ChipFind - документация

Электронный компонент: SAA7111AH/03

Скачать:  PDF   ZIP

Document Outline

DATA SHEET
Product specification
Supersedes data of 1997 May 26
File under Integrated Circuits, IC22
1998 May 15
INTEGRATED CIRCUITS
SAA7111A
Enhanced Video Input Processor
(EVIP)
1998 May 15
2
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
CONTENTS
1
FEATURES
2
APPLICATIONS
3
GENERAL DESCRIPTION
4
QUICK REFERENCE DATA
5
ORDERING INFORMATION
6
BLOCK DIAGRAM
7
PINNING
8
FUNCTIONAL DESCRIPTION
8.1
Analog input processing
8.2
Analog control circuits
8.2.1
Clamping
8.2.2
Gain control
8.3
Chrominance processing
8.4
Luminance processing
8.5
RGB matrix
8.6
VBI-data bypass
8.7
VPO-bus (digital outputs)
8.8
Reference signals HREF, VREF and CREF
8.9
Synchronization
8.10
Clock generation circuit
8.11
Power-on reset and CE input
8.12
RTCO output
8.13
The Line-21 text slicer
8.13.1
Suggestions for I2C-bus interface of the display
software reading line-21 data
9
BOUNDARY-SCAN TEST
9.1
Initialization of boundary-scan circuit
9.2
Device identification codes
10
GAIN CHARTS
11
LIMITING VALUES
12
CHARACTERISTICS
13
TIMING DIAGRAMS
14
CLOCK SYSTEM
14.1
Clock generation circuit
14.2
Power-on control
15
OUTPUT FORMATS
16
APPLICATION INFORMATION
16.1
Layout hints
17
I
2
C-BUS DESCRIPTION
17.1
I
2
C-bus format
17.2
I
2
C-bus detail
17.2.1
Subaddress 00
17.2.2
Subaddress 02
17.2.3
Subaddress 03
17.2.4
Subaddress 04
17.2.5
Subaddress 05
17.2.6
Subaddress 06
17.2.7
Subaddress 07
17.2.8
Subaddress 08
17.2.9
Subaddress 09
17.2.10
Subaddress 0A
17.2.11
Subaddress 0B
17.2.12
Subaddress 0C
17.2.13
Subaddress 0D
17.2.14
Subaddress 0E
17.2.15
Subaddress 10
17.2.16
Subaddress 11
17.2.17
Subaddress 12
17.2.18
Subaddress 13
17.2.19
Subaddress 15
17.2.20
Subaddress 16
17.2.21
Subaddress 17
17.2.22
Subaddress 1A (read-only register)
17.2.23
Subaddress 1B (read-only register)
17.2.24
Subaddress 1C (read-only register)
17.2.25
Subaddress 1F (read-only register)
18
FILTER CURVES
18.1
Anti-alias filter curve
18.2
TUF-block filter curve
18.3
Luminance filter curves
18.4
Chrominance filter curves
19
I
2
C-BUS START SET-UP
20
PACKAGE OUTLINES
21
SOLDERING
21.1
Introduction
21.2
Reflow soldering
21.3
Wave soldering
21.4
Repairing soldered joints
22
DEFINITIONS
23
LIFE SUPPORT APPLICATIONS
24
PURCHASE OF PHILIPS I
2
C COMPONENTS
1998 May 15
3
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
1
FEATURES
Four analog inputs, internal analog source selectors,
e.g. 4
CVBS or 2
Y/C or (1
Y/C and 2
CVBS)
Two analog preprocessing channels
Fully programmable static gain for the main channels or
automatic gain control for the selected CVBS or Y/C
channel
Switchable white peak control
Two built-in analog anti-aliasing filters
Two 8-bit video CMOS analog-to-digital converters
On-chip clock generator
Line-locked system clock frequencies
Digital PLL for horizontal-sync processing and clock
generation
Requires only one crystal (24.576 MHz) for all standards
Horizontal and vertical sync detection
Automatic detection of 50 and 60 Hz field frequency,
and automatic switching between PAL and NTSC
standards
Luminance and chrominance signal processing for
PAL BGHI, PAL N, PAL M, NTSC M, NTSC N,
NTSC 4.43, NTSC-Japan and SECAM
User programmable luminance peaking or aperture
correction
Cross-colour reduction for NTSC by chrominance comb
filtering
PAL delay line for correcting PAL phase errors
Real time status information output (RTCO)
Brightness Contrast Saturation (BCS) control on-chip
The YUV (CCIR-601) bus supports a data rate of:
864
f
H
= 13.5 MHz for 625 line sources
858
f
H
= 13.5 MHz for 525 line sources.
Data output streams for 16, 12 or 8-bit width with the
following formats:
YUV 4 : 1 : 1 (12-bit)
YUV 4 : 2 : 2 (16-bit)
YUV 4 : 2 : 2 (CCIR-656) (8-bit)
RGB (5, 6, and 5) (16-bit) with dither
RGB (8, 8, and 8) (24-bit) with special application.
Odd/even field identification by a non interlace CVBS
input signal
Fix level for RGB output format during horizontal
blanking
720 active samples per line on the YUV bus
One user programmable general purpose switch on an
output pin
Built-in line-21 text slicer
A 27 MHz Vertical Blanking Interval (VBI) data bypass
programmable by I
2
C-bus for INTERCAST applications
Power-on control
Two via I
2
C-bus switchable outputs for the digitized
CVBS or Y/C input signals AD1 (7 to 0) and AD2 (7 to 0)
Chip enable function (reset for the clock generator and
power save mode up from chip version 3)
Compatible with memory-based features (line-locked
clock)
Boundary scan test circuit complies with the
`IEEE Std. 1149.1
-
1990' (ID-Code = 0 F111 02 B)
I
2
C-bus controlled (full read-back ability by an external
controller)
Low power (
<
0.5 W), low voltage (3.3 V), small package
(LQFP64)
5 V tolerant digital I/O ports.
2
APPLICATIONS
Desktop/Notebook (PCMCIA) video
Multimedia
Digital television
Image processing
Video phone
Intercast.
1998 May 15
4
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
3
GENERAL DESCRIPTION
The Enhanced Video Input Processor (EVIP) is a
combination of a two-channel analog preprocessing
circuit including source selection, anti-aliasing filter and
ADC, an automatic clamp and gain control, a Clock
Generation Circuit (CGC), a digital multi-standard
decoder (PAL BGHI, PAL M, PAL N, NTSC M,
NTSC-Japan NTSC N and SECAM), a
brightness/contrast/saturation control circuit, a colour
space matrix (see Fig.1) and a 27 MHz VBI-data bypass.
The pure 3.3 V CMOS circuit SAA7111A, analog
front-end and digital video decoder, is a highly integrated
circuit for desktop video applications. The decoder is
based on the principle of line-locked clock decoding and
is able to decode the colour of PAL, SECAM and NTSC
signals into CCIR-601 compatible colour component
values. The SAA7111A accepts as analog inputs CVBS
or S-video (Y/C) from TV or VTR sources. The circuit is
I
2
C-bus controlled. The SAA7111A then supports several
text features as Line 21 data slicing and a high-speed VBI
data bypass for Intercast.
4
QUICK REFERENCE DATA
5
ORDERING INFORMATION
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
V
DDD
digital supply voltage
3.0
3.3
3.6
V
V
DDA
analog supply voltage
3.1
3.3
3.5
V
T
amb
operating ambient temperature
0
25
70
C
P
A+D
analog and digital power
-
0.5
-
W
TYPE
NUMBER
PACKAGE
NAME
DESCRIPTION
VERSION
SAA7111AHZ
LQFP64
plastic low profile quad flat package; 64 leads; body 10
10
1.4 mm
SOT314-2
SAA7111AH
QFP64
plastic quad flat package; 64 leads (lead length 1.6 mm);
body 14
14
2.7 mm
SOT393-1
1998 May 15
5
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
6
BLOCK DIAGRAM
Fig.1 Block diagram.
handbook, full pagewidth
SDA
XTAL
XTALI
RES
IICSA
TRST
TDI
HS
VS
CLOCK
GENERATION
CIRCUIT
POWER-ON
CONTROL
INTERFACE
I
2
C-BUS
SYNCHRONIZATION
CIRCUIT
LUMINANCE
CIRCUIT
SAA7111A
CHROMINANCE
CIRCUIT
AND
BRIGHTNESS
CONTRAST
SATURATION
CONTROL
VBI DATA BYPASS
UPSAMPLING FILTER
I
2
C-BUS
CONTROL
CLOCKS
Y
31
ANALOG
PROCESSING
AND
ANALOG-TO-
DIGITAL
CONVERSION
AI11
AI12
AI21
AI22
12
10
8
6
AD2
AD1
ANALOG
CONTROL
CON
BYPASS
30
27
17
29
28
60
15
16
24
RTS0
55
54
21
22
20
LLC2
CREF
52
34 to 39
42 to 51
53
FEI
HREF
VPO
(0 : 15)
GPSW
63
62
61
23
V
SSS
n.c.
n.c.
64
10
13
AOUT
14
RTCO
CE
MGG061
RTS1
LLC
V
SSA0
V
DDA0
V
SSD1-5
V
DDD1-5
57,41,33,25,18
56,40,32,26,19
V
SSA1-2
V
DDA1-2
9,5
11,7
Y/CVBS
C/CVBS
TCK
59
4
58
2
3
TMS
TDO
VREF
YUV-to-RGB
CONVERSION
AND
OUTPUT
FORMATTER
UV
Y
PROCESSING
Y
LFCO
TEST
CONTROL
BLOCK
FOR
BOUNDARY
SCAN TEST
AND
SCAN TEST
SCL
1998 May 15
6
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
7
PINNING
SYMBOL
PIN
I/O/P
DESCRIPTION
(L)QFP64
n.c.
1
-
Do not connect.
TDO
2
O
Test data output for boundary scan test; note 1.
TDI
3
I
Test data input for boundary scan test; note 1.
TMS
4
I
Test mode select input for boundary scan test or scan test; note 1.
V
SSA2
5
P
Ground for analog supply voltage channel 2.
AI22
6
I
Analog input 22.
V
DDA2
7
P
Positive supply voltage for analog channel 2 (+3.3 V).
AI21
8
I
Analog input 21.
V
SSA1
9
P
Ground for analog supply voltage channel 1.
AI12
10
I
Analog input 12.
V
DDA1
11
P
Positive supply voltage for analog channel 1 (+3.3 V).
AI11
12
I
Analog input 11.
V
SSS
13
P
Substrate ground connection.
AOUT
14
O
Analog test output; for testing the analog input channels.
V
DDA0
15
P
Positive supply voltage for internal Clock Generator Circuit (CGC) (+3.3 V).
V
SSA0
16
P
Ground for internal CGC.
VREF
17
O
Vertical reference output signal (I
2
C-bit COMPO = 0) or inverse composite blanking
signal (I
2
C-bit COMPO = 1) (enabled via I
2
C-bus bit OEHV).
V
DDD5
18
P
Digital supply voltage 5 (+3.3 V).
V
SSD5
19
P
Ground for digital supply voltage 5.
LLC
20
O
Line-locked system clock output (27 MHz).
LLC2
21
O
Line-locked clock
1
/
2
output (13.5 MHz).
CREF
22
O
Clock reference output: this is a clock qualifier signal distributed by the internal CGC
for a data rate of LLC2. Using CREF all interfaces on the VPO bus are able to
generate a bus timing with identical phase. If CCIR 656 format is selected
(OFTS0 = 1 and OFTS1 = 1) an inverse composite blanking signal (pixel qualifier) is
provided on this pin.
RES
23
O
Reset output (active LOW); sets the device into a defined state. All data outputs are
in high impedance state. The I
2
C-bus is reset (waiting for start condition).
CE
24
I
Chip enable; connection to ground forces a reset, up from version 3 power save
function additionally available.
V
DDD4
25
P
Digital supply voltage input 4 (+3.3 V).
V
SSD4
26
P
Ground for digital supply voltage input 4.
HS
27
O
Horizontal sync output signal (programmable); the positions of the positive and
negative slopes are programmable in 8 LLC increments over a complete line
(equals 64
s) via I
2
C-bus bytes HSB and HSS. Fine position adjustment in 2 LLC
increments can be performed via I
2
C-bus bits HDEL1 and HDEL0.
RTS1
28
O
Two functions output; controlled by I
2
C-bus bit RTSE1.
RTSE1 = 0: PAL line identifier (LOW = PAL line); indicates the inverted and
non-inverted R
-
Y component for PAL signals. RTSE1 = 1: H-PLL locked indicator;
a high state indicates that the internal horizontal PLL has locked.
1998 May 15
7
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
RTS0
29
O
Two functions output; controlled by I
2
C-bus bit RTSE0.
RTSE0 = 0: odd/even field identification (HIGH = odd field). RTSE0 = 1: vertical
locked indicator; a HIGH state indicates that the internal Vertical Noise Limiter (VNL)
has locked.
VS
30
O
Vertical sync signal (enabled via I
2
C-bus bit OEHV); this signal indicates the vertical
sync with respect to the YUV output. The HIGH period of this signal is approximately
six lines if the VNL function is active. The positive slope contains the phase
information for a deflection controller.
HREF
31
O
Horizontal reference output signal (enabled via I
2
C-bus bit OEHV); this signal is used
to indicate data on the digital YUV bus. The positive slope marks the beginning of a
new active line. The HIGH period of HREF is 720 Y samples long. HREF can be used
to synchronize data multiplexer/demultiplexer. HREF is also present during the
vertical blanking interval.
V
SSD3
32
P
Ground for digital supply voltage input 3.
V
DDD3
33
P
Digital supply voltage 3 (+3.3 V).
VPO
(15 to 10)
34 to 39
O
Digital VPO-bus (Video Port Out) signal; higher bits of the 16-bit VPO-bus or the
16-bit RGB-bus output signal. The output data rate, the format and multiplexing
scheme of the VPO-bus are controlled via I
2
C-bus bits OFTS0 and OFTS1. If I
2
C-bus
bit VIPB = 1 the six MSBs of the digitized input signal are connected to these outputs,
configured by the I
2
C-bus `MODE' bits (see Figs 33 to 40):
LUMA
VPO15 to VPO8, CHROMA
VPO7 to VPO0.
V
SSD2
40
P
Ground for digital supply voltage input 2.
V
DDD2
41
P
Digital supply voltage 2 (+3.3 V).
VPO
(9 to 0)
42 to 51
O
Digital VPO-bus output signal; lower bits of the 16-bit YUV-bus or the 16-bit RGB-bus
output signal. The output data rate, the format and multiplexing schema of the
VPO-bus are controlled via I
2
C-bus bits OFTS0 and OFTS1. If I
2
C-bus bit VIPB = 1
the digitized input signal are connected to these outputs, configured by the I
2
C-bus
`MODE' bits (see Figs 33 to 40): LUMA
VPO15 to VPO8,
CHROMA
VPO7 to VPO0.
FEI
52
I
Fast enable input signal (active LOW); this signal is used to control fast switching on
the digital YUV-bus. A HIGH at this input forces the IC to set its Y and UV outputs to
the high impedance state.
GPSW
53
O
General purpose switch output; the state of this signal is set via I
2
C-bus control and
the levels are TTL compatible.
XTAL
54
O
Second terminal of crystal oscillator; not connected if external clock signal is used.
XTALI
55
I
Input terminal for 24.576 MHz crystal oscillator or connection of external oscillator
with CMOS compatible square wave clock signal.
V
SSD1
56
P
Ground for digital supply voltage input 1.
V
DDD1
57
P
Digital supply voltage input 1 (+3.3 V).
TRST
58
I
Test reset input not (active LOW), for boundary scan test; notes 1, 2 and 3.
TCK
59
I
Test clock for boundary scan test; note 1.
RTCO
60
O
Real time control output: contains information about actual system clock frequency,
subcarrier frequency and phase and PAL sequence.
SYMBOL
PIN
I/O/P
DESCRIPTION
(L)QFP64
1998 May 15
8
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Notes
1. In accordance with the `
IEEE1149.1' standard the pads TCK, TDI, TMS and TRST are input pads with an internal
pull-up transistor and TDO a 3-state output pad.
2. This pin provides easy initialization of BST circuit. TRST can be used to force the TAP (Test Access Port) controller
to the Test-Logic-Reset state (normal operation) at once.
3. For board design without boundary scan implementation (pin compatibility with the SAA7110) connect the TRST pin
to ground.
IICSA
61
I
I
2
C-bus slave address select;
0 = 48H for write, 49H for read
1 = 4AH for write, 4BH for read.
SDA
62
I/O
Serial data input/output (I
2
C-bus).
SCL
63
I/O
Serial clock input/output (I
2
C-bus).
n.c.
64
-
Not connect.
SYMBOL
PIN
I/O/P
DESCRIPTION
(L)QFP64
1998 May 15
9
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.2 Pin configuration (LQFP64/QFP64).
handbook, full pagewidth
SAA7111A
MGG060
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
TCK
IICSA
SDA
RTCO
n.c.
TDO
TDI
TMS
VSSA2
n.c.
AI22
VDDA2
VPO15
VPO14
VPO13
VPO12
VPO11
VPO10
VPO9
VPO8
VPO7
VPO6
VPO5
VPO4
VPO3
VPO2
VPO1
VPO0
FEI
GPSW
XTAL
XTALI
V
SSD1
V
DDD1
VDDD3
VDDD2
VSSD2
AI21
AI11
AOUT
VSSA1
VSSA0
V
SSD5
LLC
LLC2
CREF
CE
HS
RTS1
RTS0
VS
HREF
V
SSD3
V
SSD4
V
DDD4
VREF
VSSS
VDDA1
VDDA0
V
DDD5
AI12
SCL
TRST
RES
1998 May 15
10
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
8
FUNCTIONAL DESCRIPTION
8.1
Analog input processing
The SAA7111A offers four analog signal inputs, two
analog main channels with source switch, clamp circuit,
analog amplifier, anti-alias filter and video CMOS ADC
(see Fig.5).
8.2
Analog control circuits
The anti-alias filters are adapted to the line-locked clock
frequency via a filter control circuit. During the vertical
blanking time, gain and clamping control are frozen.
8.2.1
C
LAMPING
The clamp control circuit controls the correct clamping of
the analog input signals. The coupling capacitor is also
used to store and filter the clamping voltage. An internal
digital clamp comparator generates the information with
respect to clamp-up or clamp-down. The clamping levels
for the two ADC channels are fixed for luminance (60) and
chrominance (128). Clamping time in normal use is set
with the HCL pulse at the back porch of the video signal.
8.2.2
G
AIN CONTROL
Signal (white) peak control limits the gain at signal
overshoots. The flow charts (see Figs 13 and 14) show
more details of the AGC. The influence of supply voltage
variation within the specified range is automatically
eliminated by clamp and automatic gain control.
The gain control circuit receives (via the I
2
C-bus) the static
gain levels for the two analog amplifiers or controls one of
these amplifiers automatically via a built-in automatic gain
control (AGC) as part of the Analog Input Control (AICO).
Fig.3
Analog line with clamp (HCL) and gain
range (HSY).
handbook, halfpage
HCL
MGL065
HSY
analog line blanking
TV line
1
60
255
GAIN
CLAMP
The AGC (automatic gain control for luminance) is used to
amplify a CVBS or Y signal to the required signal
amplitude, matched to the ADCs input voltage range.
The AGC active time is the sync bottom of the video signal.
8.3
Chrominance processing
The 8-bit chrominance signal is fed to the multiplication
inputs of a quadrature demodulator, where two subcarrier
signals from the local oscillator DTO1 are applied
(0 and 90
phase relationship to the demodulator axis).
The frequency is dependent on the present colour
standard. The output signals of the multipliers are
low-pass filtered (four programmable characteristics) to
achieve the desired bandwidth for the colour difference
signals (PAL and NTSC) or the 0 and 90
FM-signals
(SECAM).
The colour difference signals are fed to the
Brightness/Contrast/Saturation block (BCS), which
includes the following five functions:
AGC (Automatic Gain Control for chrominance
PAL and NTSC)
Chrominance amplitude matching (different gain factors
for R
-
Y and B
-
Y to achieve CCIR-601 levels
Cr and Cb for all standards)
Chrominance saturation control
Luminance contrast and brightness
Limiting YUV to the values 1 (min.) and 254 (max.) to
fulfil CCIR-601 requirements.
Fig.4 Automatic gain range.
handbook, halfpage
analog input level
controlled
ADC input level
maximum
minimum
range tbf
0 dB
0 dB
MGG063
+
4.5 dB
-
7.5 dB
(1 V(p-p) 27/47
)
1998 May 15
11
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
The SECAM-processing contains the following blocks:
Baseband `bell' filters to reconstruct the amplitude and
phase equalized 0 and 90
FM-signals
Phase demodulator and differentiator
(FM-demodulation)
De-emphasis filter to compensate the pre-emphasised
input signal, including frequency offset compensation
(DB or DR white carrier values are subtracted from the
signal, controlled by the SECAM-switch signal).
The burst processing block provides the feedback loop of
the chroma PLL and contains;
Burst gate accumulator
Colour identification and killer
Comparison nominal/actual burst amplitude (PAL/NTSC
standards only)
Loop filter chrominance gain control (PAL/NTSC
standards only)
Loop filter chrominance PLL (only active for PAL/NTSC
standards)
PAL/SECAM sequence detection, H/2-switch
generation
Increment generation for DTO1 with divider to generate
stable subcarrier for non-standard signals.
The chrominance comb filter block eliminates crosstalk
between the chrominance channels in accordance with the
PAL standard requirements. For NTSC colour standards
the chrominance comb filter can be used to eliminate
crosstalk from luminance to chrominance (cross-colour)
for vertical structures. The comb filter can be switched off
if desired. The embedded line delay is also used for
SECAM recombination (cross-over switches).
The resulting signals are fed to the variable Y-delay
compensation, RGB matrix, dithering circuit and output
interface, which contains the VPO output formatter and the
output control logic (see Fig.6).
8.4
Luminance processing
The 8-bit luminance signal, a digital CVBS format or a
luminance format (S-VHS, HI8), is fed through a
switchable prefilter. High frequency components are
emphasized to compensate for loss. The following
chrominance trap filter (f
0
= 4.43 or 3.58 MHz centre
frequency selectable) eliminates most of the colour carrier
signal, therefore, it must be bypassed for S-video
(S-VHS and HI8) signals.
The high frequency components of the luminance signal
can be peaked (control for sharpness improvement via
I
2
C-bus) in two band-pass filters with selectable transfer
characteristic. This signal is then added to the original
(unpeaked) signal. A switchable amplifier achieves
common DC amplification, because the DC gains are
different in both chrominance trap modes. The improved
luminance signal is fed to the BCS control located in the
chrominance processing block (see Fig.7).
8.5
RGB matrix
Y, Cr and Cb data are converted after interpolation into
RGB data in accordance with CCIR-601
recommendations. The realized matrix equations consider
the digital quantization:
R = Y + 1.371 Cr
G = Y
-
0.336 Cb
-
0.698 Cr
B = Y + 1.732 Cb.
After dithering (noise shaping) the RGB data is fed to the
output interface within the VPO-bus output formatter.
8.6
VBI-data bypass
For a 27 MHz VBI-data bypass the offset binary CVBS
signal is upsampled behind the ADCs. Upsampling of the
CVBS signal from 13.5 to 27 MHz is possible, because the
ADCs deliver high performance at 13.5 MHz sample clock.
Suppressing of the back folded CVBS frequency
components after upsampling is achieved by an
interpolation filter (see Fig.42).
The TUF block on the digital top level performs the
upsampling and interpolation for the bypassed CVBS
signal (see Fig.6).
For bypass details see Figs 8 to 10.
8.7
VPO-bus (digital outputs)
The 16-bit VPO-bus transfers digital data from the output
interfaces to a feature box or a field memory, a digital
colour space converter (SAA7192 DCSC), a video
enhancement and digital-to-analog processor
(SAA7165 VEDA2) or a colour graphics board
(Targa-format) as a graphical user interface.
1998 May 15
12
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
The output data formats are controlled via the I
2
C-bus bits
OFTS0, OFTS1 and RGB888. Timing for the data stream
formats, YUV (4 : 1 : 1) (12-bit), YUV (4 : 2 : 2) (16-bit),
RGB (5, 6 and 5) (16-bit) and RGB (8, 8 and 8) (24-bit)
with an LLC2 data rate, is achieved by marking each
second positive rising edge of the clock LLC in conjunction
with CREF (clock reference) (except RGB (8, 8 and 8),
see special application in Fig.32). The higher output
signals VPO15 to VPO8 in the YUV format perform the
digital luminance signal. The lower output signals
VPO7 to VPO0 in the YUV format are the bits of the
multiplexed colour difference signals (B
-
Y) and (R
-
Y).
The arrangement of the RGB (5, 6 and 5) and
RGB (8, 8 and 8) data stream bits on the VPO-bus is given
in Table 6.
The data stream format YUV 4 : 2 : 2 (the 8 higher output
signals VPO15 to VPO8) in LLC data rate fulfils the
CCIR-656 standard with its own timing reference code at
the start and end of each video data block.
A pixel in the format tables is the time required to transfer
a full set of samples. If 16-bit 4 : 2 : 2 format is selected
two luminance samples are transmitted in comparison to
one (B
-
Y) and one (R
-
Y) sample within a pixel.
The time frames are controlled by the HREF signal.
Fast enable is achieved by setting input FEI to LOW.
The signal is used to control fast switching on the digital
VPO-bus. HIGH on this pin forces the VPO outputs to a
high-impedance state (see Figs 18 and 19). The I
2
C-bus
bit OEYC has to be set HIGH to use this function.
The digitized PAL, SECAM or NTSC signals AD1 (7 to 0)
and AD2 (7 to 0) are connected directly to the VPO-bus
via I
2
C-bus bit VIPB = 1 and MODE = 4, 5, 6 or 7.
AD1 (7 to 0)
VPO (15 to 8) and
AD2 (7 to 0)
VPO (7 to 0).
The selection of the analog input channels is controlled via
I
2
C-bus subaddress 02 MODE select.
The upsampled 8-bit offset binary CVBS signal (VBI-data
bypass) is multiplexed under control of the I
2
C-bus to the
digital VPO-bus (see Fig.8).
8.8
Reference signals HREF, VREF and CREF
HREF: The positive slope of the HREF output signal
indicates the beginning of a new active video line.
The high period is 720 luminance samples long and is
also present during the vertical blanking.
The description of timing and position from HREF is
illustrated in Figs 15, 16, 21 and 23.
VREF: The VREF output delivers a vertical reference
signal or an inverse composite blank signal controlled
via the I
2
C-bus [subaddress 11, inverse composite
blank (COMPO)]. Furthermore four different modes of
vertical reference signals are selectable via the I
2
C-bus
[subaddress 13, vertical reference output control
(VCTR1 and VCTR0)]. The description of VREF timing
and position is illustrated in Figs 15, 16, 24 and 25.
CREF: The CREF output delivers a clock/pixel qualifier
signal for external interfaces to synchronize to the
VPO-bus data stream.
Four different modes for the clock qualifier signal are
selectable via the I
2
C-bus [subaddress 13, clock
reference output control (CCTR1 and CCTR0)].
The description of CREF timing and position is
illustrated in Figs 16, 18, 20 and 21.
8.9
Synchronization
The prefiltered luminance signal is fed to the
synchronization stage. Its bandwidth is reduced to 1 MHz
in a low-pass filter. The sync pulses are sliced and fed to
the phase detectors where they are compared with the
sub-divided clock frequency. The resulting output signal is
applied to the loop filter to accumulate all phase
deviations. Internal signals (e. g. HCL and HSY) are
generated in accordance with analog front-end
requirements. The output signals HS, VS, and PLIN are
locked to the timing reference, guaranteed between the
input signal and the HREF signal, as further improvements
to the circuit may change the total processing delay. It is
therefore not recommended to use them for applications
which require absolute timing accuracy on the input
signals. The loop filter signal drives an oscillator to
generate the line frequency control signal LFCO
(see Fig.7).
8.10
Clock generation circuit
The internal CGC generates all clock signals required for
the video input processor. The internal signal LFCO is a
digital-to-analog converted signal provided by the
horizontal PLL. It is the multiple of the line frequency
Internally the LFCO signal is multiplied by a factor of 2 or 4
in the PLL circuit (including phase detector, loop filtering,
VCO and frequency divider) to obtain the LLC and LLC2
output clock signals. The rectangular output clocks have
a 50% duty factor (see Fig.26).
6.75MHz
429
432
----------
f
H
=
1998 May 15
13
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
8.11
Power-on reset and CE input
A missing clock, insufficient digital or analog V
DDA0
supply
voltages (below 2.7 V) will initiate the reset sequence; all
outputs are forced to 3-state. The indicator output RES is
LOW for approximately 128LLC after the internal reset and
can be applied to reset other circuits of the digital TV
system.
It is possible to force a reset by pulling the chip enable
(CE) to ground. After the rising edge of CE and sufficient
power supply voltage, the outputs LLC, LLC2, CREF,
RTCO, RTS0, RTS1, GPSW and SDA return from 3-state
to active, while HREF, VREF, HS and VS remain in 3-state
and have to be activated via I
2
C-bus programming
(see Table 5).
8.12
RTCO output
The real time control and status output signal contains
serial information about the actual system clock
(increment of the HPLL), subcarrier frequency [increment
and phase (via reset) of the FSC-PLL] and PAL sequence
bit. The signal can be used for various applications in
external circuits, e.g. in a digital encoder to achieve clean
encoding (see Fig.20).
8.13
The Line-21 text slicer
The text slicer block detects and acquires Line-21 Closed
Captioning data from a 525-line CVBS signal. Extended
data services on Line-21 Field 2 are also supported.
If valid data is detected the two data bytes are stored in two
I
2
C-bus registers. A parity check is also performed and the
result is stored in the MSB of the corresponding byte.
A third I
2
C-bus register is provided for data valid and data
ready flags. The two bits F1VAL and F2VAL indicate that
the input signal carries valid Closed Captioning data in the
corresponding fields. The data ready bits F1RDY and
F2RDY have to be evaluated if asynchronous I
2
C-bus
reading is used.
8.13.1
S
UGGESTIONS FOR
I
2
C-
BUS INTERFACE OF THE
DISPLAY SOFTWARE READING LINE
-21
DATA
There are two methods by which the software can acquire
the data:
1. Synchronous reading once per frame (or once per
field); It can use either the rising edge (Line-21 Field 1)
or both edges (Line-21 Field 1 or 2) of the ODD signal
(pin RTSO) to initiate an I
2
C-bus read transfer of the
three registers 1A, 1B and 1C.
2. Asynchronous reading; It can poll either the F1RDY bit
(Line-21 Field 1) or both F1RDY/F2RDY bits (Line-21
Field 1 or 2). After valid data has been read the
corresponding F*RDY bit is set to LOW until new data
has arrived. The polling frequency has to be slightly
higher than the frame or field frequency, respectively.
1998
May
15
14
Philips Semiconductors
Product specification
Enhanced V
ideo Input Processor (EVIP)
SAA71
1
1
A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
handbook, full pagewidth
AI22
AI21
FUSE (1 : 0)
AI12
AI11
FUSE (1 : 0)
AOSL (1 : 0)
HOLDG
ANALOG
CONTROL
GAI10-GAI18
V
SSS
n.c.
VBSL
8
8
64
13
MGC655
14
CHR
LUM
VERTICAL
BLANKING
CONTROL
SOURCE
SWITCH
CLAMP
CIRCUIT
ANALOG
AMPLIFIER
ANTI-ALIAS
FILTER
BYPASS
SWITCH
SOURCE
SWITCH
CLAMP
CIRCUIT
ANALOG
AMPLIFIER
ANTI-ALIAS
FILTER
BYPASS
SWITCH
ADC2
ADC1
TEST
AND
SELECTOR
CLAMP
CONTROL
GAIN
CONTROL
CROSS
MULTIPLEXER
ANTI-ALIAS
CONTROL
V
DDA1
V
SSA2
AOUT
MODE
CONTROL
MODE 0
MODE 1
MODE 2
GAI20-GAI28
GUDL0-GUDL2
GAFIX
WPOFF
HSY
VBLNK
SVREF
HCL
AD1BYP
AD2BYP
BUFFER
DAC9
DAC9
HLNRS
UPTCV
V
DDA2
9
5
6
8
11
7
10
12
V
SSA1
GLIMB
GLIMT
WIPA
SLTCA
Fig.5 Analog input processing.
1998
May
15
15
Philips Semiconductors
Product specification
Enhanced V
ideo Input Processor (EVIP)
SAA71
1
1
A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
Fig.6 Chrominance circuit.
g
ewidth
CHR
LUM
CODE
AD1BYP
AD2BYP
BRIG
CONT
SATN
HUEC
DCCF
fH/2 switch signal
MGG062
V
DDD1-5
V
SSD1-5
57,41,33,
25,18
56,40,32,26,19
31
60
34 to 39
42 to 51
52
QUADRATURE
DEMODULATOR
COMB
FILTERS
SECAM
RECOMBINATION
FORMATTER
OUTPUT
AND
INTERFACE
ACCUMULATOR
BURST GATE
LOW-PASS
LOOP FILTER
SUBCARRIER
INCREMENT
GENERATION
AND
DIVIDER
SUBCARRIER
GENERATION
FCTC
CSTD 1
RGB MATRIX
interpolation
dithering
SECAM
PROCESSING
DIT
CBR
CHBW0
CHBW1
CSTD 0
INCS
RES
TCK
TDI
59
3
23
POWER-ON
CONTROL
TEST
CONTROL
BLOCK
TDO
TRST
2
58
TMS
4
LUM
Y
RTCO
n.c.
1
CLOCKS
CE
Y
sequential
UV signals
UV
RGB
FEI
HREF
VPO
(9 : 0)
VPO
(15 : 10)
VBI DATA BYPASS
TUF
PHASE
DEMODULATOR
AMPLITUDE
DETECTOR
OFTS0
OFTS1
RGB888
OEYC
OEHV
FECO
VRLN
VSTA (8 : 0)
VSTO (8 : 0)
GPSW
RTSE1
RTSE0
VIPB
VLOF
COLO
COMPO
LEVEL
ADJUSTMENT,
BRIGHTNESS,
CONTRAST,
AND
SATURATION
CONTROL
GAIN
CONTROL
AND Y-DELAY
COMPENSATION
1998
May
15
16
Philips Semiconductors
Product specification
Enhanced V
ideo Input Processor (EVIP)
SAA71
1
1
A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
handbook, full pagewidth
CREF
LLC
XTALI
XTAL
VREF
RTS0
HS
VS
SDA
SCL
IICSA
GPSW
I C BUS CONTROL
CLOCKS
SYNCHRONIZATION CIRCUIT
PREF
BYPS
APER0
APER1
VBLB
AUFD
HSB
HSS
FSEL
VTRC
STTC
FIDT
VNOI0
VNOI1
VTRC
VTRC
CE
RTS1
MGC654
LLC2
HLCK
V
DDA0
V
SSA0
53
61
63
62
30
29
17
27
28
16
24
15
54
55
22
20
21
DAC6
AND
WEIGHTING
ADDING
BAND-PASS
VARIABLE
FILTER
CHROMINANCE
TRAP
PREFILTER
AMPLIFIER
MATCHING
CLOCK
LINE-LOCKED
GENERATOR
2
LOOP FILTER
DETECTOR
PHASE
COARSE
DETECTOR
PHASE
FINE
SYNC SLICER
SYNC
PREFILTER
LINE 21
TEXT
SLICER
CLOCK
CRYSTAL
GENERATOR
TIME
DISCRETE
OSCILLATOR 2
INTERFACE
I C-BUS
PROCESSOR
VERTICAL
COUNTER
GENERATION
CLOCK
CIRCUIT
LUMINANCE CIRCUIT
BPSS0
BPSS1
PREF
LUM
VBLB
VBLB
Y
CLOCK CIRCUIT
INCS
STAGE
HPLL
VTRC
EXFIL
BYTE1
BYTE2
STATUS
2
2
Fig.7 Luminance and sync processing.
1998 May 15
17
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.8 Multiplexing of the CVBS signal to the VPO-bus.
HREFINT = internal horizontal reference.
TBP = upsampled CVBS input data (27 MHz).
AD1BYP/AD2BYP = digitized CVBS input data and Y/C input data (13.5 MHz).
VBP0 = programmable vertical reference signal.
VBP4 = delayed programmable vertical reference signal (4LLC clocks delay).
handbook, full pagewidth
MGG064
CLOCK 0
HREFINT
V_GATE
(programmable)
4
REG
CLOCK 0
REG
BCHI1
BCHI0
SWHI
0
0
1
1
0
1
0
1
1
0
VBP0
VBP4
VBP0
AD1BYP
VBP4
0
MUX
CVBS
UP
1
0
MUX
BYP
UP
REGISTER
1
BCLO1
BCLO0
SWLO
0
0
1
1
0
1
0
1
1
BCLO1 to 0
I
2
C-bus
BCHI1 to 0
I
2
C-bus
VIPB
I
2
C-bus
TBP7 to 0
(CVBS)
UV or YUV
Y or YUV
0
VBP0
VBP4
VBP0
VBP4
VBP0
AD2BYP
VBP4
0
MUX
CVBS
UP
1
0
VPO7 to 0
SWHI
SWLO
VPO15 to 8
MUX
BYP
UP
REGISTER
1
EN
(LUMA see Fig. 37)
(CHROMA see Fig. 37)
1998 May 15
18
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.9 VREF output signal generation.
VREF_CCIR 656 = vertical reference signal referring to the field interval definitions of CCIR656.
HREFINT = internal horizontal reference signal.
VREFINT = internal vertical reference signal.
VBP0 = programmable vertical reference signal.
VBP4 = delayed programmable vertical reference signal (4LLC clocks delay).
handbook, full pagewidth
MGG065
V
C
T
R
1
0
0
1
1
0
1
0
1
V
C
T
R
0
VREFINT
VREF
CLOCK 0
COMPO
VCTR1 to 0
VREFOUT
VREF CCIR 656
VBP0
VBP4
VBP0
VBP4
VREFINT
HREFINT
HREFINT
VREF CCIR 656
REG
HREF
CLK0
REG
CLOCK 0
REG
EN
0
MUX
1
CLOCK 0
REG
EN
Fig.10 CREF output signal generation.
CREFINT = internal clock qualifier signal.
handbook, full pagewidth
MGG066
C
C
T
R
1
0
0
1
1
0
1
0
1
C
C
T
R
0
CREFINT
CREFINT
selected
VREF
CCTR1 to 0
CREF
CLOCK 0
CREFOUT
0 if VREF = 0
1 if VREF = 0
1 (always HIGH)
REG
1998 May 15
19
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
9
BOUNDARY-SCAN TEST
The SAA7111A has built in logic and 5 dedicated pins to
support boundary-scan testing which allows board testing
without special hardware (nails). The SAA7111A follows
the
`IEEE Std. 1149.1 - Standard Test Access Port and
Boundary-Scan Architecture' set by the Joint Test Action
Group (JTAG) chaired by Philips.
The 5 special pins are Test Mode Select (TMS), Test
Clock (TCK), Test Reset (TRST), Test Data Input (TDI)
and Test Data Output (TDO).
The BST functions BYPASS, EXTEST, INTEST,
SAMPLE, CLAMP and IDCODE are all supported
(see Table 1). Details about the JTAG BST-TEST can be
found in the specification "
EEE Std. 1149.1". A file
containing the detailed Boundary-Scan Description
Language (BSDL) description of the SAA7111A is
available on request.
9.1
Initialization of boundary-scan circuit
The Test Access Port (TAP) controller of an IC should be
in the reset state (TEST_LOGIC_RESET) when the IC is
in functional mode. This reset state also forces the
instruction register into a functional instruction such as
IDCODE or BYPASS.
To solve the power-up reset, the standard specifies that
the TAP controller will be forced asynchronously to the
TEST_LOGIC_RESET state by setting the TRST pin
LOW.
9.2
Device identification codes
A Device Identification Register (DIR) is specified in
`IEEE
Std. 1149.1-1990 - IEEE Standard Test Access Port and
Boundary-Scan Architecture' (IEEE Std. 1149.1b-1994).
It is a 32-bit register which contains fields for the
specification of the IC manufacturer, the IC part number
and the IC version number. Its biggest advantage is the
possibility to check for the correct ICs mounted after
production and determination of the version number of
ICs during field service.
When the IDCODE instruction is loaded into the BST
instruction register, the identification register will be
connected between TDI and TDO of the IC.
The identification register will load a component specific
code during the CAPTURE_DATA_REGISTER state of
the TAP controller and this code can subsequently be
shifted out. At board level this code can be used to verify
component manufacturer, type and version number.
The device identification register contains 32-bits,
numbered 31 to 0, where bit 31 is the Most Significant Bit
(MSB) (nearest to TDI) and bit 0 is the Least Significant
Bit (LSB) (nearest to TDO); see Fig.11.
Table 1
BST instructions supported by the SAA7111A
INSTRUCTION
DESCRIPTION
BYPASS
This mandatory instruction provides a minimum length serial path (1 bit) between TDI and TDO
when no test operation of the component is required.
EXTEST
This mandatory instruction allows testing of off-chip circuitry and board level interconnections.
SAMPLE
This mandatory instruction can be used to take a sample of the inputs during normal operation of
the component. It can also be used to preload data values into the latched outputs of the
boundary-scan register.
CLAMP
This optional instruction is useful for testing when not all ICs have BST. This instruction addresses
the bypass register while the boundary-scan register is in external test mode.
IDCODE
This optional instruction will provide information on the components manufacturer, part number and
version number.
INTEST
This optional instruction allows testing of the internal logic (no support for customers available).
USER1
This private instruction allows testing by the manufacturer (no support for customers available).
1998 May 15
20
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.11 32 bits of identification code
.
handbook, full pagewidth
MGL111
00000010101
1111000100010001
0010
4-bit
version
code
16-bit part number
11-bit manufacturer
indentification
TDI
TDO
31
MSB
LSB
28 27
12 11
1
0
1
1998 May 15
21
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
10 GAIN CHARTS
Fig.12 Amplifier curve.
handbook, halfpage
0
7.5
5.5
dB
3.5
1.5
-
0.5
-
4.5
-
2.5
256
512
gain value (i)
MGC648
bit [8] = 1
factor
dB
= 20 x log
10
gain =
(
512
768
-
i
i > 256
bit [8] = 0
factor
dB
= 20 x log
10
gain =
(
512
257
+
i
(
i < 256
(
Fig.13 Clamp and gain flow.
WIPE = white peak level (254); SBOT = sync bottom level (1); CLL = clamp level [60 Y (128 C)];
HSY = horizontal sync pulse; HCL = horizontal clamp pulse.
handbook, full pagewidth
1
0
+
CLAMP
-
CLAMP
NO CLAMP
1
0
1
0
0
1
1
0
MGC647
fast
-
GAIN
slow
+
GAIN
+
GAIN
-
GAIN
HCL
HSY
ADC
SBOT
WIPE
CLL
ANALOG INPUT
GAIN ->
<- CLAMP
VBLK
NO BLANKING ACTIVE
1
0
1998 May 15
22
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.14 Gain flow chart.
X = system variable; Y = IAGV
-
FGVI > GUDL; VBLK = vertical blanking pulse;
HSY = horizontal sync pulse; AGV = actual gain value; FGV = frozen gain value.
handbook, full pagewidth
ANALOG INPUT
AMPLIFIER
ANTI-ALIAS FILTER
ADC
LUMA/CHROMA DECODER
X
HSY
>254
>254
<1
<4
>248
X = 0
X = 1
-
1/LLC2
+
1/LLC2
-
1/LLC2
+
/
-
0
+
1/F
+
1/L
GAIN ACCUMULATOR (18 BITS)
ACTUAL GAIN VALUE 9-BIT (AGV) [
-
6/
+
6 dB]
X
STOP
HSY
Y
UPDATE
FGV
MGC652
AGV
GAIN VALUE 9-BIT
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
VBLK
1
0
NO ACTION
9
8
DAC
gain
HOLDG
1998 May 15
23
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
11 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134); all ground pins connected together and all supply
pins connected together.
Note
1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k
resistor.
12 CHARACTERISTICS
V
DDD
= 3.0 to 3.6 V; V
DDA
= 3.1 to 3.5 V; T
amb
= 25
C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
V
DDD
digital supply voltage
-
0.5
+4.6
V
V
DDA
analog supply voltage
-
0.5
+4.6
V
V
i(A)
input voltage at analog inputs
-
0.5
V
DDA
+ 0.5
(4.6 max.)
V
V
o(A)
output voltage at analog output
-
0.5
V
DDA
+ 0.5
V
V
i(D)
input voltage at digital inputs and outputs
outputs in 3-state
-
0.5
+5.5
V
V
o(D)
output voltage at digital outputs
outputs active
-
0.5
V
DDD
+ 0.5
V
V
SS
voltage difference between V
SSAall
and V
SSall
-
100
mV
T
stg
storage temperature
-
65
+150
C
T
amb
operating ambient temperature
0
70
C
T
amb(bias)
operating ambient temperature under bias
-
10
+80
C
V
esd
electrostatic discharge all pins
note 1
-
2000
+2000
V
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
V
DDD
digital supply voltage
3.0
3.3
3.6
V
I
DDD
digital supply current
-
63
70
mA
P
D
digital power
-
0.21
-
W
V
DDA
analog supply voltage
3.1
3.3
3.5
V
I
DDA
analog supply current
AOSL = [1:0] = 00b;
AOUT not connected
-
52
-
mA
P
A
analog power
-
0.17
-
W
P
A+D
analog and digital power
-
0.38
-
W
P
pd
analog and digital power in
power-down mode
CE connected to ground
(since version 3)
-
0.02
-
W
Analog part
I
clamp
clamping current
V
I
= 0.9 V DC
-
3.5
-
A
V
i(p-p)
input voltage
(peak-to-peak value)
for normal video levels
[1 V (p-p)];
-
3 dB
termination 27/47
and
AC coupling required;
coupling capacitor = 22 nF
0.3
0.7
1.2
V
|Z
i
|
input impedance
clamping current off
200
-
-
k
C
i
input capacitance
-
-
10
pF
1998 May 15
24
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
cs
channel crosstalk
f
i
= 5 MHz
-
-
-
50
dB
Analog-to-digital converters
B
bandwidth
at
-
3 dB
-
7
-
MHz
diff
differential phase
(amplifier plus anti-alias
filter = bypass)
-
2
-
deg
G
diff
differential gain
(amplifier plus anti-alias
filter = bypass)
-
2
-
%
f
clkADC
ADC clock frequency
12.8
-
14.3
MHz
DLE
DC differential linearity
error
-
0.7
-
LSB
ILE
DC integral linearity error
-
1
-
LSB
Digital inputs
V
IL(SCL,SDA)
LOW level input voltage
pins SDA and SCL
-
0.5
-
+0.3V
DDD
V
V
IH
HIGH level input voltage
pins SDA and SCL
0.7V
DDD
-
V
DDD
+ 0.5
V
V
IL(xtal)
LOW level CMOS input
voltage pin XTALI
-
0.3
-
+0.8
V
V
IH(xtal)
HIGH level CMOS input
voltage pin XTALI
2.0
-
V
DDD
+ 0.3
V
V
ILn
LOW level input voltage all
other inputs
-
0.3
-
+0.8
V
V
IHn
HIGH level input voltage
all other inputs
2.0
-
5.5
V
I
LI
input leakage current
-
-
1
A
C
i
input capacitance
outputs at 3-state
-
-
8
pF
C
i(n)
input capacitance all other
inputs
-
-
5
pF
Digital outputs
V
OL(SCL,SDA)
LOW level output voltage
pins SDA and SCL
SDA/SCL at 3 mA (6 mA)
sink current
-
-
0.4 (0.6)
V
V
OL
LOW level output voltage
V
DDD
= max; I
OL
= 2 mA
0
-
0.4
V
V
OH
HIGH level output voltage
V
DDD
= min, I
OH
=
-
2 mA
2.4
-
V
DDD
+ 0.5
V
V
OL(clk)
LOW level output voltage
for clocks
-
0.5
-
+0.6
V
V
OH(clk)
HIGH level output voltage
for clocks
2.4
-
V
DDD
+ 0.5
V
I
LO
output leakage current
at 3-state mode
-
-
10
A
FEI input timing
t
SU;DAT
input data set-up time
13
-
-
ns
t
HD;DAT
input data hold time
3
-
-
ns
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
1998 May 15
25
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Data and control output timing; note 1
C
L
output load capacitance
15
-
40
pF
t
OHD;DAT
output hold time
C
L
= 15 pF
4
-
-
ns
t
PD
propagation delay
C
L
= 25 pF
-
-
20
ns
t
PDZ
propagation delay to
3-state
-
-
20
ns
Clock output timing (LLC and LLC2); note 2
C
L(LLC)
output load capacitance
15
-
40
pF
T
cy
cycle time
LLC
35
-
39
ns
LLC2
70
-
78
ns
LLC
duty factors for t
LLCH
/t
LLC
and t
LLC2H
/t
LLC2
C
L
= 25 pF
40
-
60
%
t
r
rise time LLC, LLC2
-
-
5
ns
t
f
fall time LLC, LLC2
-
-
5
ns
t
d
delay time LLC output to
LLC2 output
at 1.5 V;
LLC/LLC2 = 25 pF
-
4
-
+8
ns
Data qualifier output timing (CREF)
t
OHD;CREF
output hold time
C
L
= 15 pF
4
-
-
ns
t
PD;CREF
propagation delay from
positive edge of LLC
C
L
= 25 pF
-
-
20
ns
Clock input timing (XTALI)
XTALI
duty factor for t
XTALIH
/t
XTALI
nominal frequency
40
-
60
%
Horizontal PLL
f
Hn
nominal line frequency
50 Hz field
-
15625
-
Hz
60 Hz field
-
15734
-
Hz
f
H
/f
Hn
permissible static deviation
-
-
5.7
%
Subcarrier PLL
f
SCn
nominal subcarrier
frequency
PAL BGHI
-
4433619
-
Hz
NTSC M; NTSC-Japan
-
3579545
-
Hz
PAL M
-
3575612
-
Hz
PAL N
-
3582056
-
Hz
f
SC
lock-in range
400
-
-
Hz
Crystal oscillator
f
n
nominal frequency
3rd harmonic; note 3
-
24.576
-
MHz
f/f
n
permissible nominal
frequency deviation
-
-
50
10
-
6
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
1998 May 15
26
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Notes
1. The levels must be measured with load circuits; 1.2 k
at 3 V (TTL load); C
L
= 50 pF.
2. The effects of rise and fall times are included in the calculation of t
OHD;DAT
, t
PD
and t
PDZ
. Timings and levels refer to
drawings and conditions illustrated in Figs 15 and 16.
3. Order number: Philips 4322 143 05291.
Table 2
Processing delay
Note
1. Digital processing delay (LLC CLOCKS) for VBI data is defined in Fig.23 `Horizontal timing diagram'.
Crystal oscillator
f
n
nominal frequency
3rd harmonic; note 3
-
24.576
-
MHz
f/f
n
permissible nominal
frequency deviation
-
-
50
10
-
6
Tf/f
n
permissible nominal
frequency deviation with
temperature
-
-
20
10
-
6
C
RYSTAL SPECIFICATION
(X1)
T
amb(X1)
operating ambient
temperature
0
-
70
C
C
L
load capacitance
8
-
-
pF
R
s
series resonance resistor
-
40
80
C
1
motional capacitance
-
1.5
20%
-
fF
C
0
parallel capacitance
-
3.5
20%
-
pF
FUNCTION
TYPICAL ANALOG DELAY
AI22
ADCIN (AOUT) (ns)
DIGITAL DELAY
ADCIN
VPO (LLC CLOCKS)
[YDEL(2 to 0) = 000]; note 1
Without amplifier or anti-alias filter
15
179
With amplifier, without anti-alias filter
25
With amplifier and anti-alias filter
75
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
1998 May 15
27
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
13 TIMING DIAGRAMS
Fig.15 Clock/data timing (8-bit CCIR-656 format of the VPO-bus).
An explanation of the output formats is given in Table 6.
handbook, full pagewidth
2.4 V
t
LLC
t
f
t
PD
t
OHD;DAT
t
LLCL
t
LLCH
OUTPUTS VPO, HREF,
VREF, VS, HS
CLOCK OUTPUT LLC
t
r
0.6 V
2.6 V
1.5 V
0.6 V
MGC658
Fig.16 Clock/data timing (12 and 16-bit CCIR-601 format of the VPO-bus).
An explanation of the output formats is given in Table 6. The FEI timing of the VPO-bus is illustrated in Figs 18 and 19.
handbook, full pagewidth
2.4 V
0.6 V
t
LLC
t
f
t
PD
t
OHD;CREF
t
dLLC2
t
r
t
LLCL
t
LLCH
2.4 V
0.6 V
OUTPUTS VPO, HREF,
CLOCK OUTPUT LLC
CLOCK OUTPUT LLC2
1.5 V
0.6 V
2.6 V
1.5 V
0.6 V
2.6 V
VREF, VS, HS
OUTPUT CREF
t
OHD;DAT
t
dLLC2
t
PD
MGC659
t
LLC
t
PD
t
OHD;CREF
1998 May 15
28
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.17 Clock/data timing for RGB (8, 8 and 8) output format.
An explanation of the output formats is given in Table 6.
,,,
,,,
,,
,,
,,,
,,,
,,,,
,,,,
,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
handbook, full pagewidth
MBH227
2.4 V
1.5 V
0.6 V
2.4 V
1.5 V
0.6 V
2.4 V
1.5 V
0.6 V
CLOCK OUTPUT LLC
OUTPUT CREF
RGB (8, 8, 8) data
VPO15 to VPO8
RGB (8, 8, 8) data
VPO7 to VPO0
2.4 V
1.5 V
0.6 V
tOHD;DAT
tOHD;DAT
tOHD;CREF
tOHD;CREF
tOHD;CREF
tPD;CREF
tPD
tPD;CREF
R(7 : 3)
G(7 : 5)
G(4 : 2)
B(7 : 3)
R(2 : 0)
G(1 : 0)
B(2 : 0)
tLLCL
tLLC
tLLC
tf
tr
tLLCH
Fig.18 FEI timing diagram (FEI sampling at CREF = HIGH) for OFTS = 0, 1 or 2).
I
2
C-bus bit FECO = 1.
handbook, full pagewidth
LLC
CREF
HREF
FEI
VPO
to 3-state
from 3-state
MGC656
t
PDZ
t
PD
t
HD;DAT
t
SU;DAT
t
OHD;DAT
1998 May 15
29
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.19 FEI timing diagram (FEI sampling at CREF = LOW) for OFTS = 0, 1 or 2).
Timing is compatible with SAA7110; I
2
C-bus bit FECO = 0.
handbook, full pagewidth
LLC
CREF
HREF
VPO
t
SU;DAT
t
HD;DAT
to 3-state
MGC657
from 3-state
t
OHD;DAT
t
PD
t
PDZ
FEI
Fig.20 Real time control output.
(1) Set to zero for one transmission, if a phase reset of the f
sc
-
DTO is applied via I
2
C-bus bit CDTO. RTCO sequence is generated in LLC/4.
The HPLL increment represents the actual LFCO frequency (f
LFCO
4 = f
LLC
); 16 LSB from 20, upper four bits are fixed to 0100b.
Where: f
XTAL
= 24.576 MHz, word length DTO2 = 20 bits.
The f
sc
increment represents the actual subcarrier frequency (related to the actual clock); 23 LSB from 24, MSB is 0b.
Where: word length DTO1 = 24 bits.
f
LFCO
INCR
HPLL
f
XTAL
2
word length DTO2
-------------------------------------------------
=
f
sc
INCR
FSCPLL
f
XTAL
2
word length DTO1
-------------------------------------------------------
INCR
HPLL
2
19
----------------------------
=
handbook, full pagewidth
TIME SLOT:
BIT NO.:
transmitted once per line
22
1
21
19
20
15
16
17
18
7
8
9
11 10
12
13
14
SEQUENCE
19
0
67
2
3
6
4
5
2
3
0
16
45
RESERVED
16
INCRFSCPLL
MGC649
63
0
1
RESERVED
128
HIGH
LOW
15
INCRHPLL
RESERVED
1
68
DTO RESET
(1)
50 Hz fields: 235
60 Hz fields: 232
1998 May 15
30
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.21 HREF timing diagram.
handbook, full pagewidth
0
LLC
CREF
LLC2
HREF
Yn
UVn
HREF
Yn
UVn
1
2
3
4
U0
V0
U2
V2
U4
END OF ACTIVE LINE
START OF ACTIVE LINE
719
718
717
716
715
U718
V718
MGC646
V716
U716
V714
Fig.22 FEI timing in CCIR 656 mode [OFTS (1 : 0) = 3].
handbook, full pagewidth
MBH766
,,,
,,,
tPD
tPDZ
tOHD
tHD
tSU
LLC
FEI
VPO
1998 May 15
31
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.23 Horizontal timing diagram.
(1) PLIN is switched to output RTS1 via I
2
C-bus bit RTSE1 = 0.
(2) See Table 2.
(3) HDEL (1 : 0) = 0 0, YDEL (2 : 0) = 0 0 0.
handbook, full pagewidth
0
108
-
107
107
-
106
MGD701
CVBS
VBI
26
1/LLC
179
1/LLC
27
2/LLC
Y - output
HREF (50 Hz)
12
2/LLC
720
2/LLC
144
2/LLC
23
2/LLC
138
2/LLC
720
2/LLC
burst
burst
RTS1 (PLIN)
(1)
processing delay CVBS->VPO
(2)
0
0
4/LLC
HREF (60 Hz)
HS (60 Hz)
sync clipped
16
2/LLC
HS (50 Hz)
programming range
(step size: 8/LLC)
HS (60 Hz)
programming range
(step size: 8/LLC)
HS
43
2/LLC
1998 May 15
32
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.24 Vertical timing diagram for 50 Hz [nominal input signal VNL in normal mode (VNOI = 00b)].
(1) ODD is switched to output RTS0 via I
2
C-bus bit RTSE0 = 0.
(2) Additional VREF positions can be achieved via I
2
C-bits VCTR1 and VCTR0 (see Fig.9).
The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I
2
C-bus bit VBLB is set to logic 1.
The chrominance delay line (chrominance-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0.
handbook, full pagewidth
313
314
315
316
317
318
319
335
336
1
2
3
4
5
6
7
8
22
625
HREF
input CVBS
(b) 2nd field
(a) 1st field
VREF
VREF
VREF
VREF
VRLN = 1
(2)
VRLN = 0
(2)
624
623
622
23
HREF
input CVBS
312
311
310
VRLN = 0
(2)
337
MGG069
535
x
2/LLC
VS
RTS0 (ODD)
(1)
RTS0 (ODD)
(1)
320
VS
77 x 2/LLC
VRLN = 1
(2)
1998 May 15
33
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.25 Vertical timing diagram for 60 Hz [nominal input signal VNL in normal mode (VNOI = 00b)].
(1) ODD is switched to output RTS0 via I
2
C-bus bit RTSE0 = 0.
(2) Line numbers in parenthesis refer to CCIR line counting.
(3) Additional VREF positions can be achieved via I
2
C-bus bits VCTR1 and VCTR0 (see Fig.9).
The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I
2
C-bus bit VBLB is set to logic 1.
The chrominance delay line (chrominance-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0.
handbook, full pagewidth
VS
(266)
(267)
(268)
(269)
(270)
(271)
(272)
(273)
(274)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(20)
(3)
HREF
(b) 2nd field
(a) 1st field
input CVBS
(2)
(1)
(525)
(21)
(22)
(283)
(284)
(265)
(264)
(263)
(262)
VRLN = 1
(3)
VRLN = 0
(3)
VRLN = 1
(3)
VRLN = 0
(3)
1
2
3
4
5
6
7
8
17
525
524
523
522
18
19
263
264
265
266
267
268
269
270
271
280
281
262
261
260
259
(285)
282
(2)
(2)
MGG070
520 x 2/LLC
RTS0 (ODD)
(1)
81 x 2/LLC
VREF
VREF
VREF
VREF
VS
HREF
input CVBS
RTS0 (ODD)
(1)
1998 May 15
34
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Table 3
Digital output control
Note
1. Only active in 656-format (OFTS = 3).
OEYC
FEI
TCLO
(1)
VPO
15 to 8
VPO
7 to 0
0
0
0
Z
1
0
0
active
0
1
0
Z
1
1
0
Z
0
0
1
Z
Z
1
0
1
active
Z
0
1
1
Z
Z
1
1
1
Z
Z
14 CLOCK SYSTEM
14.1
Clock generation circuit
The internal CGC generates the system clocks LLC, LLC2
and the clock reference signal CREF. The internally
generated LFCO (triangular waveform) is multiplied by 4
via the analog PLL (including phase detector, loop filter,
VCO and frequency divider). The rectangular output
signals have a 50% duty factor.
Table 4
Clock frequencies
CLOCK
FREQUENCY (MHz)
XTAL
24.576
LLC
27
LLC2
13.5
LLC4
6.75
LLC8
3.375
Fig.26 Block diagram of clock generation circuit.
handbook, full pagewidth
BAND PASS
FC = LLC/4
ZERO
CROSS
DETECTION
PHASE
DETECTION
LOOP
FILTER
DIVIDER
1/2
DIVIDER
1/2
OSCILLATOR
DELAY
CREF
MGC632
LLC2
LLC
LFCO
1998 May 15
35
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
14.2
Power-on control
Power-on reset is activated at power-on, chip enable, PLL clock generation failure and if the supply voltage falls below
2.7 V. The RES signal can be applied to reset other circuits of the digital picture processing system.
Fig.27 Power-on control circuit.
CE = chip enable input; XTAL = crystal oscillator output; LLCINT = internal system clock;
RESINT = internal reset; LLC = line-locked clock output; RES = reset output (active LOW).
handbook, full pagewidth
MGC633
128 LCC
896 LCC
digital delay
some ms
20 to 200
s
PLL-delay
<1 ms
RES
LLC
RESINT
LLCINT
XTAL
CE
POC V
DDA
POC
LOGIC
ANALOG
POC V
DDD
DIGITAL
POC
DELAY
CLOCK
PLL
CE
LLC
CLK0
RES
1998 May 15
36
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Table 5
Power-on control sequence
15 OUTPUT FORMATS
Table 6
Output formats of the VPO bus (note 1)
INTERNAL POWER-ON CONTROL
SEQUENCE
PIN OUTPUT STATUS
FUNCTION
Directly after power-on
asynchronous reset
VPO15 to VPO0, RTCO, RTS0, RTS1,
GPSW, HREF, VREF, HS, VS, LLC,
LLC2 and CREF are in high-impedance
state
direct switching to high impedance for
20 to 200 ms
Synchronous reset sequence
LLC, LLC2, CREF, RTCO, RTS0,
RTS1, GPSW and SDA become active;
VPO15 to VPO0, HREF, VREF, HS and
VS are held in high-impedance state
internal reset sequence
Status after power-on control
sequence
VPO15 to VPO0, HREF, VREF, HS and
VS are held in high-impedance state
after power-on (reset sequence) a
complete I
2
C-bus transmission is
required
BUS
SIGNAL
411 (12-BIT)
422
(16-BIT)
(2)
CCIR-656 (8-BIT)
(3)
RGB (16-BIT)
(4)
RGB (24-BIT)
(4)
VPO15
Y
07
Y
17
Y
27
Y
37
Y
07
Y
17
U
07
Y
07
V
07
Y
17
R4
R7
R7
VPO14
Y
06
Y
16
Y
26
Y
36
Y
06
Y
16
U
06
Y
06
V
06
Y
16
R3
R6
R6
VPO13
Y
05
Y
15
Y
25
Y
35
Y
05
Y
15
U
05
Y
05
V
05
Y
15
R2
R5
R5
VPO12
Y
04
Y
14
Y
24
Y
34
Y
04
Y
14
U
04
Y
04
V
04
Y
14
R1
R4
R4
VPO11
Y
03
Y
13
Y
23
Y
33
Y
03
Y
13
U
03
Y
03
V
03
Y
13
R0
R3
R3
VPO10
Y
02
Y
12
Y
22
Y
32
Y
02
Y
12
U
02
Y
02
V
02
Y
12
G5
G7
G7
VPO9
Y
01
Y
11
Y
21
Y
31
Y
01
Y
11
U
01
Y
01
V
01
Y
11
G4
G6
G6
VPO8
Y
00
Y
10
Y
20
Y
30
Y
00
Y
10
U
00
Y
00
V
00
Y
10
G3
G5
G5
VPO7
U
07
U
05
U
03
U
01
U
07
V
07
X
X
X
X
G2
G4
R2
VPO6
U
06
U
04
U
02
U
00
U
06
V
06
X
X
X
X
G1
G3
R1
VPO5
V
07
V
05
V
03
V
01
U
05
V
05
X
X
X
X
G0
G2
R0
VPO4
V
06
V
04
V
02
V
00
U
04
V
04
X
X
X
X
B4
B7
G1
VPO3
X
X
X
X
U
03
V
03
X
X
X
X
B3
B6
G0
VPO2
X
X
X
X
U
02
V
02
X
X
X
X
B2
B5
B2
VPO1
X
X
X
X
U
01
V
01
X
X
X
X
B1
B4
B1
VPO0
X
X
X
X
U
00
V
00
X
X
X
X
B0
B3
B0
Pixel
order Y
0
1
2
3
0
1
0
1
-
note 5
note 6
Pixel
order UV
0
0
0
-
-
Data rates
LLC2
LLC2
LLC
LLC2
-
I
2
C-bus
control
signals
OFTS0 = 0
OFTS0 = 1
OFTS0 = 1
OFTS0 = 0
OFTS0 = 0
OFTS1 = 1
OFTS1 = 0
OFTS1 = 1
OFTS1 = 0
OFTS1 = 0
RGB888 = X
RGB888 = X
RGB888 = X
RGB888 = 0
RGB888 = 1
1998 May 15
37
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Notes to Table 5
1. VPO bus allows connection to 5 V video data bus systems.
2. Values in accordance with CCIR 601.
3. Before and after the video data, video timing codes are inserted in accordance with CCIR 656.
a) VPO15 to VPO8 = VPO7 to VPO0 = CCIR 656 data if I
2
C-bus bit TCLO = 0
b) VPO15 to VPO8 = CCIR 656 data, VPO7 to VPO0 = 3-state if I
2
C-bus bit TCLO = 1.
4. During HREF = LOW RGB levels are set to 16 (10 hex). RGB 16-bit is achieved by dropping the LSBs of the 8-bit
signals (after dithering if desired).
5. CREF = 0 (see Fig.17).
6. CREF = 1 (see Fig.17).
Fig.28 VPO output signal range with default BCS settings.
Equations for modification to the YUV levels via BCS control I
2
C-bus bytes BRIG, CONT and SATN.
Luminance:
Chrominance:
It should be noted that the resulting levels are limited to 1 to 254 in accordance with CCIR-601/656 standard.
Y
OUT
Int
CONT
71
------------------
Y
128
(
)
BRIG
+
=
UV
OUT
Int
SATN
64
-----------------
Cr Cb
,
128
(
)
128
+
=
CCIR Rec. 602 digital levels.
a.
Y output range.
b.
U output range (Cb).
c.
V output range (Cr).
handbook, full pagewidth
LUMINANCE 100%
+
255
+
235
+
128
+
16
0
white
black
U-COMPONENT
+
255
+
240
+
212
+
212
+
128
+
16
+
44
0
blue 100%
blue 75%
yellow 75%
yellow 100%
colourless
V-COMPONENT
+
255
+
240
+
128
+
16
+
44
0
red 100%
red 75%
cyan 75%
cyan 100%
colourless
MGC634
1998 May 15
38
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.29 VBI data bypass output range.
VBI data levels are not dependent on BCS settings.
a.
For sources containing 7.5 IRE black level offset (e.g. NTSC
-
M).
b.
For sources not containing black level offset.
handbook, full pagewidth
LUMINANCE
+
255
+
209
+
71
+
60
1
white
sync bottom
black shoulder
black
SYNC
LUMINANCE
+
255
+
199
+
60
1
white
sync bottom
black shoulder = black
SYNC
MGD700
Fig.30 Oscillator application.
Order number: Philips 4322 143 05291.
a.
With quartz crystal.
b.
With external clock.
handbook, full pagewidth
XTAL
XTALI
54
55
MGG072
XTAL
L = 10
H
20%
C =
10 pF
C =
10 pF
C =
1 nF
quartz (3rd harmonic)
24.576 MHz
XTALI
54
55
SAA7111A
SAA7111A
1998 May 15
39
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
16 APPLICATION INFORMATION
Fig.31 Application diagram.
handbook, full pagewidth
Q1(24.576 MHz)
VPO(15 : 0)
SCL
V
DDD
AI22
FEI
SDA
RTCO
VS
HS
AOUT
GPSW
RTS0
RTS1
RES
CREF
LLC2
LLC
HREF
V
SS
V
SS
V
SSA
V
DDA
V
SSA
V
DD
V
SS
V
SS
VREF
V
SS
SAA7111A
R4
47
C4
22 nF
C7
100 nF
100 nF
100 nF
100 nF
C8
C9
C11
C12
C13
C14
C15
R6
1 k
n.c.
n.c.
V
SSA2
V
SSS
V
SS1
V
SS2
V
SS3
V
SS4
V
SS5
IICSA
V
SSA1
V
SSA0
V
DDA0
V
DDA1
V
DDA2
V
DD1
V
DD2
V
DD3
V
DD4
V
DD5
TMS
TDI
TDO
TCK
TRST
C17
L1
10
H
C16
1 nF
10 pF 10 pF
C18
R5
1 k
18
25
33
41
57
3
7
11
15
34
35
36
37
38
39
42
43
44
45
46
47
48
31
27
30
60
14
53
28
29
20
21
22
23
17
64
58
59
61
19
26
32
40
56
13
5
9
1
16
2
4
6
63
62
52
24
55
54
XTAL
XTALI
MGG071
V
SSA
BST
V
SS
n.c.
n.c.
n.c.
49
50
51
100 nF
100 nF
100 nF
100 nF
R3
47
C3
22 nF
V
SSA
AI21
R2
47
C2
22 nF
V
SSA
8
AI12
R1
47
C1
22 nF
V
SSA
10
AI11
12
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R10
27
R9
27
R8
27
R7
27
1998 May 15
40
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.32 Application diagram for RGB 24-bit output format.
I
2
C-bus control bits:
OFTS(1 : 0) = 00 (subaddress 10H, bits D7 and D6).
RGB888 = 1 (subaddress 12H, bit D3).
handbook, full pagewidth
OEN
D7
7
6
5
4
3
2
1
0
D6
D5
D4
e.g.
74HCT574
D3
D2
D1
D0
44
45
46
47
48
49
50
51
31
HREF
17
27
30
60
28
29
53
14
20
21
32
23
VSS
VSS
VSS
CLK
O7
3
R (2 : 0)
R (7 : 0)
O6
O5
O4
O3
O2
O1
00
VDD
VDD
3
3
3
2
G (1 : 0)
G (7 : 0)
3
B (2 : 0)
B (7 : 0)
LLC2N
MGG073
LLC2
e.g. 74HCT240
B (7 : 3)
VPO (4 : 0)
VPO
(7 : 0)
SAA7111A
VPO (15 : 11)
R (7 : 3)
G (7 : 5)
G (4 : 2)
VPO (10 : 8)
VPO (7 : 5)
5
8
8
VREF
HS
VS
RTCO
RTS1
RTS0
GPSW
AOUT
LLC
CREF
RES
8
15
14
13
12
11
10
9
8
34
35
36
37
38
39
42
43
VPO
(15 : 8)
16.1
Layout hints
Use separate ground planes for analog and digital ground.
Connect these planes at one point directly under the
device, by using a zero
resistor. Use separate supply
lines for analog and digital supply. Place the supply
decoupling capacitors close to the supply pins.
Place the coupling (clamp) capacitors close to the analog
input pins. Place the termination resistors close to the
coupling capacitors. Care should be exercised concerning
the hidden layout capacitors around the crystal
application. To avoid reflection effects use serial resistors
in the clock, sync and data lines.
1998 May 15
41
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17 I
2
C-BUS DESCRIPTION
17.1
I
2
C-bus format
Table 7
Write procedure
Table 8
Read procedure (combined format)
Table 9
Description of I
2
C-bus format
Notes
1. If more than one byte DATA is transmitted then the auto-increment of the subaddress is performed.
2. During slave transmitter mode the SCL-LOW period may be extended by pulling SCL to LOW (in accordance with
the I
2
C-bus specification).
3. The I
2
C-bus subaddress 00 has to be initialized with 0 before being read.
S
SLAVE ADDRESS W
ACK-s
SUBADDRESS
ACK-s
DATA (N BYTES)
ACK-s
P
S
SLAVE ADDRESS W
ACK-s
SUBADDRESS
ACK-s
Sr
SLAVE ADDRESS R
ACK-s
DATA (N BYTES)
ACK-m
P
CODE
DESCRIPTION
S
START condition
Sr
repeated START condition
Slave address W
0100 1000b (IICSA = LOW) or 0100 1010b (IICSA = HIGH)
Slave address R
0100 1001b (IICSA = LOW) or 0100 1011b (IICSA = HIGH)
ACK-s
acknowledge generated by the slave
ACK-m
acknowledge generated by the master
Subaddress
subaddress byte; see Table 10
Data
data byte; see Table 10; note 1
P
STOP condition
X = LSB slave
address
read/write control bit; X = 0, order to write (the circuit is slave receiver); X = 1, order to read
(the circuit is slave transmitter)
Slave address
read = 49H or 4BH; note 2
write = 48H or 4AH
IICSA = 0 or 1
Subaddresses
00H chip version
read and write; note 3
01H reserved
-
02h to 05H front-end part
read and write
06H to 13H decoder part
read and write
14H reserved
-
15H to 17H decoder part
read and write
18H to 19H reserved
-
1AH to 1CH Line-21 text slicer part
read only
1DH to 1EH reserved
-
1FH status byte
read only
1998 May 15
42
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Table 10 I
2
C-bus receiver/transmitter overview
Note
1. All unused control bits must be programmed with logic 0.
SLAVE ADDRESS
READ
WRITE
IICSA
49H
4BH
48H
4AH
0
1
REGISTER
FUNCTION
SUB-
ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Chip version
00
ID07
ID06
ID05
ID04
ID03
ID02
ID01
ID00
Reserved
01
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
Analog input contr 1
02
FUSE1
FUSE0
GUDL2
GUDL1
GUDL0
MODE2
MODE1
MODE0
Analog input contr 2
03
(1)
HLNRS
VBSL
WPOFF
HOLDG
GAFIX
GAI28
GAI18
Analog input contr 3
04
GAI17
GAI16
GAI15
GAI14
GAI13
GAI12
GAI11
GAI10
Analog input contr 4
05
GAI27
GAI26
GAI25
GAI24
GAI23
GAI22
GAI21
GAI20
Horizontal sync start
06
HSB7
HSB6
HSB5
HSB4
HSB3
HSB2
HSB1
HSB0
Horizontal sync stop
07
HSS7
HSS6
HSS5
HSS4
HSS3
HSS2
HSS1
HSS0
Sync control
08
AUFD
FSEL
EXFIL
(1)
VTRC
HPLL
VNOI1
VNOI0
Luminance control
09
BYPS
PREF
BPSS1
BPSS0
VBLB
UPTCV
APER1
APER0
Luminance
brightness
0A
BRIG7
BRIG6
BRIG5
BRIG4
BRIG3
BRIG2
BRIG1
BRIG0
Luminance contrast
0B
CONT7
CONT6
CONT5
CONT4
CONT3
CONT2
CONT1
CONT0
Chroma saturation
0C
SATN7
SATN6
SATN5
SATN4
SATN3
SATN2
SATN1
SATN0
Chroma Hue control
0D
HUEC7
HUEC6
HUEC5
HUEC4
HUEC3
HUEC2
HUEC1
HUEC0
Chroma control
0E
CDTO
CSTD2
CSTD1
CSTD0
DCCF
FCTC
CHBW1
CHBW0
Reserved
0F
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
Format/delay control
10
OFTS1
OFTS0
HDEL1
HDEL0
VRLN
YDEL2
YDEL1
YDEL0
Output control 1
11
GPSW
CM99
FECO
COMPO
OEYC
OEHV
VIPB
COLO
Output control 2
12
RTSE1
RTSE0
TCLO
CBR
RGB888
DIT
AOSL1
AOSL0
Output control 3
13
VCTR1
VCTR0
CCTR1
CCTR0
BCHI1
BCHI0
BCLO1
BCLO0
Reserved
14
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
V_GATE1_START
15
VSTA7
VSTA6
VSTA5
VSTA4
VSTA3
VSTA2
VSTA1
VSTA0
V_GATE1_STOP
16
VSTO7
VSTO6
VSTO5
VSTO4
VSTO3
VSTO2
VSTO1
VSTO0
V_GATE1_MSB
17
(1)
(1)
(1)
(1)
(1)
(1)
VSTO8
VSTA8
Reserved
18-19
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
Text slicer status
1A
(1)
(1)
(1)
(1)
F2VAL
F2RDY
F1VAL
F1RDY
Decoded bytes of
the text slicer
1B
P1
BYTE16 BYTE15 BYTE14
BYTE13
BYTE12
BYTE11
BYTE10
1C
P2
BYTE26 BYTE25 BYTE24
BYTE23
BYTE22
BYTE21
BYTE20
Reserved
1D-1E
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
Status byte
1F
STTC
HLCK
FIDT
GLIMT
GLIMB
WIPA
SLTCA
CODE
1998 May 15
43
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2
I
2
C-bus detail
The I
2
C-bus receiver slave address is 48H/49H. Subaddresses 0F, 14, 18, 19, 1D and 1E are reserved; subaddress 01
is reserved for chip version.
17.2.1
S
UBADDRESS
00
Table 11 Chip version SA00; note 1
Note
1. X = reserved.
17.2.2
S
UBADDRESS
02
Table 12 Analog control 1 SA02; note 1
Notes
1. Mode select (see Figs 33 to 40).
2. For modes 0 to 3 use BYPS(SA09,D7) = 0 (chrominance trap active), for modes 4 to 7 use BYPS = 1 (chrominance
trap bypassed).
Table 13 Analog control 1 SA 02, D5 to D3 (see Fig.14)
FUNCTION
LOGIC LEVELS
ID07
ID06
ID05
ID04
ID03
ID02
ID01
ID00
Chip version
V1
0
0
0
1
X
X
X
X
V2
0
0
1
0
X
X
X
X
FUNCTION
(2)
CONTROL BITS D2 TO D0
MODE 2
MODE 1
MODE 0
Mode 0 : CVBS (automatic gain)
0
0
0
Mode 1 : CVBS (automatic gain)
0
0
1
Mode 2 : CVBS (automatic gain)
0
1
0
Mode 3 : CVBS (automatic gain)
0
1
1
Mode 4 : Y (automatic gain) + C (gain channel 2 fixed to GAI2 level)
1
0
0
Mode 5 : Y (automatic gain) + C (gain channel 2 fixed to GAI2 level)
1
0
1
Mode 6 : Y (automatic gain) + C (gain channel 2 adapted to Y gain)
1
1
0
Mode 7 : Y (automatic gain) + C (gain channel 2 adapted to Y gain)
1
1
1
DECIMAL VALUE
UPDATE HYSTERESIS FOR 9-BIT GAIN
CONTROL BITS D5 TO D3
GUDL 2
GUDL 1
GUDL 0
0....
off
0
0
0
....7
7 LSB
1
1
1
1998 May 15
44
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Table 14 Analog control
ANALOG FUNCTION SELECT FUSE
CONTROL BITS D7 AND D6
FUSE 1
FUSE 0
Amplifier plus anti-alias filter bypassed
0
0
0
1
Amplifier active
1
0
Amplifier plus anti-alias filter active
1
1
Fig.33 Mode 0; CVBS (automatic gain).
handbook, halfpage
AI22
AI21
AI12
AI11
CHROMA
LUMA
AD2
AD1
MGC637
Fig.34 Mode 1; CVBS (automatic gain).
handbook, halfpage
MGC638
AI22
AI21
AI12
AI11
CHROMA
LUMA
AD2
AD1
Fig.35 Mode 2; CVBS (automatic gain).
handbook, halfpage
MGC639
AI22
AI21
AI12
AI11
CHROMA
LUMA
AD2
AD1
Fig.36 Mode 3; CVBS (automatic gain).
handbook, halfpage
MGC640
AI22
AI21
AI12
AI11
CHROMA
LUMA
AD2
AD1
Fig.37 Mode 4 Y (automatic gain) + C
(gain channel 2 fixed to GAI2 level).
handbook, halfpage
MGC641
AI22
AI21
AI12
AI11
CHROMA
LUMA
AD2
AD1
Fig.38 Mode 5 Y (automatic gain) + C
(gain channel 2 fixed to GAI2 level).
handbook, halfpage
MGC642
AI22
AI21
AI12
AI11
CHROMA
LUMA
AD2
AD1
1998 May 15
45
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.39 Mode 6 Y (automatic gain) + C
(gain channel 2 adapted to Y gain).
handbook, halfpage
MGC643
AI22
AI21
AI12
AI11
CHROMA
LUMA
AD2
AD1
Fig.40 Mode 7 Y (automatic gain) + C
(gain channel 2 adapted to Y gain).
handbook, halfpage
MGC644
AI22
AI21
AI12
AI11
CHROMA
LUMA
AD2
AD1
17.2.3
S
UBADDRESS
03
Table 15 Analog control 2 (AICO2) SA03
FUNCTION
BIT NAME
LOGIC LEVEL
CONTROL BIT
Static gain control channel 1 (GAI18) (see SA04)
Sign bit of gain control
GAI18
see Table 16
D0
Static gain control channel 2 (GAI28) (see SA05)
Sign bit of gain control
GAI28
see Table 17
D1
Gain control fix (GAFIX)
Automatic gain controlled by MODE 1 and MODE 0
GAFIX
0
D2
Gain control is user programmable via GAI1 + GAI2
GAFIX
1
D2
Automatic gain control integration (HOLDG)
AGC active
HOLDG
0
D3
AGC integration hold (freeze)
HOLDG
1
D3
White peak off (WPOFF)
White peak control active
WPOFF
0
D4
White peak off
WPOFF
1
D4
Vertical blanking select (VBSL)
Long vertical blanking
VBSL
0
D5
Short vertical blanking
VBSL
1
D5
HL not reference select (HLNRS)
Normal clamping by HL not
HLNRS
0
D6
Reference select by HL not
HLNRS
1
D6
1998 May 15
46
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2.4
S
UBADDRESS
04
Table 16 Gain control analog (AIC03); static gain control channel 1 GAI1 SA 04, D7 to D0
17.2.5
S
UBADDRESS
05
Table 17 Gain control analog (AIC04); static gain control channel 2 GAI2 SA 05, D7 to D0
17.2.6
S
UBADDRESS
06
Table 18 Horizontal sync begin SA 06, D7 to D0
DECIMAL
VALUE
GAIN
(dB)
SIGN
BIT
CONTROL BITS D7 TO D0
GAI18
GAI17
GAI16
GAI15
GAI14
GAI13
GAI12
GAI11
GAI10
0....
-
5.98
0
0
0
0
0
0
0
0
0
....255
0
0
1
1
1
1
1
1
1
1
256....
0
1
0
0
0
0
0
0
0
0
....511
5.98
1
1
1
1
1
1
1
1
1
DECIMAL
VALUE
GAIN
(dB)
SIGN BIT
(SA 03, D1)
CONTROL BITS D7 to D0
GAI28
GAI27
GAI26
GAI25
GAI24
GAI23
GAI22
GAI21
GAI20
0....
-
5.98
0
0
0
0
0
0
0
0
0
....255
0
0
1
1
1
1
1
1
1
1
256....
0
1
0
0
0
0
0
0
0
0
....511
5.98
1
1
1
1
1
1
1
1
1
DELAY TIME
(STEP SIZE = 8/LLC)
CONTROL BITS D7 to D0
HSB7
HSB6
HSB5
HSB4
HSB3
HSB2
HSB1
HSB0
-
128...
-
108
forbidden (outside available central counter range)
-
107...
1
0
0
1
0
1
0
1
...108 (50Hz)
0
1
1
0
1
1
0
0
...107 (60Hz)
0
1
1
0
1
0
1
1
109...127 (50Hz)
forbidden (outside available central counter range)
108...127 (60Hz)
1998 May 15
47
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2.7
S
UBADDRESS
07
Table 19 Horizontal sync stop SA 07, D7 to D0
17.2.8
S
UBADDRESS
08
Table 20 Sync control SA 08, D7 to D5, D3 to D0
DELAY TIME
(STEP SIZE = 8/LLC)
CONTROL BITS D7 to D0
HSS7
HSS6
HSS5
HSS4
HSS3
HSS2
HSS1
HSS0
-
128...
-
108
forbidden (outside available central counter range)
-
107...
1
0
0
1
0
1
0
1
...108 (50Hz)
0
1
1
0
1
1
0
0
...107 (60Hz)
0
1
1
0
1
0
1
1
109...127 (50Hz)
forbidden (outside available central counter range)
108...127 (60Hz)
FUNCTION
BIT NAME
LOGIC LEVEL
CONTROL BIT
Vertical noise reduction (VNOI)
Normal mode
VNOI1
0
D1
VNOI0
0
D0
Searching mode
VNOI1
0
D1
VNOI0
1
D0
Free running mode
VNOI1
1
D1
VNOI0
0
D0
Vertical noise reduction bypassed
VNOI1
1
D1
VNOI0
1
D0
Horizontal PLL (HPLL)
PLL closed
HPLL
0
D2
PLL open, horizontal frequency fixed
HPLL
1
D2
TV/VTR mode select (VTRC)
TV mode
(recommended for poor quality TV signals only)
VTRC
0
D3
VTR mode (recommended as default setting)
VTRC
1
D3
Extended loop filter (EXFIL)
Word width of the loop filter (LF2) amplification = 16-bit
EXFIL
0
D5
Word width of the loop filter (LF2) amplification = 14-bit
EXFIL
1
D5
Field selection (FSEL)
50 Hz, 625 lines
FSEL
0
D6
60 Hz, 525 lines
FSEL
1
D6
Automatic field detection (AUFD)
Field state directly controlled via FSEL
AUFD
0
D7
Automatic field detection
AUFD
1
D7
1998 May 15
48
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2.9
S
UBADDRESS
09
Table 21 Luminance control SA 09, D7 to D0
Note
1. Not to be used with bypassed chrominance trap.
FUNCTION
BIT NAME
LOGIC LEVEL
CONTROL BIT
Aperture factor (APER)
Aperture factor = 0
APER1
0
D1
APER0
0
D0
Aperture factor = 0.25
APER1
0
D1
APER0
1
D0
Aperture factor = 0.5
APER1
1
D1
APER0
0
D0
Aperture factor = 1.0
APER1
1
D1
APER0
1
D0
Update time interval for AGC value (UPTCV)
Horizontal update (once per line)
UPTCV
0
D2
Vertical update (once per field)
UPTCV
1
D2
Vertical blanking luminance bypass (VBLB)
Active luminance processing
VBLB
0
D3
Luminance bypass during vertical blanking
VBLB
1
D3
Aperture band pass (centre frequency) (BPSS)
Centre frequency = 4.1 MHz
BPSS1
0
D5
BPSS0
0
D4
Centre frequency = 3.8 MHz; note 1
BPSS1
0
D5
BPSS0
1
D4
Centre frequency = 2.6 MHz; note 1
BPSS1
1
D5
BPSS0
0
D4
Centre frequency = 2.9 MHz; note 1
BPSS1
1
D5
BPSS0
1
D4
Prefilter active (PREF)
Bypassed
PREF
0
D6
Active
PREF
1
D6
Chrominance trap bypass (BYPS)
Chrominance trap active; default for CVBS mode
BYPS
0
D7
Chrominance trap bypassed; default for S-Video mode
BYPS
1
D7
1998 May 15
49
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2.10 S
UBADDRESS
0A
Table 22 Luminance brightness control BRIG7 to BRIG0 SA 0A
17.2.11 S
UBADDRESS
0B
Table 23 Luminance contrast control CONT7 to CONT0 SA 0B
17.2.12 S
UBADDRESS
0C
Table 24 Chrominance saturation control SATN7 to SATN0 SA 0C
17.2.13 S
UBADDRESS
0D
Table 25 Chrominance hue control HUEC7 to HUEC0 SA 0D
OFFSET
CONTROL BITS D7 to D0
BRIG7
BRIG6
BRIG5
BRIG4
BRIG3
BRIG2
BRIG1
BRIG0
255 (bright)
1
1
1
1
1
1
1
1
128 (CCIR level)
1
0
0
0
0
0
0
0
0 (dark)
0
0
0
0
0
0
0
0
GAIN
CONTROL BITS D7 to D0
CONT7
CONT6
CONT5
CONT4
CONT3
CONT2
CONT1
CONT0
1.999 (maximum)
0
1
1
1
1
1
1
1
1.109 (CCIR level)
0
1
0
0
0
1
1
1
1.0
0
1
0
0
0
0
0
0
0 (luminance off)
0
0
0
0
0
0
0
0
-
1 (inverse luminance)
1
1
0
0
0
0
0
0
-
2 (inverse luminance)
1
0
0
0
0
0
0
0
GAIN
CONTROL BITS D7 to D0
SATN7
SATN6
SATN5
SATN4
SATN3
SATN2
SATN1
SATN0
1.999 (maximum)
0
1
1
1
1
1
1
1
1.0 (CCIR level)
0
1
0
0
0
0
0
0
0 (colour off)
0
0
0
0
0
0
0
0
-
1 (inverse
chrominance)
1
1
0
0
0
0
0
0
-
2 (inverse
chrominance)
1
0
0
0
0
0
0
0
HUE PHASE (DEG)
CONTROL BITS D7 to D0
HUEC7
HUEC6
HUEC5
HUEC4
HUEC3
HUEC2
HUEC1
HUEC0
+178.6....
0
1
1
1
1
1
1
1
....0....
0
0
0
0
0
0
0
0
....
-
180
1
0
0
0
0
0
0
0
1998 May 15
50
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2.14 S
UBADDRESS
0E
Table 26 Chrominance control SA 0E
FUNCTION
BIT NAME
LOGIC
LEVEL
CONTROL
BIT
Chroma bandwidth (CHBW0 and CHBW1)
Small bandwidth (
620 kHz)
CHBW1
0
D1
CHBW0
0
D0
Nominal bandwidth (
800 kHz)
CHBW1
0
D1
CHBW0
1
D0
Medium bandwidth (
920 kHz)
CHBW1
1
D1
CHBW0
0
D0
Wide bandwidth (
1000 kHz)
CHBW1
1
D1
CHBW0
1
D0
Fast colour time constant (FCTC)
Nominal time constant
FCTC
0
D2
Fast time constant
FCTC
1
D2
Disable chrominance comb filter (DCCF)
Chrominance comb filter on (during VREF = 1) (see Figs 24 and 25)
DCCF
0
D3
Chrominance comb filter off
DCCF
1
D3
Colour standard (CSTD0 to CSTD2); logic levels 100, 110 and 111 are reserved, do not use
Colour standard control automatic switching between PAL BGHI and
NTSC M (NTSC-Japan with special level adjustment; luminance
brightness subaddress 0A = 95H, luminance contrast
subaddress 0BH = 48H)
CSTD2
0
D6
CSTD1
0
D5
CSTD0
0
D4
Colour standard control automatic switching between NTSC 4.43 (50 Hz)
and PAL 4.43 (60 Hz)
CSTD2
0
D6
CSTD1
0
D5
CSTD0
1
D4
Colour standard control automatic switching between PAL N and
NTSC 4.43 (60 Hz)
CSTD2
0
D6
CSTD1
1
D5
CSTD0
0
D4
Colour standard control automatic switching between NTSC N and
PAL M
CSTD2
0
D6
CSTD1
1
D5
CSTD0
1
D4
Colour standard control automatic switching between SECAM and
PAL 4.43 (60 Hz)
CSTD2
1
D6
CSTD1
0
D5
CSTD0
1
D4
Clear DTO (CDTO)
Disabled
CDTO
0
D7
Every time CDTO is set, the internal subcarrier DTO phase is reset to 0
and the RTCO output generates a logic 0 at time slot 68 (see RTCO
description Fig.20). So an identical subcarrier phase can be generated by
an external device (e.g. an encoder).
CDTO
1
D7
1998 May 15
51
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2.15 S
UBADDRESS
10
Table 27 Format/delay control SA 10
Table 28 VREF pulse position and length VRLN SA 10 (D3)
Notes
1. Additional VREF positions can be achieved via I
2
C-bus bits VCTR1 and VCTR0 (see Fig.9).
2. The numbers given in parenthesis refer to CCIR line counting.
Table 29 Fine position of HS HDEL0 and HDEL1 SA 10
Table 30 Output format selection OFTS0 and OFTS1 SA 10
LUMINANCE DELAY COMPENSATION
(STEPS IN 2/LLC)
CONTROL BITS D2 to D0
YDEL2
YDEL1
YDEL0
-
4...
1
0
0
...0...
0
0
0
...3
0
1
1
VRLN
VREF at 60 Hz 525 LINES
(1)
VREF at 50 Hz 625 LINES
(1)
0
1
0
1
Length
240
242
286
288
Line number
first
last
first
last
first
last
first
last
Field 1
(2)
19 (22)
258 (261)
18 (21)
259 (262)
24
309
23
310
Field 2
(2)
282 (285)
521 (524)
281 (284)
522 (525)
337
622
336
623
FINE POSITION OF HS WITH A STEP SIZE
OF 2/LLC
CONTROL BITS D5 and D4
HDEL1
HDEL0
0
0
0
1
0
1
2
1
0
3
1
1
FORMATS
CONTROL BITS D7 and D6
OFTS1
OFTS0
RGB (5, 6 and 5), RGB (8, 8 and 8)
(dependent on control bit RGB888); see
Table 32
0
0
YUV 422 16 bits
0
1
YUV 411 12 bits
1
0
YUV CCIR-656 8 bits
1
1
1998 May 15
52
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2.16 S
UBADDRESS
11
Table 31 Output control 1 SA 11
FUNCTION
BIT NAME
LOGIC LEVEL
CONTROL BIT
Colour on (COLO)
Automatic colour killer
COLO
0
D0
Colour forced on
COLO
1
D0
Decoder VIP bypassed (VIPB)
DMSD data to YUV output
VIPB
0
D1
ADC data to YUV output; dependent on mode settings
VIPB
1
D1
Output enable horizontal/vertical sync (OEHV)
HS, HREF, VREF and VS high-impedance inputs
OEHV
0
D2
Outputs HS, HREF, VREF and VS active
OEHV
1
D2
Output enable YUV data (OEYC)
VPO-bus high-impedance inputs
OEYC
0
D3
Output VPO-bus active
OEYC
1
D3
Inverse composite blank (COMPO)
VREF is vertical reference
COMPO
0
D4
VREF is inverse composite blank
COMPO
1
D4
FEI control (FECO)
FEI sampling at CREF = LOW
(SAA7110 compatible); (see Fig.19)
FECO
0
D5
FEI sampling at CREF = HIGH
FECO
1
D5
Compatibility to SAA7199 (CM99)
Default value
CM99
0
D6
To be set if SAA7199 (digital encoder) is used for
re-encoding in conjunction with RTCO
CM99
1
D6
General purpose switch (GPSW)
Switches directly pin 64 GPSW
GPSW
0
D7
GPSW
1
D7
1998 May 15
53
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2.17 S
UBADDRESS
12
Table 32 Output control 2 SA 12, D7 to D6, D4 to D0
FUNCTION
BIT NAME
LOGIC LEVEL
CONTROL BIT
Analog test select (AOSL)
AOUT connected to internal test point 1
AOSL1
0
D1
AOSL0
0
D0
AOUT connected to input AD1
AOSL1
0
D1
AOSL0
1
D0
AOUT connected to input AD2
AOSL1
1
D1
AOSL0
0
D0
AOUT connected to internal test point 2
AOSL1
1
D1
AOSL0
1
D0
Dithering (noise shaping) control (DIT)
Dithering off
DIT
0
D2
Dithering on
DIT
1
D2
RGB output format selection (RGB888)
RGB (5, 6 and 5)
RGB888
0
D3
RGB (8, 8 and 8)
RGB888
1
D3
Chrominance interpolation filter function (CBR)
Cubic interpolation (default)
CBR
0
D4
Linear interpolation (lower bandwidth)
CBR
1
D4
3-state control VPO7 to VPO0 (TCLO)
VPO7 to VPO0 depends on OEYC, FEI only (default)
(see Figs 18, 19 and 22)
TCLO
0
D5
VPO7 to VPO0 in 3-state [and OFTS (1 : 0) = 3]
(see Tables 3 and 6)
TCLO
1
D5
Real time outputs mode select (RTSE0)
ODD switched to output pin 40
RTSE0
0
D6
VL switched to output pin 40
RTSE0
1
D6
Real time outputs mode select (RTSE1)
PLIN switched to output pin 39
RTSE1
0
D7
HL switched to output pin 39
RTSE1
1
D7
1998 May 15
54
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2.18 S
UBADDRESS
13
Table 33 Output control 3 SA 13
FUNCTION
BIT NAME
LOGIC LEVEL
CONTROL BIT
Bypass control LOW for VPO7 to VPO0
No bypass
BCLO1
0
D1
BCLO0
0
D0
Permanent bypass
BCLO1
0
D1
BCLO0
1
D0
Bypass controlled by V_GATE
BCLO1
1
D1
BCLO0
0
D0
Bypass controlled by delayed V_GATE
BCLO1
1
D1
BCLO0
1
D0
Bypass control HIGH for VPO15 to VPO8
No bypass
BCHI1
0
D3
BCHI0
0
D2
Permanent bypass
BCHI1
0
D3
BCHI0
1
D2
Bypass controlled by V_GATE
BCHI1
1
D3
BCHI0
0
D2
Bypass controlled by delayed V_GATE
BCHI1
1
D3
BCHI0
1
D2
Clock Reference Output Control
CREF is independent of VREF
CCTR1
0
D5
CCTR0
0
D4
CREF is LOW if VREF = 0
CCTR1
0
D5
CCTR0
1
D4
CREF is HIGH if VREF = 0
CCTR1
1
D5
CCTR0
0
D4
CREF always = 1
CCTR1
1
D5
CCTR0
1
D4
Vertical Reference Output Control (VREF)
Internal VREF
VCTR1
0
D7
VCTR0
0
D6
VREF_CCIR
VCTR1
0
D7
VCTR0
1
D6
Programmable V_GATE
VCTR1
1
D7
VCTR0
0
D6
Delayed programmable V_GATE
VCTR1
1
D7
VCTR0
1
D6
1998
May
15
55
Philips Semiconductors
Product specification
Enhanced V
ideo Input Processor (EVIP)
SAA71
1
1
A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
17.2.19 S
UBADDRESS
15
Table 34 Start of decoded data on VPO-port SA 15; note 1
Notes
1. Start of decoded data on VPO-port (end of bypassed region; start of VREF if selected by VCTR1 and VCTR0; see Figs 8 and 10).
2. Line numbers in brackets refer to CCIR line counting.
FIELD
FRAME
LINE
(2)
COUNTING
DECIMA
L VALUE
MSB
(SA 17,
D0)
CONTROL BITS D7 to D0
VSTA8
VSTA7
VSTA6
VSTA5
VSTA4
VSTA3
VSTA2
VSTA1
VSTA0
50 Hz
1st
1
312
1
0
0
1
1
1
0
0
0
2nd
314
1st
2
0....
0
0
0
0
0
0
0
0
0
2nd
315
1st
312
....310
1
0
0
1
1
0
1
1
1
2nd
625
60 Hz
1st
1 (4)
262
1
0
0
0
0
0
1
1
0
2nd
264 (267)
1st
2 (5)
0....
0
0
0
0
0
0
0
0
0
2nd
265 (268)
1st
262 (265)
....260
1
0
0
0
0
0
1
0
1
2nd
525 (3)
1998
May
15
56
Philips Semiconductors
Product specification
Enhanced V
ideo Input Processor (EVIP)
SAA71
1
1
A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
17.2.20 S
UBADDRESS
16
T
ABLE
35 S
TOP OF DECODED DATA ON
VPO-
PORT
SA 16;
NOTE
1
N
OTES
1. S
TOP OF DECODED DATA ON
VPO-
PORT
(
BEGIN OF BYPASSED REGION
;
STOP OF
VREF
IF SELECTED BY
VCTR1
AND
VCTR0;
SEE
F
IGS
8
AND
10).
2. L
INE NUMBERS IN BRACKETS REFER TO
CCIR
LINE COUNTING
.
17.2.21 S
UBADDRESS
17
Table 36 Sign bits of the VBI-data stream control
FIELD
FRAME
LINE
(2)
COUNTING
DECIMAL
VALUE
MSB
(SA 17, D0)
CONTROL BITS D7 to D0
VSTO8
VSTO7
VSTO6
VSTO5
VSTO4
VSTO3
VSTO2
VSTO1
VSTO0
50 Hz
1st
1
312
1
0
0
1
1
1
0
0
0
2nd
314
1st
2
0....
0
0
0
0
0
0
0
0
0
2nd
315
1st
312
....310
1
0
0
1
1
0
1
1
1
2nd
625
60 Hz
1st
1 (4)
262
1
0
0
0
0
0
1
1
0
2nd
264 (267)
1st
2 (5)
0....
0
0
0
0
0
0
0
0
0
2nd
265 (268)
1st
262 (265)
....260
1
0
0
0
0
0
1
0
1
2nd
525 (3)
FUNCTION
BIT NAME
LOGIC LEVEL
CONTROL BIT
VBI-data stream start (VSTA8); see SA 15
Sign bit VBI-data stream start
VSTA8
see Table 34
D0
VBI-data stream stop (VSTO8); see SA 16
Sign bit VBI-data stream stop
VSTO8
see Table 35
D1
1998 May 15
57
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
17.2.22 S
UBADDRESS
1A (
READ
-
ONLY REGISTER
)
Table 37 Line-21 text slicer status SA 1A, D3 to D0
17.2.23 S
UBADDRESS
1B (
READ
-
ONLY REGISTER
)
Table 38 First decoded data byte of the text slicer SA 1B
17.2.24 S
UBADDRESS
1C (
READ
-
ONLY REGISTER
)
Table 39 Second decoded data byte of the text slicer SA 1C
17.2.25 S
UBADDRESS
1F (
READ
-
ONLY REGISTER
)
Table 40 Status byte SA 1F
I
2
C-BUS
STATUS BIT
NAME
FUNCTION
STATUS BIT
F1RDY
new data on field 1 has been acquired (for asynchronous reading); active HIGH
D0
F1VAL
line-21 of field 1 carries valid data; active HIGH
D1
F2RDY
new data on field 2 has been acquired (for asynchronous reading); active HIGH
D2
F2VAL
line-21 of field 2 carries valid data; active HIGH
D3
I
2
C-BUS
TEXT DATA
BITS
FUNCTION
DATA BITS
BYTE1 (6 to 0)
data bit 6 to 0 of first data byte
D6 to D0
P1
parity error flag bit; bit goes HIGH when a parity error has occurred
D7
I
2
C-BUS
TEXT DATA
BITS
FUNCTION
DATA BITS
BYTE2 (6 to 0)
data bit 6 to 0 of second data byte
D6 to D0
P2
parity error flag bit; bit goes HIGH when a parity error has occurred
D7
I
2
C-BUS
STATUS BIT
NAME
FUNCTION
STATUS BIT
CODE
colour signal in accordance with selected standard has been detected; active
HIGH
D0
SLTCA
slow time constant active in WIPA-mode; active HIGH
D1
WIPA
white peak loop is activated; active HIGH
D2
GLIMB
gain value for active luminance channel is limited [min (bottom)]; active HIGH
D3
GLIMT
gain value for active luminance channel is limited [max (top)]; active HIGH
D4
FIDT
identification bit for detected field frequency; LOW = 50 Hz, HIGH = 60 Hz
D5
HLCK
status bit for locked horizontal frequency; LOW = locked, HIGH = unlocked
D6
STTC
status bit for horizontal phase loop; LOW = TV time-constant,
HIGH = VTR time-constant
D7
1998 May 15
58
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
18 FILTER CURVES
18.1
Anti-alias filter curve
18.2
TUF-block filter curve
Fig.41 Anti-alias filter.
handbook, full pagewidth
6
V
(dB)
-
42
0
2
4
6
8
10
12
14
f (MHz)
MGD138
-
6
-
12
-
18
-
24
-
30
-
36
0
Fig.42 Interpolation filter for the upsampled CVBS-signal.
handbook, full pagewidth
6
V
(dB)
-
42
-
48
-
54
0
2
4
6
8
10
12
14
f (MHz)
MGG067
-
6
-
12
-
18
-
24
-
30
-
36
0
1998 May 15
59
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
18.3
Luminance filter curves
handbook, full pagewidth
f
Y (MHz)
18
-
30
0
2
4
8
6
MGD139
6
VY
(dB)
-
18
-
6
(1)
(2)
(4)
(3)
(1)
(2)
(4)
(3)
Fig.43 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture bandpass centre
frequencies.
(1) = 43H; (2) = 53H; (3) = 63H; (4) = 73H.
Fig.44 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture factors.
(1) = 40H; (2) = 41H; (3) = 42H; (4) = 43H.
handbook, full pagewidth
f
Y (MHz)
18
-
30
0
2
4
8
6
MGD140
6
-
18
-
6
(1)
(2)
(3)
(4)
(4)
(3)
(2)
(1)
VY
(dB)
1998 May 15
60
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.45 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre
frequencies.
(1) = 03H; (2) = 13H; (3) = 23H; (4) = 33H.
handbook, full pagewidth
f
Y (MHz)
18
-
30
0
2
4
8
6
MGD141
6
-
18
-
6
(1)
(2)
(4)
(3)
(1)
(2)
(4)
(3)
VY
(dB)
Fig.46 Luminance control SA 09H, Y/C mode, prefilter on, different aperture factors.
(1) = C0H; (2) = C1H; (3) = C2H; (4) = C3H.
handbook, full pagewidth
f
Y (MHz)
18
-
30
0
2
4
8
6
MGD142
6
-
18
-
6
(1)
(2)
(3)
(4)
VY
(dB)
1998 May 15
61
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.47 Luminance control SA 09H, Y/C mode, prefilter off, different aperture factors.
(1) = 80H; (2) = 81H; (3) = 82H; (4) = 83H.
handbook, full pagewidth
f
Y (MHz)
18
-
30
0
2
4
8
6
MGD143
6
-
18
-
6
(1)
(2)
(3)
(4)
VY
(dB)
Fig.48 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture band-pass centre
frequencies.
(1) = 43H; (2) = 53H; (3) = 63H; (4) = 73H.
handbook, full pagewidth
f
Y (MHz)
18
-
30
0
2
4
8
6
MGD144
6
-
18
-
6
(1)
(2)
(4)
(3)
(1)
(2)
(4)
(3)
VY
(dB)
1998 May 15
62
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Fig.49 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture factors.
(1) = 40H; (2) = 41H; (3) = 42H; (4) = 43H.
handbook, full pagewidth
f
Y (MHz)
18
-
30
0
2
4
8
6
MGD145
6
-
18
-
6
(1)
(2)
(3)
(4)
(4)
(3)
(2)
(1)
VY
(dB)
Fig.50 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre
frequencies.
(1) = 03H; (2) = 13H; (3) = 23H; (4) = 33H.
handbook, full pagewidth
f
Y (MHz)
18
-
30
0
2
4
8
6
MGD146
6
-
18
-
6
(1)
(2)
(4)
(3)
(1)
(2)
(4)
(3)
VY
(dB)
1998 May 15
63
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
18.4
Chrominance filter curves
19 I
2
C-BUS START SET-UP
The given values force the following behaviour of the SAA7111A:
The analog input AI11 expects a signal in CVBS format; analog anti-alias filter active
Automatic field detection
YUV 4 : 2 : 2 16-bit output format enabled
Outputs HS, HREF, VREF and VS active
Contrast, brightness and saturation control in accordance with CCIR standards
Chrominance processing with nominal bandwidth (800 kHz).
Fig.51 Chrominance filter.
(1) Transfer characteristics of the chrominance low-pass dependent on CHBW[1 : 0] settings. CHBW [1 : 0] = 00; (2) CHBW [1 : 0] = 01; (3)
CHBW [1 : 0] = 10; (4) CHBW [1 : 0] = 11.
handbook, full pagewidth
2.7
6
0
-
6
-
12
-
18
-
24
-
30
-
36
-
42
-
48
-
54
0
0.54
1.08
1.62
2,16
MGD147
f
(MHz)
V
(dB)
(1)
(2)
(3)
(4)
(4)
(1)
(3)
(2)
1998 May 15
64
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
Table 41 I
2
C-bus start set-up values
Note
1. All X values must be set to LOW.
SUB
(HEX)
FUNCTION
NAME
(1)
VALUES (BIN)
(HEX)
7
6
5
4
3
2
1
0
START
00
chip version
ID07 to ID00; see Table 9
read only
01
reserved
0
0
0
0
0
0
0
0
00
02
analog input control 1
FUSE1 and FUSE0, GUDL2 to GUDL0,
MODE2 to MODE0
1
1
0
0
0
0
0
0
C0
03
analog input control 2
X, HLNRS, VBSL, WPOFF, HOLDG,
GAFIX, GAI28 and GAI18
0
0
1
0
0
0
1
1
33
04
analog input control 3
GAI17 to GAI10
0
0
0
0
0
0
0
0
00
05
analog input control 4
GAI27 to GAI20
0
0
0
0
0
0
0
0
00
06
horizontal sync start
HSB7 to HSB0
1
1
1
0
1
0
1
1
EB
07
horizontal sync stop
HSS7 to HSS0
1
1
1
0
0
0
0
0
E0
08
sync control
AUFD, FSEL, EXFIL, X, VTRC, HPLL,
VNOI1 and VNOI0
1
0
0
0
1
0
0
0
88
09
luminance control
BYPS, PREF, BPSS1 and BPSS0, VBLB,
UPTCV, APER1 and APER0
0
0
0
0
0
0
0
1
01
0A
luminance brightness
BRIG7 to BRIG0
1
0
0
0
0
0
0
0
80
0B
luminance contrast
CONT7 to CONT0
0
1
0
0
0
1
1
1
47
0C
chrominance saturation SATN7 to SATN0
0
1
0
0
0
0
0
0
40
0D
chroma hue control
HUEC7 to HUEC0
0
0
0
0
0
0
0
0
00
0E
chrominance control
CDTO, CSTD2 to CSTD0, DCCF, FCTC,
CHBW1 and CHBW0
0
0
0
0
0
0
0
1
01
0F
reserved
0
0
0
0
0
0
0
0
00
10
format/delay control
OFTS1 and OFTS0, HDEL1 and HDEL0,
VRLN, YDEL2 to YDEL0
0
1
0
0
0
0
0
0
40
11
output control 1
GPSW, CM99, FECO, COMPO, OEYC,
OEHV, VIPB, and COLO
0
0
0
1
1
1
0
0
1C
12
output control 2
RTSE1 and RTSE0, TCLO, CBR,
RGB888 DIT, AOSL1 and AOSL0
0
0
0
0
0
0
0
1
00
13
output control 3
CCTR1 and CCTR0, BCHI1 and BCHI0,
BCLO1 and BCLO0, VCTR1 and VCTR0
0
0
0
0
0
0
0
0
00
14
reserved
0
0
0
0
0
0
0
0
00
15
VBI-data stream start
VSTA7 to VSTA0
0
0
0
0
0
0
0
0
00
16
VBI-data stream stop
VSTO7 to VSTO0
0
0
0
0
0
0
0
0
00
17
MSBs for VBI control
X, X, X, X, X, X, VSTO8, and VSTA8
0
0
0
0
0
0
0
0
00
18-19
reserved
0
0
0
0
0
0
0
0
00
1A
text slicer status
0, 0, 0, 0, F2VAL, F2RDY,
F1VAL, and F1RDY
read only register
1B
decoded bytes of the
text slicer
P1, BYTE1 (6 to 0)
1C
P2, BYTE2 (6 to 0)
1D-1E reserved
0
0
0
0
0
0
0
0
00
1F
status byte
STTC, HLCK, FIDT, GLIMT, GLIMB,
WIPA, SLTCA and CODE
read only register
1998 May 15
65
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
20 PACKAGE OUTLINES
UNIT
A
max.
A
1
A
2
A
3
b
p
c
E
(1)
e
H
E
L
L
p
Z
y
w
v
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
EIAJ
mm
1.60
0.20
0.05
1.45
1.35
0.25
0.27
0.17
0.18
0.12
10.1
9.9
0.5
12.15
11.85
1.45
1.05
7
0
o
o
0.12
0.1
1.0
0.2
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.75
0.45
SOT314-2
95-12-19
97-08-01
D
(1)
(1)
(1)
10.1
9.9
H
D
12.15
11.85
E
Z
1.45
1.05
D
b
p
e
E
A
1
A
L
p
detail X
L
(A )
3
B
16
c
D
H
b
p
E
H
A
2
v
M
B
D
Z D
A
Z E
e
v
M
A
X
1
64
49
48
33
32
17
y
pin 1 index
w
M
w
M
0
2.5
5 mm
scale
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm
SOT314-2
1998 May 15
66
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
UNIT
A
1
A
2
A
3
b
p
c
E
(1)
e
H
E
L
L
p
Z
y
w
v
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
EIAJ
mm
0.25
0.10
2.75
2.55
0.25
0.45
0.30
0.23
0.13
14.1
13.9
0.8
17.45
16.95
1.2
0.8
7
0
o
o
0.16
0.10
0.16
1.60
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
1.03
0.73
SOT393-1
MS-022
96-05-21
97-08-04
D
(1)
(1)
(1)
14.1
13.9
H
D
17.45
16.95
E
Z
1.2
0.8
D
e
E
A
1
A
L
p
detail X
L
(A )
3
B
16
y
c
E
H
A
2
D
Z D
A
Z E
e
v
M
A
1
64
49
48
33
32
17
X
b
p
D
H
b
p
v
M
B
w
M
w
M
0
5
10 mm
scale
pin 1 index
QFP64: plastic quad flat package; 64 leads (lead length 1.6 mm); body 14 x 14 x 2.7 mm
SOT393-1
A
max.
3.00
1998 May 15
67
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
21 SOLDERING
21.1
Introduction
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our
"IC Package Databook" (order code 9398 652 90011).
21.2
Reflow soldering
Reflow soldering techniques are suitable for all LQFP and
QFP packages.
The choice of heating method may be influenced by larger
plastic QFP packages (44 leads, or more). If infrared or
vapour phase heating is used and the large packages are
not absolutely dry (less than 0.1% moisture content by
weight), vaporization of the small amount of moisture in
them can cause cracking of the plastic body. For more
information, refer to the Drypack chapter in our
"Quality
Reference Handbook" (order code 9397 750 00192).
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 50 and 300 seconds depending on heating
method. Typical reflow peak temperatures range from
215 to 250
C.
21.3
Wave soldering
Wave soldering is not recommended for LQFP and QFP
packages. This is because of the likelihood of solder
bridging due to closely-spaced leads and the possibility of
incomplete solder penetration in multi-lead devices.
CAUTION
Wave soldering is NOT applicable for all LQFP and
QFP packages with a pitch (e) equal or less than
0.5 mm.
If wave soldering cannot be avoided, for LQFP and
QFP packages with a pitch (e) larger than 0.5 mm, the
following conditions must be observed:
A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave)
soldering technique should be used.
The footprint must be at an angle of 45
to the board
direction and must incorporate solder thieves
downstream and at the side corners.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Maximum permissible solder temperature is 260
C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150
C within
6 seconds. Typical dwell time is 4 seconds at 250
C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
21.4
Repairing soldered joints
Fix the component by first soldering two diagonally-
opposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300
C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320
C.
1998 May 15
68
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
22 DEFINITIONS
23 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
24 PURCHASE OF PHILIPS I
2
C COMPONENTS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Purchase of Philips I
2
C components conveys a license under the Philips' I
2
C patent to use the
components in the I
2
C system provided the system conforms to the I
2
C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
1998 May 15
69
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
NOTES
1998 May 15
70
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
NOTES
1998 May 15
71
Philips Semiconductors
Product specification
Enhanced Video Input Processor (EVIP)
SAA7111A
NOTES
Internet: http://www.semiconductors.philips.com
Philips Semiconductors a worldwide company
Philips Electronics N.V. 1998
SCA60
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
Fax. +43 160 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 0044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstrae 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Printed in The Netherlands
655102/1200/04/pp72
Date of release: 1998 May 15
Document order number:
9397 750 03118