CC
ambient temperature, air flow, etc.)
15. t
ODCV
is the deviation of the output from a 50% duty cycle. Output pulse width variations are included in t
SKEW2
and t
SKEW4
specifications.
16. Specified with outputs loaded with 30pF for the PI6C39911 devices. Devices are terminated through 50 Ohm to V
CC
/2. t
PWH
is measured
at 2.0V. t
PWL
is measured at 0.8V.
17. t
ORISE
and t
OFALL
measured between 0.8V and 2.0V.
18. t
LOCK
is the time that is required before synchronization is achieved. This specification is valid only after V
CC
is stable and within normal
operating limits. This parameter is measured from the application of a new signal or frequency at REF or FB until t
PD
is within specified limits.
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
6
PS8497E 09/13/02
t
REF
t
RPWH
t
ODCV
t
SKEWPR
t
SKEW0, 1
t
SKEW3,4
t
SKEW3,4
t
SKEW3,4
t
SKEW2,4
t
SKEW1,3,4
t
SKEWPR
t
SKEW0, 1
t
PD
t
ODCV
t
RPWL
t
JR
REF
FB
Q
Other Q
Inverted Q
REF Divided by 2
REF Divided by 4
t
SKEW2
t
SKEW2
AC Timing Diagrams
AC Test Loads and Waveforms
VCC
1ns
1ns
3.0V
2.0V
Vth =1.5V
0.8V
0V
R1
R1=100
R2=100
C
L
=30pF (Includes fixture and probe capacitance)
R2
CL
TTL Input Test Waveform
TTL AC Test Load
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
7
PS8497E 09/13/02
Operational Mode Descriptions
Figure 2. Zero-Skew and/or Zero-Delay Clock Driver
Figure 2 shows the SUPERCLOCK configured as a zero-skew clock
buffer. In this mode the PI6C39911 can be used as the basis for a low-
skew clock distribution tree. When all of the function select inputs
(xF0, xF1) are left open, the outputs are aligned and may each drive
a terminated transmission line to an independent load. The FB input
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
TEST
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
System Clock
REF
LOAD
LOAD
LOAD
LOAD
L1
L2
L3
L4
Z
0
Z
0
Z
0
Z
0
LENGTH: L1 = L2 = L3 = L4
PI6C39911
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
TEST
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
System Clock
REF
LOAD
LOAD
LOAD
LOAD
L1
L2
L3
L4
Z
0
Z
0
Z
0
Z
0
LENGTH: L1 = L2, L3 < L2 by 6", L4 > L2 by 6"
PI6C39911
Figure 3. Programmable Skew Clock Driver
can be tied to any output in this configuration and the operating
frequency range is selected with the FS pin. The low-skew specifi-
cation, coupled with the ability to drive terminated transmission lines
(with impedances as low as 50 ohms), allows efficient printed circuit
board design.
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
8
PS8497E 09/13/02
Figure 3 shows a configuration to equalize skew between metal
traces of different lengths. In addition to low skew between outputs,
the SuperClock can be programmed to stagger the timing of its
outputs. The four groups of output pairs can each be programmed
to different output timing. Skew timing can be adjusted over a wide
range in small increments with the appropriate strapping of the
function select pins. In this configuration the 4Q0 output is fed back
to FB and configured for zero skew.
The other three pairs of outputs are programmed to yield different
skews relative to the feedback. By advancing the clock signal on the
longer traces or retarding the clock signal on shorter traces, all loads
can receive the clock pulse at the same time.
In this illustration the FB input is connected to an output with 0ns
skew (xF1, xF0 = MID) selected. The internal PLL synchronizes the
FB and REF inputs and aligns their rising edges to insure that all
outputs have precise phase alignment.
Clock skews can be advanced by 6 time units (t
U
) when using an
output selected for zero skew as the feedback. A wider range of
delays is possible if the output connected to FB is also skewed. Since
"Zero Skew", +t
U
, and t
U
are defined relative to output groups, and
since the PLL aligns the rising edges of REF and FB, it is possible to
create wider output skews by proper selection of the xFn inputs. For
example a +10 t
U
between REF and 3Qx can be achieved by connect-
ing 1Q0 to FB and setting 1F0 = 1F1 = GND, 3F0 = MID, and 3F1 =
High. (Since FB aligns at 4 t
U
and 3Qx skews to +6 t
U
, a total of +10
t
U
skew is realized). Many other configurations can be realized by
skewing both the output used as the FB input and skewing the other
outputs.
Figure 4. Inverted Output Connections
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
TEST
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
REF
PI6C39911
Figure 4 shows an example of the invert function of the SuperClock.
In this example the 4Q0 output used as the FB input is programmed
for invert (4F0 = 4F1 = HIGH) while the other three pairs of outputs
are programmed for zero skew. When 4F0 and 4F1 are tied HIGH, 4Q0
and 4Q1 become inverted zero phase outputs. The PLL aligns the
rising edge of the FB input with the rising edge of the REF. This
causes the 1Q, 2Q, and 3Q outputs to become the "inverted" outputs
with respect to the REF input. By selecting which output is connect
to FB, it is possible to have 2 inverted and 6 non-inverted outputs
or 6 inverted and 2 non-inverted outputs. The correct configuration
would be determined by the need for more (or fewer) inverted
outputs. 1Q, 2Q, and 3Q outputs can also be skewed to compensate
for varying trace delays independent of inver-sion on 4Q.
Figure 5. Frequency Multiplier with Skew Connections
Figure 5 illustrates the SuperClock configured as a clock multiplier.
The 3Q0 output is programmed to divide by four and is fed back to
FB. This causes the PLL to increase its frequency until the 3Q0 and
3Q1 outputs are locked at 20 MHz while the 1Qx and 2Qx outputs run
at 80 MHz. The 4Q0 and 4Q1 outputs are programmed to divide by
two, which results in a 40 MHz waveform at these outputs. Note that
the rising edges of 4Qx and 3Qx outputs are aligned. The 2Q0, 2Q1,
1Q0, and 1Q1 outputs run at 80 MHz and are skewed by programming
their select inputs accordingly. Note that the FS pin is wired for 80
MHz operation because that is the frequency of the fastest output.
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
TEST
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
REF
20 MHz
40 MHz
4Qx
20 MHz
80 MHz
PI6C39911
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
9
PS8497E 09/13/02
Figure 6. Frequency Divider Connections
Figure 6 demonstrates the SuperClock in a clock divider application.
2Q0 is fed back to the FB input and programmed for zero skew.
3Qx is programmed to divide by four. 4Qx is programmed to divide
by two. Note that the rising edges of the 4Qx and 3Qx outputs are
aligned. The 1Qx outputs are programmed to zero skew and are
aligned with the 2Qx outputs. In this example, the FS input is
grounded to configure the device in the 15 to 30 MHz range since the
highest frequency output is running at 20 MHz.
Figure 7 shows some of the functions that are selectable on the 3Qx
and 4Qx outputs. These include inverted outputs and outputs that
offer divide-by-2 and divide-by-4 timing. An inverted output allows
the system designer to clock different sub-systems on opposite
edges, without suffering from the pulse asymmetry typical of non-
ideal loading. This function allows the two subsystems to each be
clocked 180 degrees out of phase, but still to be aligned within the
skew specification.
The divided outputs offer a zero-delay divider for portions of the
system that need the clock to be divided by either two or four, and
still remain within a narrow skew of the "1X" clock. Without this
feature, an external divider would need to be add-ed, and the
propagation delay of the divider would add to the skew between the
different clock signals.
These divided outputs, coupled with the Phase Locked Loop, allow
the SuperClock to multiply the clock rate at the REF input by either
two or four. This mode will enable the designer to distribute a low-
frequency clock between various portions of the system, and then
locally multiply the clock rate to a more suitable frequency, while still
maintaining the low-skew characteristics of the clock driver. The
SuperClock can perform all of the functions described above at the
same time. It can multiply by two and four or divide by two (and four)
at the same time that it is shifting its outputs over a wide range or
maintaining zero skew between selected outputs.
Figure 7. Multi-Function Clock Driver
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
TEST
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
27.5 MHz
Distribution
Clock
REF
LOAD
LOAD
LOAD
LOAD
Z
0
Z
0
Z
0
Z
0
110 MHz
Inverted
27.5 MHz
110 MHz
Zero Skew
110 MHz Skewed
2.273ns (4t
U
)
PI6C39911
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
TEST
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
REF
20 MHz
10 MHz
5 MHz
20 MHz
PI6C39911
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
1 0
PS8497E 09/13/02
Figure 8. Board-to-Board Clock Distribution
Figure 8 shows the PI6C39911 connected in series to construct a zero
skew clock distribution tree between boards. Delays of the down
stream clock buffers can be programmed to compensate for the wire
length (i.e., select negative skew equal to the wire delay) necessary
to connect them to the master clock source, approximating a zero-
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
TEST
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
System
Clock
REF
LOAD
Z
0
FB
REF
FS
4F0
4F1
3F0
3F1
2F0
2F1
1F0
1F1
TEST
4Q0
4Q1
3Q0
3Q1
2Q0
2Q1
1Q0
1Q1
LOAD
Z
0
LOAD
LOAD
LOAD
Z
0
Z
0
L1
L2
L3
L4
PI6C39911
delay clock tree. Cascaded clock buffers will accumulate low
frequency jitter because of the non-ideal filtering characteristics of
the PLL filter. It is recommended that not more than two clock buffers
be connected in series.
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
PI6C39911
3.3V High Speed LVTTL or Balanced Output
Programmable Skew Clock Buffer - SuperClock
1 1
PS8497E 09/13/02
Pericom Semiconductor Corporation
2380 Bering Drive San Jose, CA 95131 1-800-435-2336 Fax (408) 435-1100 http://www.pericom.com
Packaging Mechanical: 32-Pin PLCC (J32)
)
s
p
(
y
c
a
r
u
c
c
A
e
d
o
C
g
n
i
r
e
d
r
O
e
g
a
k
c
a
P
e
m
a
N
e
p
y
T
e
g
a
k
c
a
P
e
g
n
a
R
g
n
i
t
a
r
e
p
O
n
i
(
A
J
a
t
e
h
T
)
r
i
a
ll
i
t
s
s
e
e
r
g
e
d
(
)
t
t
a
W
/
C
C
J
a
t
e
h
T
)
t
t
a
W
/
C
s
e
e
r
g
e
d
(
0
5
2
J
2
-
1
1
9
9
3
C
6
I
P
2
3
J
c
it
s
a
l
P
n
i
P
-
2
3
p
i
h
C
d
e
d
a
e
L
r
e
i
r
r
a
C
l
a
i
c
r
e
m
m
o
C
2
5
3
2
0
0
5
J
5
-
1
1
9
9
3
C
6
I
P
0
5
7
J
1
1
9
9
3
C
6
I
P
Ordering Information