ChipFind - документация

Электронный компонент: SAA7115

Скачать:  PDF   ZIP
Preliminary
NDA required
PRELIMINARY
File under CS-PD Hamburg, PC-P
Contents subject to change without notice.
23 Oct 2001
CS-PD HAMBURG
Philips Semiconductors
SAA7115
CVIP2
PAL/NTSC/SECAM Video Decoder with Adaptive PAL/NTSC Comb
Filter, High Performance Scaler, I2C Sliced Data Readback and SQ
Pixel Output
Datasheet
Preliminary
NDA required
Confidential - NDA required
page 2
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
CONTENTS
1
DOCUMENT INFO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1
Video Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Combfilter Video Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3
Video Scaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4
VBI Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5
Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6
General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7
Summary SAA7114 versus SAA7115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4
QUICK REFERENCE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5
ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7
PINNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1
Pinning List and Pinning Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.2
Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3
SAA7115 Pin Strapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1
Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1.1
Analog input processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1.1.1
Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1.1.2
Gain control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.1.2
Chrominance and luminance processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.1.2.1
Chrominance path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.1.2.2
Luminance path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.1.2.3
Brightness Contrast Saturation (BCS) control and decoder output levels . . . . . . . . . . . 38
8.1.3
Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.1.4
Clock generation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.1.5
Power-on reset and Chip Enable (CE) input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2
Output Formatter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.3
Scaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3.1
Acquisition control and task handling (subaddresses 80H, 90H, 91H, 94H to 9FH and C4H to CFH)
50
8.3.1.1
Input field processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.3.1.2
Task handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3.1.3
Output field processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3.2
Horizontal scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3.2.1
Horizontal prescaler (subaddresses A0H to A7H and D0H to D7H) . . . . . . . . . . . . . . . 55
8.3.2.2
Horizontal fine scaling (variable phase delay filter; subaddresses A8H to AFH and
D8H to DFH)60
8.3.3
Vertical scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3.3.1
Line FIFO buffer (subaddresses 91H, B4H and C1H, E4H) . . . . . . . . . . . . . . . . . . . . . 60
8.3.3.2
Vertical scaler (subaddresses B0H to BFH and E0H to EFH) . . . . . . . . . . . . . . . . . . . . 61
8.3.3.3
Use of the vertical phase offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.4
VBI-data decoder and capture (subaddresses 40H to 7FH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.4.1
VBI Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.4.2
I2C Readback of sliced VBI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Preliminary
NDA required
Confidential - NDA required
page 3
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.4.3
Sliced VBI Data Output at the I-Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4.3.1
Euro WST, US WST and NABTS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4.3.2
WSS 625 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4.3.3
WSS 525 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4.3.4
VPS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4.3.5
Closed Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4.3.6
Moji Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4.3.7
VITC Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.4.3.8
Open Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.5
Image port output interface (subaddresses 84H to 87H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.5.1
Scaler output formatter (subaddresses 93H and C3H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.5.2
Video FIFO (subaddress 86H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.5.3
Text FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.5.4
Video / text arbitration and Data packing (subaddress 86H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.5.4.1
VBI insertion in SAV/EAV mode (bit SLDOM[3] = `1') . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.5.4.2
Data Packing (bit IMPAK (86H) and programming of the pulse generator via addr. F5H to
FBH)73
8.5.5
Data stream coding and reference signal generation (subaddresses 84H, 85H and 93H) . . . . . . 73
8.6
Scaler Backend clock generation (subaddresses 30H to 3FH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.6.1
Square Pixel Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.6.1.1
The second PLL (PLL2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.7
Audio clock generation (subaddresses 30H to 3FH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.7.1
Audio clock generation without analog PLL (CGC2) enhancement . . . . . . . . . . . . . . . . . . . . . . . . 82
8.7.1.1
Master audio clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.7.1.2
Signals ASCLK and ALRCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.7.2
Audio clock generation with analog PLL (CGC2) support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.7.3
Other control signals for audio clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9
INPUT/OUTPUT INTERFACES AND PORTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.1
Analog terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.2
Audio clock signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.3
Clock and real-time synchronization signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.4
Video expansion port (X-port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.4.1
X-port configured as output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.4.2
X-port configured as input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.5
Image port (I-port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.6
Host port for 16-bit extension of video data I/O (H-port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.7
Basic input and output timing diagrams I-port and X-port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.7.1
I-port output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.7.2
X-port input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10 BOUNDARY SCAN TEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.1 Initialization of boundary scan circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.2 Device identification codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11 LIMITING VALUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
12 THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13 CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
14 APPLICATION INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
15 DEVICE PROGRAMMING OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
15.1 I2C-bus description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
15.2 Register Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
16 DETAILED DESCRIPTION OF THE CONTROL REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Preliminary
NDA required
Confidential - NDA required
page 4
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.1 Chip Version / Ident Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
16.1.1 Chip Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
16.1.2 Chip ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
16.2 Programming Register Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
16.2.1 Subaddress 01 Analog Input Control 0, Increment Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
16.2.2 Subaddress 02 Analog Input Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
16.2.3 Subaddress 03 Analog Input Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
16.2.4 Subaddress 04 Analog Input Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
16.2.5 Subaddress 05 Analog Input Control 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
16.2.6 Subaddress 06 Horizontal Sync Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
16.2.7 Subaddress 07 Horizontal Sync Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
16.2.8 Subaddress 08 Sync Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
16.2.9 Subaddress 09 Luminance control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
16.2.10 Subaddress 0A Decoder Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
16.2.11 Subaddress 0B Decoder Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
16.2.12 Subaddress 0C Decoder Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
16.2.13 Subaddress 0D Chrominance Hue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
16.2.14 Subaddress 0E Chrominance Control 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
16.2.15 Subaddress 0F Chrominance Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
16.2.16 Subaddress 10 Chrominance/Luminance Control 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
16.2.17 Subaddress 11 Mode / Delay Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
16.2.18 Subaddress 12 RTS0/1 Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
16.2.19 Subaddress 13 and 1B RT / X-port Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
16.2.20 Subaddress 14 Analog / ADC / Auto/ Compatibility Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
16.2.21 Subaddress 15, 17VGATE Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
16.2.22 Subaddress 16, 17 VGATE Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
16.2.23 Subaddress 17 Misc./VGATE-MSB's . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
16.2.24 Subaddress 18 Raw data Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
16.2.25 Subaddress 19 Raw data Offset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
16.2.26 Subaddress 1A Color Killer Level Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
16.2.27 Subaddress 1B Misc. Chroma Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
16.2.28 Subaddress 1C Enhanced Combfilter Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
16.2.29 Subaddress 1D Enhanced Combfilter Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
16.2.30 Subaddresses 1E, 1F Status Bytes Video Decoder (read-only register) . . . . . . . . . . . . . . . . . . . 157
16.3 Programming Register Audio Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
16.3.1 Subaddresses 30 to 32 AMCLK Cycles per Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
16.3.2 Subaddresses 34 to 36 AMCLK Nominal Increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
16.3.3 Subaddress 38 Ratio AMXCLK to ASCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
16.3.4 Subaddress 39 Ratio ASCLK to ALRCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
16.3.5 Subaddress 3A Audio Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
16.4 Programming Register VBI data slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
16.4.1 Subaddress 40 Basic Slicer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
16.4.2 Subaddress 41 to 57 Line Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
16.4.3 Subaddress 58 Programmable Framing Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
16.4.4 Subaddress 59 Horizontal Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
16.4.5 Subaddress 5A Vertical Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
16.4.6 Subaddress 5B Field Offset, MSB's H/V-Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
16.4.7 Subaddress 5D: SLDOM Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
16.4.8 Subaddress 5E SDID codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
16.4.9 Subaddress 5E (read-only register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
16.4.10 Subaddress 66 to 7F I2C Readback of decoded VBI Data (read-only register). . . . . . . . . . . . . . 167
16.4.10.1 Subaddress 66 to 6A I2C Readback of Closed Caption Data (CC525 and CC625) (read-only
register)167
16.4.10.2 Subaddress 6B to 71 I2C Readback of Closed Caption Data (WSS525 and WSS625)
Preliminary
NDA required
Confidential - NDA required
page 5
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
(read-only register)168
16.4.10.3 Subaddress 72 to 76 I2C Readback of Gemstar1x Data (read-only register) . . . . . . . 169
16.4.10.4 Subaddress 77 to 7F I2C Readback of Gemstar2x Data (read-only register) . . . . . . . 170
16.5 Programming Register - Interfaces and Scaler Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
16.5.1 Subaddress 80: Global Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
16.5.2 Subaddress 83 to 87: Global Interface Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
16.5.3 Subaddress 88: Sleep and Power save control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
16.5.4 Subaddress 8F (read-only register): status information scaler part . . . . . . . . . . . . . . . . . . . . . . . 181
16.5.5 Subaddress 90: event handler control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
16.5.6 Subaddress 91 to 93: scaler input and I-port output configuration. . . . . . . . . . . . . . . . . . . . . . . . 182
16.5.7 Subaddress 94 to 9B: Scaler Input Acquisition Window Definition . . . . . . . . . . . . . . . . . . . . . . . 185
16.5.8 Subaddress 9C to 9F: Scaler Output Window Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
16.5.9 Subaddress A0 to A2: Prescaling and FIR filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
16.5.10 Subaddress A4 to A6: Brightness, Contrast and Saturation Control . . . . . . . . . . . . . . . . . . . . . . 190
16.5.11 Subaddress A8 to AE: Horizontal Phase Scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
16.5.12 Subaddress B0 to BF: Vertical Scaling Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
16.6 Programming Register - second PLL (PLL2) and Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
16.6.1 Subaddress F0 to F5 and FF: second PLL (PLL2) Programming Parameters . . . . . . . . . . . . . . 194
16.6.2 Subaddress F6 to FB: Pulse Generator Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
17 PROGRAMMING START SET-UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
17.1 Decoder part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
17.2 Audio clock generation part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
17.3 Data slicer and data type control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
17.4 Scaler and interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
17.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
17.5 PLL2 and pulse generator control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
18 PACKAGE OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Preliminary
NDA required
Confidential - NDA required
page 6
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
1
DOCUMENT INFO
1.1
Revision History
2
FEATURES
2.1
Video Acquisition
Six analog inputs, internal analog source selectors, (e.g.: 6x CVBS or(2 x YC and 2 CVBS) or (1 x YC and 4xCVBS)
Two built in analog anti-alias filters
Two improved 9 Bit CMOS analog-to-digital converter in differential CMOS style at two-fold ITU-656 oversampling
(27MHz)
Fully programmable static gain or automatic gain control (AGC) for the selected CVBS or Y/C channel
Automatic Clamp Control (ACC) for CVBS, Y and C
Switchable white Peak Control Two 9-bit Video CMOS AD Converters, digitized CVBS or Y/C
signals are available on the expansion port (X-port)
Requires only one crystal (32.11 MHz or 24.576 MHz) for all standards
Independent Gain and Offset - adjustment for raw data path
2.2
Combfilter Video Decoder
Digital PLL for Synchronization and Clock Generation from all Standards and Non Standard Video Sources e.g.
consumer grade VTR
Automatic detection of 50/60Hz field frequency, and automatic recognition of all common broadcast standards
Enhanced Horizontal and vertical Sync Detection
Luminance and chrominance signal processing for
PAL BGDHIN,
Combination-PAL N,
PAL M,
NTSC M,
NTSC-Japan,
NTSC 4.43 and
SECAM (50 Hz / 60 Hz)
PAL delay line for correcting PAL phase errors
VERSION NO
REVISION
DATE
DESCRIPTION OF STATUS
BY
0.5
5 Oct 2001
Initial Version
H. Lambers
0.51
9 Oct 2001
Fixed LCBW recommended setting
H. Lambers
0.52
9 Oct 2001
VBSL setting changed, scaler and PLL2 examples , sect.
16.4 and 16.5 updated
A. Mittelberg
0.6
10 Oct 2001
Added application examples
H. Lambers
0.65
18 Oct 2001
Status at CQS
H. Lambers
0.66
19 Oct 2001
Minor updates
H. Lambers
0.67
23 Oct 2001
Fixed application example drawing
H. Lambers
Preliminary
NDA required
Confidential - NDA required
page 7
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Improved 2/4-line comb filter for two dimensional chrominance/luminance-separation operating with adaptive
combfilter parameters.
Increased Luminance and Chrominance Bandwidth for all PAL and NTSC-standards
Reduced cross colour and cross luminance artefacts
Independent Brightness Contrast Saturation (BCS) - adjustment for decoder-part
User programmable sharpness control
Detection of Copy protected input signals:
according to Macrovision standard
indicating the level of protection
Automatic TV/VCR detection
10 bit wide video output at combfilter video decoder
X-port video output either as:
Noise shaped 8 bit ITU-656 video or
Full 10 bit ITU-656 interface (DC-performance 9 Bit)
2.3
Video Scaler
Horizontal and Vertical Down-Scaling and Up-Scaling to randomly sized windows
Horizontal and Vertical Scaling range: variable zoom to 1/64 (icon) (Note: H and V zoom are restricted by the transfer
data rates)
Vertical Scaling with Linear Phase Interpolation and Accumulating Filter for Anti-Aliasing (6 bit phase accuracy)
Conversion to Square Pixel format
Generation of a video output stream with improved synchronisation grid at the I-Port
Two independent programming sets for scaler part, to define two "ranges" per field or sequences over frames
Fieldwise switching between Decoder-part and Expansion port (X-port) input
Brightness, contrast and saturation controls for scaled outputs
2.4
VBI Data Slicer
Versatile VBI-data decoder, slicer, clock regeneration and byte synchronization, e.g. for:
WST525 / WST625 (CCST)
VPS
US / European Close Caption (CC),
WSS525 (CGMS), WSS625,
US NABTS
VITC 525 / VITC 625
GEMSTAR 1x
GEMSTAR 2x
Moji
I
2
C Readback of the following decoded data types:
US Close Caption (CC)
European Close Caption (CC)
Preliminary
NDA required
Confidential - NDA required
page 8
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
WSS525 (CGMS)
WSS625 (CGMS)
GEMSTAR 1x
GEMSTAR 2x
2.5
Clock Generation
On-Chip Line Locked Clock Generation according ITU601
Generation of a frame locked Audio Master Clock to support a constant number of audio clocks per video field.
Second onboard analog PLL to be used for:
On-Chip Line Locked Square Pixel Clock Generation for PAL and NTSC Square Pixel Video Output or
optionally Generation of a low jitter frame locked Audio Clock from the Audio Master Clock through reuse of the
analog Square Pixel PLL. Supported audio clock frequencies are 256*fs, 384*fs and 512*fs (fs = 32 KHz, 44.1 KHz
or 48 KHz).
2.6
General Features
CMOS 3.3 V device with 5 V tolerant digital inputs and I/O ports
Programming via serial I
2
C-bus, full read-back ability by an external controller, bit rate up to 400 kbit/s
Software controlled power saving stand-by modes
Boundary Scan Test circuit complies to the IEEE Std. 1149.b1 -1994
Preliminary
NDA required
Confidential - NDA required
page 9
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
2.7
Summary SAA7114 versus SAA7115
Table 1
SAA7114 versus SAA7115
ISSUE
SAA7114
SAA7115
Pin compatibility
reference pinning
pin-compatible to SAA7114
Analog Frontend
2 x 9 bit A/D- converters
2 x Low Noise 9 bit A/D- converters
13.5 MHz CCIR sampling
27 MHz CCIR 2x-oversampling
Standard White-Peak Control watching raw data
Standard White-Peak Control watching
raw data plus baseband luminance data
Combfilter Decoder
4 lines adaptive comb filter
Improved 4 lines adaptive comb filter
(reduced artifacts)
Manual TV/VCR switching
Automatic TV/VCR detection
Semi-automatic color standard detection
Fully-automatic color standard detection
Regular SECAM 50 Hz
Regular SECAM 50 Hz and SECAM 60
Hz (Vietnam)
Color overflow detection
Automatic color reducer (avoids color
limitation with low burst)
Safe lock for VCR feature modes
Extended safe lock for VCR feature
modes
Fast frame lock (ca. 2 fields)
Ultra-fast frame lock (almost 1 field)
Macrovision
Detection
`Pseudo Sync.'Macrovision Detection only
Comprehensive Macrovision Detection:
- `Pseudo Sync.' detection and/or
- Split Burst detection (Type 2 / Type 3)
Scaled Video Output
Generation of embedded ITU-656 auxiliary
codes at the I-Port video output
Generation of embedded ITU-656
auxiliary codes at the I-Port video output
with improved synchronization raster for
VCR signals
Clock Generation
Scaling to Square Pixel Data representation
Scaling to Square Pixel Data
representation with extra integrated
clock-PLL (PLL2, CGC2) to generate
physical Square Pixel Clock signal of 29.5
MHz (PAL) or 24.5454 MHz (NTSC).
Field- locked audio clock (constant number of
clock cycles per field)
Frame- locked audio clock (constant
number of clock cycles per frame),
optionally through analog PLL (CGC2)
VBI Data Slicing and
Output
Versatile VBI- data slicer
Versatile VBI- data slicer, incl. CGMS
(Line 20 NTSC) and GemStar 2x (EPG)
Output of sliced data embedded into I-Port
output stream
Output of sliced data embedded into
I-Port output stream and optionally
per I2C register readback for
CC, CGMS, Gemstar1x and Gemstar2x,
Preliminary
NDA required
Confidential - NDA required
page 10
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
3
GENERAL DESCRIPTION
The SAA7115 is a video capture device for various applications ranging from small screen products like e.g. digital settop
boxes, personal video recording applications to big screen devices like e.g. LCD projectors due to it's improved combfilter
performance and 10 bit video output capabilities.
The SAA7115 is a combination of a two channel analog preprocessing circuit including Source-Selection, Anti-Aliasing
Filter and A/D-converter, an Automatic Clamp and Gain Control, two Clock Generation Circuits (CGC1, CGC2), a Digital
Multi Standard Decoder containing two-dimensional chrominance/luminance separation by an improved adaptive comb
filter and a high performance scaler, including variable horizontal and vertical up and down scaling and a Brightness-
Contrast- Saturation- Control circuit.
The decoder is based on the principle of line-locked clock decoding and is able to decode the colour of PAL, SECAM
and NTSC signals into ITU-601 compatible colour component values. The SAA7115 accepts as analog inputs CVBS or
S-Video (Y-C) from TV or VCR sources, including weak and distorted signals.
The expansion port (X-port) for digital video (bi-directional half duplex, D1 compatible) can be used either to output
unscaled video using 10 bit or 8 bit dithered resolution or to connect to other external digital video sources for reuse of
the SAA7115 scaler features.
The enhanced image port (I-port) of the 7115 supports 8 (16) bit wide output data with auxiliary reference data for
interfacing to e.g. VGA controllers, settop box applications etc. It is also possible to output video in Square Pixel formats
accompanied by a square pixel clock of the appropriate frequency.
In parallel SAA7115 incorporates also provisions for capturing the serially coded data in the vertical blanking interval
(VBI-data) of several standards. Three basic options are available to transfer the VBI data to other devices:
capturing raw video samples, after interpolation to the required output data rate, using the scaler and transferring the
data to a device connected to the I-port,
slicing the VBI data using the build in VBI data slicer (data recovery unit) and transferring the data to a device
connected to the I-port
slicing the VBI data using the build in VBI data slicer and reading out the sliced data via the I
2
C bus (for several slow
VBI data type standards only)
SAA7115 incorporates also a frame locked audio clock generation. This function ensures that there is always the same
number of audio samples associated with a frame, or a set of fields. This prevents the loss of sychronisation between
video and audio, during capture or playback. Furthermore the second analog onboard PLL optionally can be used to
enhance this audio clock to a low jitter frame locked audio clock.
The SAA7115 is controlled via I
2
C-bus (full write / read capability for all programming registers, bit rate up to 400 kbits/s)
Preliminary
NDA required
Confidential - NDA required
page 11
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
4
QUICK REFERENCE DATA
5
ORDERING INFORMATION
SYMBOL
PARAMETER
MIN
TYP
MAX
UNIT
V
DDx
digital supply voltage
3.0
3.3
3.6
V
V
DDCx
digital supply voltage range core
3.0
3.3
3.6
V
V
DDA
analog supply voltage range
3.1
3.3
3.5
V
T
amb
ambient temperature range
0
-
70
C
P
A+D
analog and digital power consumption
(1)
1.
Power consumption is measured in CVBS-input mode (only one ADC active) and 8 bit image port output mode, expansion port
is tristated
-
t.b.d.
-
W
EXTENDED TYPE
NUMBER
PACKAGE
PINS
PIN POSITION
MATERIAL
CODE
SAA7115
100
LQFP100
Plastic
SOT407-CD5
Preliminary
NDA required
Confidential - NDA required
page 12
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
6
BLOCK DIAGRAM
analog
dual
ADC
Line
FIFO
b
uff
er
FIR - Prefilter
Hor
iz
ontal
Scaling
R
T
out
IIC
video
FIFO
32
MUX
8(16)
to
prog
r
amming
Register
arr
a
y
A / B
MUX
Reg.
gener
al pur
pose
VBI data slicer
e
v
ent controller
video / te
xt
arbiter
X por
t I/O f
o
r
matting
fr
ame loc
k
e
d
PLL
eXpansion
por
t
pin
mapping
Image port pin mapping
digital
decoder
boundar
y
test
scan
XTRI
IPD[7:0]
IGPV
XRDY
LLC
LLC2
RTCO
RTS0
RTS1
HPD[7:0]
TEST1
TEST2
TEST5
TEST4
TEST3
AI11
AI12
AI21
AI22
AI23
AI24
TRSTN
TCK
TMS
TDI
TDO
AXMCLK
ALRCLK
ASCLK
*)
AMCLK
*)
IGPH
IDQ
TEST0
A
OUT
XT
ALO
XT
ALI
XT
OUT
CE
RESON
clock gener
ation and
pow
er on control
The Pins R
TCO and ALRCLK
definition of the cr
ystal osc.
Note:
SCL
SDA
Prescaler
Fine
(Phase)
te
xt
FIFO
of the IIC interf
ace and the
are used f
or configur
ation
frequency at RESET
Bloc
k dia
gram SAA7115
with
adaptiv
e
comb
filter
I/O control
(pin str
apping)
and
scaler BCS
V
e
r
tical
Scaling
XCLK
XDQ
XPD[7:0]
XRH
*)
XRV
*)
IGP1
IGP0
ITRI
ITRD
Y
ICLK
VDDI
VDDE
VDDA
VSSI
VSSE
VSSA
A
GND
30
27
4
7
6
20
18
16
14
12
10
22
19
AI1D
AI2D
13
28
29
36
34
35
94
95
81,82,
92
91
96
80
84-87,
89,90
64-67,
69-72
32
31
79
78
77
74
73
44
53
46
48
52
47
42
54-57,
59-62
45
49
97
98
99
3
2
37
40
39
41
33,43,
58,68,
83,93
1,25,
51,75
11,17,
23
38,63,
88
26,50,
76,100
9,15,
24
VXDD
VXSS
8
5
Fig.1 SAA7115 Block Diagram
PLL2
audio cloc
k
CGC2
audio cloc
k
gener
ation
puls gener
ator
Preliminary
NDA required
Confidential - NDA required
page 13
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
7
PINNING
7.1
Pinning List and Pinning Diagram
Table 2
Pinning List SAA7115
SYMBOL
PIN
I/O/P
DESCRIPTION
V
DDE
1
P
digital supply voltage 3.3 V (external pad supply)
TDO
2
O
Test Data Output for Boundary Scan Test
(2)
TDI
3
I
Test Data Input for Boundary Scan Test (with internal pull-up)
(2)
XTOUT
4
O
crystal oscillator output signal, auxiliary signal
V
XSS
5
P
ground pin for crystal oscillator
XTALO
6
O
24.576 (32.11) MHz crystal oscillator output; not connected if XTALI is driven
by an external single-ended oscillator.
XTALI
7
I
Input terminal for 24.576 (32.11) MHz crystal oscillator or connection of exter-
nal oscillator with TTL compatible square wave clock signal.
V
XDD
8
P
supply voltage pin of crystal oscillator
V
SSA2
9
P
ground for analog inputs AI2x
AI24
10
I
analog input 24
V
DDA2
11
P
analog supply voltage for analog inputs AI2x (3.3V)
AI23
12
I
analog input 23
AI2D
13
I
differential input for ADC channel 2 (pins AI24, AI23, AI22, AI21)
AI22
14
I
analog input 22
V
SSA1
15
P
ground for analog inputs AI1x
AI21
16
I
analog input 21
V
DDA1
17
P
analog supply voltage for analog inputs AI1x (3.3V)
AI12
18
I
analog input 12
AI1D
19
I
differential input for ADC channel 1 (pins AI12, AI11)
AI11
20
I
analog input 11
AGND
21
P
analog ground connection
AOUT
22
O
Analog test output (do not connect)
V
DDA0
23
P
analog positive supply voltage for both internal CGC (Clock Generation Cir-
cuit) (3.3V)
V
SSA0
24
P
analog ground for internal CGC
Preliminary
NDA required
Confidential - NDA required
page 14
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
V
DDE
25
P
digital supply voltage 3.3 V (external pad supply)
V
SSE
26
P
digital ground (external pad supply)
CE
27
I
Chip Enable or RESET input (with internal pull up)
LLC
28
O
line-locked system clock output (27 MHz nominal), for backward compatibility,
do not use for new applications
LLC2
29
O
line locked clock/2 output (13.5 MHz nominal) for backward compatibility, do
not use for new applications
RESON
30
O
RESet Output Not signal
SCL
31
I (/O)
IIC serial clock line (with inactive output path)
SDA
32
I/O
IIC serial data line
V
DDI
33
P
digital supply voltage 3.3 V internal core supply)
RTS0
34
O
real time status or sync information, controlled by subaddr. "11h and 12h"
RTS1
35
O
real time status or sync information, controlled by subaddr. "11h and 12h"
RTCO
36
(I/) O
Real Time Control Output: contains information about actual system clock
frequency, field rate, odd/even sequence, decoder status, subcarrier phase and
frequency and PAL sequence (according to RTC level 3.1, refer to external
document "RTC Functional Specification" for details), can be strapped to supply
via a 3.3 kOhm resistor to change the default IIC-wr-addresses from 42/43
(internal pull down) to 40/41.
AMCLK
37
O
audio master clock output
V
SSI
38
P
digital ground (internal core supply)
ASCLK
39
O
audio serial clock output
ALRCLK
40
(I/) O
audio left/right clock output,
Can be strapped to supply via a 3.3 kOhm resistor indicate that the default
24.576 MHz crystal (internal pull down) has been replaced by a 32.11 MHz
crystal.
AMXCLK
41
I
audio master external clock input (typing error corrected)
ITRDY
42
I
target ready input, image port (with internal pull up)
V
DDI
43
P
digital supply voltage 3.3 V (internal core supply)
TEST0
44
O
do not connect, reserved for future extensions and for Testing: scan output
ICLK
45
I/O
clock output signal for image-port, LCLK of LPB image port mode, or optional
asynchron. backend clock input
IDQ
46
O
output data qualifier for image port
(optional: gated clock output)
SYMBOL
PIN
I/O/P
DESCRIPTION
Preliminary
NDA required
Confidential - NDA required
page 15
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
ITRI
47
I (/O)
image-port output control signal, effects all I-port pins incl. ICLK,
enable and active polarity is under software control (bits IPE in subaddr. "87")
output path used for Testing: scan output
IGP0
48
O
general purpose output signal 0; image-port (controlled by subaddr. "84","85")
IGP1
49
O
general purpose output signal 1; image-port (controlled by subaddr. "84","85"),
same functions as IGP0
V
SSE
50
P
digital ground (external pad supply)
V
DDE
51
P
digital supply voltage 3.3 V (external pad supply)
IGPV
52
O
multi purpose vertical reference output signal; image-port
(controlled by subaddr. "84","85")
IGPH
53
O
multi purpose horizontal reference output signal; image-port
(controlled by subaddr. "84","85")
IPD7
IPD6
IPD5
IPD4
54
55
56
57
O
O
O
O
image port data output
V
DDI
58
P
digital supply voltage 3.3 V (internal core supply)
IPD3
IPD2
IPD1
IPD0
59
60
61
62
O
O
O
O
image port data output
V
SSI
63
P
digital ground (internal core supply)
HPD7
HPD6
HPD5
HPD4
64
65
66
67
I/O
I/O
I/O
I/O
Host port data I/O, carries UV chrominance information in 16 bit video I/O
modes
V
DDI
68
P
digital supply voltage 3.3 V (internal core supply)
HPD3
HPD2
HPD1
HPD0
69
70
71
72
I/O
I/O
I/O
I/O
Host port data I/O, carries UV chrominance information in 16 bit video I/O
modes
TEST1
73
I
do not connect, reserved for future extensions and for Testing: scan input
SYMBOL
PIN
I/O/P
DESCRIPTION
Preliminary
NDA required
Confidential - NDA required
page 16
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
TEST2
74
I
do not connect, reserved for future extensions and for Testing: scan input
V
DDE
75
P
digital supply voltage 3.3 V (external pad supply)
V
SSE
76
P
digital ground (external pad supply)
TEST3
77
I
do not connect, reserved for future extensions and for Testing: scan input
TEST4
78
O
do not connect, reserved for future extensions and for Testing: scan output
TEST5
79
I
do not connect, reserved for future extensions and for Testing: scan input
XTRI
80
I
X-port output control signal, effects all X-port pins (XPD[7:0], XRH, XRV, XDQ
and XCLK)
enable and active polarity is under software control (bits XPE in subaddr. "83")
XPD7
XPD6
81
82
I/O
I/O
expansion-port data:
In eight bit video output mode: these signal represent the video bits 7 to 6.
In ten bit video output mode: these signal represent the video bits 9 to 8.
V
DDI
83
P
digital supply voltage 3.3 V (internal core supply)
XPD5
XPD4
XPD3
XPD2
84
85
86
87
I/O
I/O
I/O
I/O
expansion-port data:
In eight bit video output mode: these signal represent the video bits 5 to 2.
In ten bit video output mode: these signal represent the video bits 7 to 4.
V
SSI
88
P
digital ground (internal core supply)
XPD1
XPD0
89
90
I/O
I/O
expansion-port data:
In eight bit video output mode: these signal represent the video bits 1 to 0.
In ten bit video output mode: these signal represent the video bits 3 to 2.
XRV
91
I/O
vertical reference I/O expansion-port:
In ten bit video output mode: this signal represents the video bit 0.
XRH
92
I/O
horizontal reference I/O expansion-port:
In ten bit video output mode: this signal represents the video bit 1.
V
DDI
93
P
digital supply voltage 3.3 V (internal core supply)
XCLK
94
I/O
clock I/O expansion port
XDQ
95
I/O
data qualifier I/O expansion port
XRDY
96
O
task flag or read signal from scaler, controlled by XRQT (subaddr. 83H)
TRSTN
97
I
Test ReSeT Not for Boundary Scan Test (with internal pull-up); for board design
without Boundary Scan connect TRSTN to `ground'
(1)
SYMBOL
PIN
I/O/P
DESCRIPTION
Preliminary
NDA required
Confidential - NDA required
page 17
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Notes
1. This pin provides easy initialization of BST circuitry. TRSTN can be used to force the TAP (Test Access Port)
controller to the Test-Logic-Reset state (normal operation) at once
2. According to the IEEE1149.b1-1994 standard the pads TDI and TMS are input pads with a internal pull-up transistor
and TDO a tri-state output pad. TCK, TRSTN are also build with internal pull_up
TCK
98
I
Test Clock for Boundary Scan Test (with internal pull-up)
(2)
TMS
99
I
Test Mode Select for Boundary Scan Test or Scan Test (with internal pull-up)
(2)
V
SSE
100
P
digital ground (external pad supply)
SYMBOL
PIN
I/O/P
DESCRIPTION
Preliminary
NDA required
Confidential - NDA required
page 18
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Fig.2 Pinning of the SAA7115
SAA7115
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
75
74
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
HPD0
HPD1
HPD2
HPD3
HPD4
HPD5
HPD6
HPD7
IPD0
IPD1
IPD2
IPD3
IPD4
IPD5
IPD6
IPD7
V
DDE
XTALO
XTALI
V
DDA0
V
SSA0
V
SSA2
AI24
V
DDA2
AI23
AI2D
AI22
V
SSA1
AI21
V
DDA1
AI12
AI1D
AI11
AGND
AOUT
V
DDE
LLC
LLC2
V
DDI
R
TS0
TEST0
ICLK
V
SSE
TCK
TEST3
TRSTN
XPD0
XPD1
XPD2
XPD3
XPD4
TEST5
TEST4
XR
V
PRELIMINARY
78
77
76
V
DDI
V
SSE
V
DDI
V
SSI
V
DDI
V
SSE
V
DDE
V
DDI
V
SSI
V
DDI
V
SSE
V
XDD
V
XSS
V
DDE
XTOUT
TDI
XRD
Y
XDQ
XPD5
XPD6
XPD7
XCLK
IGPH
IGPV
TEST1
ITRD
Y
IDQ
V
SSI
R
TS1
TDO
AMCLK
CE
SD
A
ITRI
ASCLK
ALRCLK
TEST2
TMS
XRH
XTRI
RESON
AMXCLK
SCL
IGP0
IGP1
R
TCO
Preliminary
NDA required
Confidential - NDA required
page 19
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
7.2
Pin Configurations
Table 3
Pin Configurations
pin no
pin name
8 bit input
modes
16 bit
input
modes
alternative
input
functions
8 bit output
modes
16 bit
output
modes
alternative
output
functions
I/O configuration prog. bits
81,82
84-87
89,90
XPD7...0
D1
data
input
Y data
input
D1 decoder
output [7:0]
XCODE[92[3]]
XPE[83[1:0]]
+ pin XTRI
OFTS[1B[4], 13[2:0]]
D1 decoder
output [9:2]
10-bit mode
XCODE[92[3]]
XPE[83[1:0]]
+ pin XTRI
OFTS[1B[4], 13[2:0]]
94
XCLK
clock
input
gated
clock
input
decoder
clock output
XPE[83[1:0]}
+ pin XTRI
XPCK[83[5:4]]
XCKS[92[0]],
95
XDQ
data
qualifier
input
data quali-
fier output
(HREF
&&VREF
gate)
XDQ[92[1]]
XPE[83[1:0]]
+ pin XTRI
96
XRDY
input
ready
output
active
task A/B
flag
XRQT[83[2]]
XPE[83[1:0]]
+ pin XTRI
92
XRH
H-ref.
input
decoder
H-ref output
XDH[92[2]]
XPE[83[1:0]]
+ pin XTRI
D1 decoder
output [1]
10-bit mode
XDH[92[2]]
XPE[83[1:0]]
+ pin XTRI
OFTS[1B[4], 13[2:0]]
80
XRV
V-ref.
input
decoder
V-ref output
XDV[92[5:4]]
XPE[83[1:0]]
+ pin XTRI
D1 decoder
output [0]
10-bit mode
XDV[92[5:4]]
XPE[83[1:0]]
+ pin XTRI
OFTS[1B[4], 13[2:0]]
80
XTRI
output
enable
input
XPE[83[1:0]]
64-67
69-72
HPD7...0
UV data
input
UV
scaler
output
ICODE[93[7]]
ISWP[85[7:6]]
ICKS[80[3:2]]
IPE[87[1:0]]
+ pin ITRI
54-57
59-62
IPD7...0
D1 scaler
output
Y scaler-
output
ICODE[93[7]]
ISWP[85[7:6]]
ICKS[80[3:2]]
IPE[87[1:0]]
+ pin ITRI
45
ICLK
clock output
clock
input
ICKS[80[1:0]]
IPE[87[1:0]]
+ pin ITRI
ICKS[80[3:2]]
46
IDQ
data quali-
fier output
gated
clock out-
put
ICKS[80[3:2]]
IDQP[85[0]]
IPE [87[1:0]]
+ pin ITRI
42
ITRDY
target ready
input
Preliminary
NDA required
Confidential - NDA required
page 20
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
7.3
SAA7115 Pin Strapping
Table 4
SAA7115 Pin Strapping
Note
1. Pin strapping is done by connecting the pin to supply via a 4.7 kOhm resistor. During the power up reset sequence
the corresponding pins are switched to input-mode to read the strapping level. For the default setting no strapping
resistor is necessary (internal pull down)
53
IGPH
H-gate out-
put
extended
H-gate,
H- pulses
IDH[84[1:0]]
IRHP[85[1]]
IPE[87[1:0]]
+ pin ITRI
52
IGPV
V-gate output
V-sync,
V-pulses
IDV[84[3:2]]
IRVP[85[2]]
IPE[87[1:0]]
+ pin ITRI
49
IGP1
general pur-
pose
IDG1[86[5],84[7:6]]
IG1P[85[4]]
IPE [87[1:0]]
+ pin ITRI
48
IGP0
general pur-
pose
IDG0[86[4],84[5:4]]
IG0P[85[3]]
IPE[87[1:0]]
+ pin ITRI
47
ITRI
output ena-
ble input
pin no
pin name
function
36
RTCO
operates as IICSA pin, "0" = SA 42/43 hex (default), "1" = SA 40/41 hex
40
ALRCLK
0 = 24.576 MHz crystal (default)
1 = 32.110 MHz crystal
pin no
pin name
8 bit input
modes
16 bit
input
modes
alternative
input
functions
8 bit output
modes
16 bit
output
modes
alternative
output
functions
I/O configuration prog. bits
Preliminary
NDA required
Confidential - NDA required
page 21
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8
FUNCTIONAL DESCRIPTION
8.1
Decoder
8.1.1
A
NALOG INPUT PROCESSING
The SAA7115 offers six analog signal inputs, two analog main channels with source switch, clamp circuit, analog
amplifier, anti-alias filter and video 9-bit CMOS ADC with a Decimation Filter (DF); see Figs 4 and 7.
The anti-alias filters are adapted to the line-locked clock frequency via a filter control circuit. The characteristic is shown
in Fig.3. During the vertical blanking period gain and clamping control are frozen.
Fig.3 Anti-alias filter.
6
V
(dB)
-
42
0
2
4
6
8
10
12
14
f (MHz)
MGD138
-
6
-
12
-
18
-
24
-
30
-
36
0
Preliminary
NDA required
Confidential - NDA required
page 22
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
0 0.5
1 1.5
2 2.5
3 3.5
4 4.5
5 5.5
6 6.5
7 7.5
8 8.5
9 9.5 10 10.5 11 11.5 12 12.5 13 13.5
gain
(dB)
f (MHz)
Fig.4 Decimation filter.
Preliminary
NDA required
Confidential - NDA required
page 23
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.1.1.1
Clamping
The clamp control circuit controls the correct clamping of the analog input signals. The coupling capacitor is also used
to store and filter the clamping voltage. An internal digital clamp comparator generates the information with respect to
clamp-up or clamp-down. The clamping levels for the two ADC channels are fixed for luminance (120),
chrominance (256) and for component inputs as component Y (32), components P
B
and P
R
(256). The clamping time is
defined by the internally generated HCL pulse on the back porch of the video signal.
8.1.1.2
Gain control
The gain control circuit receives (via the I
2
C-bus) the static gain levels for the two analog amplifiers or controls one of
these amplifiers automatically via a built-in Automatic Gain Control (AGC) as part of the Analog Input Control (AICO).
The AGC (automatic gain control for luminance) is used to amplify a CVBS or Y signal to the required signal amplitude,
matched to the ADCs input voltage range. The AGC active time is the sync bottom of the video signal and is defined by
the internally generated HSY pulse.
Signal (white) peak control limits the gain at signal overshoots. The flow charts (see Figs 8 and 9) show more details of
the AGC. The influence of supply voltage variation within the specified range is automatically eliminated by clamp and
automatic gain control.
handbook, halfpage
HCL
MHB726
HSY
analog line blanking
TV line
1
120
511
GAIN
CLAMP
Fig.5
Analog line with clamp (HCL) and gain
range (HSY).
Preliminary
NDA required
Confidential - NDA required
page 24
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Fig.6 Automatic gain range.
analog input level
controlled
ADC input level
maximum
minimum
range 9 dB
0 dB
0 dB
MHB325
+
3 dB
-
6 dB
(1 V (p-p) 18/56
)
Preliminary
NDA required
Confidential - NDA required
page 25
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Fig.7 Analog input processing using the SAA7115 as differential front-end with 9-bit ADC.
AI23
AI21
FUSE (1:0)
FUSE [1:0]
AOSL (2:0)
HOLDG
ANALOG
CONTROL
GAI1[8:0]
VBSL
CHROMA
CVBS/Y
VERTICAL
BLANKING
CONTROL
SOURCE
SWITCH
CLAMP
CIRCUIT
ANALOG
AMPLIFIER
ANTI-ALIAS
FILTER
BYPASS
SWITCH
SOURCE
SWITCH
CLAMP
CIRCUIT
ANALOG
AMPLIFIER
ANTI-ALIAS
FILTER
BYPASS
SWITCH
ADC 2
TEST
SELECTOR
CLAMP
CONTROL
GAIN
CONTROL
CROSS
MULTIPLEXER
ADC 1
ANTI-ALIAS
CONTROL
AOUT
MODE
CONTROL
MODE [3:0]
GAI2[8:0]
GUDL[1:0]
GAFIX
WPOFF
HSY
VBLNK
SVREF
HCL
BUFFER
+
DAC9
DAC9
HLNRS
UPTCV
GLIMB
GLIMT
WIPA
SLTCA
9
9
Differential Frontend with 9 bit ADC's
AI2D
9
9
AI12
AI11
AI1D
AI22
AI24
BPFOUT1
BPFOUT2
(Test signals from PLL1/PLL2)
Decimation
Filter 1
Decimation
Filter 2
OFTS (3:0)
XPD[7:0],
XRH
processed
video
Preliminary
NDA required
Confidential - NDA required
page 26
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
handbook, full pagewidth
ANALOG INPUT
AMPLIFIER
ANTI-ALIAS FILTER
ADC
LUMA/CHROMA DECODER
X
HSY
>
510
>
510
<
1
<
4
>
496
X = 0
X = 1
-
1/LLC2
+
1/LLC2
-
1/LLC2
+
/
-
0
+
1/F
+
1/L
GAIN ACCUMULATOR (18 BITS)
ACTUAL GAIN VALUE 9-BIT (AGV) [
-
3/
+
6 dB]
X
STOP
HSY
Y
UPDATE
FGV
MHB728
AGV
GAIN VALUE 9-BIT
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
VBLK
1
0
NO ACTION
9
9
DAC
gain
HOLDG
Fig.8 Gain flow chart.
X = system variable.
.
GUDL = gain update level (adjustable).
VBLK = vertical blanking pulse.
HSY = horizontal sync pulse.
AGV = actual gain value.
FGV = frozen gain value.
Y
AGV
FGV
GUDL
>
=
Preliminary
NDA required
Confidential - NDA required
page 27
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Fig.9 Clamp and gain flow chart.
WIPE = white peak level (510).
SBOT = sync bottom level (1).
CLL = clamp level [120 for CVBS, Y(C), S; 256 for C(Y), P
B
-P
R
; 32 for RGB, Y].
HSY = horizontal sync pulse.
HCL = horizontal clamp pulse.
1
0
+
CLAMP
-
CLAMP
NO CLAMP
1
0
1
0
0
1
1
0
MGC647
fast
-
GAIN
slow
+
GAIN
+
GAIN
-
GAIN
HCL
HSY
ADC
SBOT
WIPE
CLL
ANALOG INPUT
GAIN ->
<- CLAMP
VBLK
NO BLANKING ACTIVE
1
0
Preliminary
NDA required
Confidential - NDA required
page 28
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.1.2
C
HROMINANCE AND LUMINANCE PROCESSING
8.1.2.1
Chrominance path
The 9-bit CVBS or chrominance input signal is fed to the input of a quadrature demodulator, where it is multiplied by two
time-multiplexed subcarrier signals from the subcarrier generation block 1 (0
and 90
phase relationship to the
demodulator axis). The frequency is dependent on the chosen colour standard.
The time-multiplexed output signals of the multipliers are low-pass filtered (low-pass 1). Eight characteristics are
programmable via LCWB3 to LCWB0 to achieve the desired bandwidth for the colour difference signals (PAL, NTSC) or
the 0
and 90
FM signals (SECAM).
Fig.10 Chrominance and luminance processing.
CVBS-IN
CODE
SECS
HUEC
DCVF
Quadrature
Demodulator
PAL-Dly-Line
Demod.
Phase
Detector
Amplitude
Accu
Burst Gate
Low Pass 1
Loop Filter
Subcarrier
Increment
Generation
Subcarrier
Generation 2
&
Divider
FCTC
CSTD[2:0]
INCS
RTCO
SECAM-
Gain
Control
UV-
Adjustment
Recombination
SECAM-
Processing
f
H
/2 switch signal
downsampling
Adaptive
Comb
Filter
CCOMB
YCOMB
LDEL
BYPS
LUFI[3:0]
Low Pass 2
CHBW
Chroma
UV
Low Pass 3
Interpolation
LUBW
UV
Quadrature
Modulator
CDTO
Subcarrier
Generation 1
Chr.-Incr.
DTO-reset
Chr.-Incr.
Delay
LDEL
YCOMB
UV
Subtractor
Delay Comp.
CVBS-IN
CHR
Luminance-
LCBW[2:0]
Peaking
or
Low Pass,
CSTD[2:0]
YDEL[2:0]
Y
Y/CVBS
Y-Delay adjust.
DSAT[7:0]
DCON[7:0]
DBRI[7:0]
Brightness
Contrast
Saturation
Control
Raw data
Gain &
Offset
Control
RAWG[7:0]
RAWO[7:0]
ACGC
CGAIN[6:0]
IDEL[3:0]
LDEL
YCOMB
COLO
Y-OUT / CVBS-OUT
UV-OUT
HREF-OUT
SET_RAW
SET_VBI
SET_RAW
SET_VBI
or Y-IN
or CHR-IN
SET_RAW
SET_VBI
SET_RAW
SET_VBI
UV
HODG
VEDG
MEDG
CMBT
VEDT
Detector
Colorstripe
Burst
COLSTR, TYPE3
Preliminary
NDA required
Confidential - NDA required
page 29
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
The chrominance low-pass 1 characteristic also influences the grade of cross-luminance reduction during horizontal
colour transients (large chrominance bandwidth means strong suppression of cross-luminance). If the Y-comb filter is
disabled by YCOMB = 0 the filter influences directly the width of the chrominance notch within the luminance path (a
large chrominance bandwidth means wide chrominance notch resulting in a lower luminance bandwidth).
The low-pass filtered signals are fed to the adaptive comb filter block. The chrominance components are separated from
the luminance via a two line vertical stage (four lines for PAL standards) and a decision logic and mixing stage between
the filtered and the non-filtered output signals. The decision logic can be fine adjusted by the control signals HODG,
VEDG, MEDG, VEDT and CMBT. This block is bypassed for SECAM signals. The comb filter logic can be enabled
independently for the succeeding luminance and chrominance processing by YCOMB (subaddress 09H, bit 6) and/or
CCOMB (subaddress 0EH, bit 0). It is always bypassed during VBI or raw data lines programmable by the LCRn
registers (subaddresses 41H to 57H); see Section 8.4.
The separated C
B
-C
R
components are further processed by a second filter stage (low-pass 2) to modify the chrominance
bandwidth without influencing the luminance path. It's characteristic is controlled by CHBW (subaddress 10H, bit 3). For
the complete transfer characteristic of low-passes 1 and 2 see Figs 11 and 12.
The SECAM processing (bypassed for QAM standards) contains the following blocks:
Baseband `bell' filters to reconstruct the amplitude and phase equalized 0
and 90
FM signals
Phase demodulator and differentiator (FM-demodulation)
De-emphasis filter to compensate the pre-emphasized input signal, including frequency offset compensation (DB or
DR white carrier values are subtracted from the signal, controlled by the SECAM switch signal).
The succeeding chrominance gain control block amplifies or attenuates the C
B
-C
R
signal according to the required
ITU 601/656 levels. It is controlled by the output signal from the amplitude detection circuit within the burst processing
block.
The burst processing block provides the feedback loop of the chrominance PLL and contains the following:
Burst gate accumulator
Colour identification and colour killer
Comparison nominal/actual burst amplitude (PAL/NTSC standards only)
Loop filter chrominance gain control (PAL/NTSC standards only)
Loop filter chrominance PLL (only active for PAL/NTSC standards)
PAL/SECAM sequence detection, H/2-switch generation.
The increment generation circuit produces the Discrete Time Oscillator (DTO) increment for both subcarrier generation
blocks. It contains a division by the increment of the line-locked clock generator to create a stable phase-locked sine
signal under all conditions (e.g. for non-standard signals).
The PAL delay line block eliminates crosstalk between the chrominance channels in accordance with the PAL standard
requirements. For NTSC colour standards the delay line can be used as an additional vertical filter. If desired, it can be
switched off by DCVF = 1. It is always disabled during VBI or raw data lines programmable by the LCRn registers
(subaddresses 41H to 57H); see Section 8.4. The embedded line delay is also used for SECAM recombination
(cross-over switches).
The colorstripe burst detector detects partly or fully phase inverted burst according to the Macrovision standard. The
protection level is reported by the status flags COLSTR and TYPE3.
Preliminary
NDA required
Confidential - NDA required
page 30
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
MHB533
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
V
(dB)
f (MHz)
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
V
(dB)
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
f (MHz)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Fig.11 Transfer characteristics of the chrominance low-pass at CHBW = 0.
(1) LCBW[2:0] = 000.
(2) LCBW[2:0] = 010.
(3) LCBW[2:0] = 100.
(4) LCBW[2:0] = 110.
(5) LCBW[2:0] = 001.
(6) LCBW[2:0] = 011.
(7) LCBW[2:0] = 101.
(8) LCBW[2:0] = 111.
Preliminary
NDA required
Confidential - NDA required
page 31
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
MHB534
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
V
(dB)
f (MHz)
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
V
(dB)
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
f (MHz)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Fig.12 Transfer characteristics of the chrominance low-pass at CHBW = 1.
(1) LCBW[2:0] = 000.
(2) LCBW[2:0] = 010.
(3) LCBW[2:0] = 100.
(4) LCBW[2:0] = 110.
(5) LCBW[2:0] = 001.
(6) LCBW[2:0] = 011.
(7) LCBW[2:0] = 101.
(8) LCBW[2:0] = 111.
Preliminary
NDA required
Confidential - NDA required
page 32
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.1.2.2
Luminance path
The rejection of the chrominance components within the 9-bit CVBS or Y input signal is achieved by subtracting the
remodulated chrominance signal from the CVBS input.
The comb filtered C
B
-C
R
components are interpolated (upsampled) by the low-pass 3 block. It's characteristic is
controlled by LUBW (subaddress 09H, bit 4) to modify the width of the chrominance `notch' without influencing the
chrominance path. The programmable frequency characteristics available, in conjunction with the LCBW2 to LCBW0
settings, can be seen in Figs 13 to 16. It should be noted that these frequency curves are only valid for Y-comb disabled
filter mode (YCOMB = 0). In comb filter mode the frequency response is flat. The centre frequency of the notch is
automatically adapted to the chosen colour standard.
The interpolated C
B
-C
R
samples are multiplied by two time-multiplexed subcarrier signals from the subcarrier generation
block 2. This second DTO is locked to the first subcarrier generator by an increment delay circuit matched to the
processing delay, which is different for PAL and NTSC standards according to the chosen comb filter algorithm. The two
modulated signals are finally added to build the remodulated chrominance signal.
The frequency characteristic of the separated luminance signal can be further modified by the succeeding luminance
filter block. It can be configured as peaking (resolution enhancement) or low-pass block by LUFI3 to LUFI0
(subaddress 09H, bits 3 to 0). The 16 resulting frequency characteristics can be seen in Fig.17. The LUFI3 to LUFI0
settings can be used as a user programmable sharpness control.
The luminance filter block also contains the adjustable Y-delay part; programmable by YDEL2 to YDEL0
(subaddress 11H, bits 2 to 0).
Preliminary
NDA required
Confidential - NDA required
page 33
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
MHB535
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
V
(dB)
f (MHz)
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
V
(dB)
f (MHz)
(5)
(6)
(7)
(8)
(1)
(2)
(3)
(4)
Fig.13 Transfer characteristics of the luminance notch filter in 3.58 MHz mode (Y-comb filter disabled) at
LUBW = 0.
(1) LCBW[2:0] = 000.
(2) LCBW[2:0] = 010.
(3) LCBW[2:0] = 100.
(4) LCBW[2:0] = 110.
(5) LCBW[2:0] = 001.
(6) LCBW[2:0] = 011.
(7) LCBW[2:0] = 101.
(8) LCBW[2:0] = 111.
Preliminary
NDA required
Confidential - NDA required
page 34
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
MHB536
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
V
(dB)
f (MHz)
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
V
(dB)
f (MHz)
(5)
(6)
(7)
(8)
(1)
(2)
(3)
(4)
Fig.14 Transfer characteristics of the luminance notch filter in 3.58 MHz mode (Y-comb filter disabled) at
LUBW = 1.
(1) LCBW[2:0] = 000
(2) LCBW[2:0] = 010
(3) LCBW[2:0] = 100
(4) LCBW[2:0] = 110
(5) LCBW[2:0] = 001
(6) LCBW[2:0] = 011
(7) LCBW[2:0] = 101
(8) LCBW[2:0] = 111
Preliminary
NDA required
Confidential - NDA required
page 35
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
MHB537
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
V
(dB)
f (MHz)
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
V
(dB)
f (MHz)
(5)
(6)
(7)
(8)
(1)
(2)
(3)
(4)
Fig.15 Transfer characteristics of the luminance notch filter in 4.43 MHz mode (Y-comb filter disabled) at
LUBW = 0.
(1) LCBW[2:0] = 000.
(2) LCBW[2:0] = 010.
(3) LCBW[2:0] = 100.
(4) LCBW[2:0] = 110.
(5) LCBW[2:0] = 001.
(6) LCBW[2:0] = 011.
(7) LCBW[2:0] = 101.
(8) LCBW[2:0] = 111.
Preliminary
NDA required
Confidential - NDA required
page 36
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
MHB538
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
V
(dB)
f (MHz)
-
60
-
57
-
54
-
51
-
48
-
45
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
V
(dB)
f (MHz)
(5)
(6)
(7)
(8)
(1)
(2)
(3)
(4)
Fig.16 Transfer characteristics of the luminance notch filter in 4.43 MHz mode (Y-comb filter disabled) at
LUBW = 1.
(1) LCBW[2:0] = 000.
(2) LCBW[2:0] = 010.
(3) LCBW[2:0] = 100.
(4) LCBW[2:0] = 110.
(5) LCBW[2:0] = 001.
(6) LCBW[2:0] = 011.
(7) LCBW[2:0] = 101.
(8) LCBW[2:0] = 111.
Preliminary
NDA required
Confidential - NDA required
page 37
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
MHB539
-
1
0
1
2
3
4
5
6
7
8
9
V
(dB)
V
(dB)
f (MHz)
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
f (MHz)
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
(8)
(7)
(6)
(5)
(4)
(3)
(2)
(1)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
3
Fig.17 Transfer characteristics of the luminance peaking/low-pass filter (sharpness).
(1) LUFI[3:0] = 0001.
(2) LUFI[3:0] = 0010.
(3) LUFI[3:0] = 0011.
(4) LUFI[3:0] = 0100.
(5) LUFI[3:0] = 0101.
(6) LUFI[3:0] = 0110.
(7) LUFI[3:0] = 0111.
(8) LUFI[3:0] = 0000.
(9) LUFI[3:0] = 1000.
(10) LUFI[3:0] = 1001.
(11) LUFI[3:0] = 1010.
(12) LUFI[3:0] = 1011.
(13) LUFI[3:0] = 1100.
(14) LUFI[3:0] = 1101.
(15) LUFI[3:0] = 1110.
(16) LUFI[3:0] = 1111.
Preliminary
NDA required
Confidential - NDA required
page 38
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.1.2.3
Brightness Contrast Saturation (BCS) control and decoder output levels
The resulting Y (CVBS) and C
B
-C
R
signals are fed to the BCS block, which contains the following functions:
Chrominance saturation control by DSAT7 to DSAT0
Luminance contrast and brightness control by DCON7 to DCON0 and DBRI7 to DBRI0
Raw data (CVBS) gain and offset adjustment by RAWG7 to RAWG0 and RAWO7 to RAWO0
Limiting Y-C
B
-C
R
or CVBS to the values 1 (minimum) and 254 (maximum) to fulfil
"ITU Recommendation 601/656".
handbook, full pagewidth
LUMINANCE 100%
+
255
+
235
+
128
+
16
0
white
black
CB-COMPONENT
+
255
+
240
+
212
+
212
+
128
+
16
+
44
0
blue 100%
blue 75%
yellow 75%
yellow 100%
colourless
CR-COMPONENT
+
255
+
240
+
128
+
16
+
44
0
red 100%
red 75%
cyan 75%
cyan 100%
colourless
MHB730
Fig.18 Y-C
B
-C
R
range for scaler input and X-port output.
"ITU Recommendation 601/656"
digital levels with default BCS (decoder) settings DCON[7:0] = 44H, DBRI[7:0] = 80H and DSAT[7:0] = 40H.
Equations for modification to the Y-C
B
-C
R
levels via BCS control I
2
C-bus bytes DBRI, DCON and DSAT.
Luminance:
Chrominance:
It should be noted that the resulting levels are limited to 1 to 254 in accordance with
"ITU Recommendation 601/656"
.
Y
OUT
Int
DCON
68
-----------------
Y
128
(
)
DBRI
+
=
C
R
C
B
(
)
OUT
Int
DSAT
64
----------------
C
R
C
B
,
128
(
)
128
+
=
a. Y output range.
b. C
B
output range.
c. C
R
output range.
Preliminary
NDA required
Confidential - NDA required
page 39
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.1.3
S
YNCHRONIZATION
The prefiltered luminance signal is fed to the synchronization stage. Its bandwidth is further reduced to 1 MHz in a
low-pass filter. The sync pulses are sliced and fed to the phase detectors where they are compared with the sub-divided
clock frequency. The resulting output signal is applied to the loop filter to accumulate all phase deviations. Internal signals
(e.g. HCL and HSY) are generated in accordance with analog front-end requirements. The loop filter signal drives an
oscillator to generate the line frequency control signal LFCO; see Fig.20.
The detection of `pseudo syncs' as part of the macrovision copy protection standard is also achieved within the
synchronization circuit.
The result is reported as flag COPRO within the decoder status byte at subaddress 1FH.
8.1.4
C
LOCK GENERATION CIRCUIT
The internal CGC generates all clock signals required for the video input processor.
The internal signal LFCO is a digital-to-analog converted signal provided by the horizontal PLL. It is the multiple of the
line frequency:
6.75 MHz = 429
f
H
(50 Hz), or
6.75 MHz = 432
f
H
(60 Hz).
Fig.19 CVBS (raw data) range for scaler input, data slicer and X-port output.
CVBS levels with default settings RAWG[7:0] = 64 and RAWO[7:0] = 128.
Equation for modification of the raw data levels via bytes RAWG and RAWO:
It should be noted that the resulting levels are limited to 1 to 254 in accordance with "
ITU Recommendation 601/656"
.
CVBS
OUT
Int
RAWG
64
------------------
CVBS
nom
128
(
)
RAWO
+
=
LUMINANCE
+
255
+
209
+
71
+
60
1
white
sync bottom
black shoulder
black
SYNC
LUMINANCE
+
255
+
199
+
60
1
white
sync bottom
black shoulder = black
SYNC
MGD700
a. Sources containing 7.5 IRE black level offset
(e.g. NTSC M).
b. Sources not containing black level offset.
Preliminary
NDA required
Confidential - NDA required
page 40
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
The LFCO signal is multiplied by a factor of 2 and 4 in the internal PLL circuit (including phase detector, loop filtering,
VCO and frequency divider) to obtain the output clock signals. The rectangular output clocks have a 50% duty factor.
Table 5
Decoder clock frequencies
CLOCK
FREQUENCY (MHz)
XTALO
24.576 OR 32.110
LLC
27
LLC2
13.5
LLC4 (INTERNAL)
6.75
LLC8 (VIRTUAL)
3.375
Fig.20 Block diagram of the clock generation circuit.
BAND PASS
FC = LLC/4
ZERO
CROSS
DETECTION
PHASE
DETECTION
LOOP
FILTER
DIVIDER
1/2
DIVIDER
1/2
OSCILLATOR
MHB330
LLC2
LLC
LFCO
Preliminary
NDA required
Confidential - NDA required
page 41
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.1.5
P
OWER
-
ON RESET AND
C
HIP
E
NABLE
(CE)
INPUT
A missing clock, insufficient digital or analog V
DDA0
supply voltages (below 2.8 V) will start the reset sequence; all outputs
are forced to 3-state (see Fig.21). The indicator output RES is LOW for approximately 128 LLC after the internal reset
and can be applied to reset other circuits of the digital TV system.
It is possible to force a reset by pulling the Chip Enable pin (CE) to ground. After the rising edge of CE and sufficient
power supply voltage, the outputs LLC, LLC2 and SDA return from 3-state to active, while the other signals have to be
activated via programming.
However, some external devices require an active clock during reset to avoid hang up. For these applications it is
possible to activate both the I-port and/or the X-port outputs by pulling the ITRI- and/or XTRI inputs to logic 1 by an
external pull up resistor (4.7 k
).
In detail: Pulling ITRI to 1 activates the outputs ICLK, IPD[7:0], IDQ, IGPH, IGPV, IGP0 and IGP1; pulling XTRI to 1
activates the outputs XCLK, XPD[7:0], XDQ, XRH and XRV. During reset both ICLK and XCLCK deliver the LLC-clock
(27 MHz) generated by the internal decoder PLL.
If ITRI and/or XTRI are not connected, an internal pull up resistor takes care that these pins remain in 3-state.
In any case it is possible to force these ports to 3-state by setting XPE[1:0] and/or IPE[1:0] to 00.
Preliminary
NDA required
Confidential - NDA required
page 42
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Fig.21 Power-on control circuit.
POC = Power-on Control.
CE = chip enable input.
XTALO = crystal oscillator output.
LLCINT = internal system clock.
RESINT = internal reset.
LLC = line-locked clock output, occurs also on pins XCLK and/or ICLK if enabled via pull up resistor on XTRI and/or ITRI.
RES = reset output.
MHB331
128 LCC
896 LCC
digital delay
some ms
20 to 200
s
PLL-delay
<
1 ms
RES
(internal
reset)
LLC
RESINT
LLCINT
XTALO
CE
POC V
DDA
POC
LOGIC
ANALOG
POC V
DDD
DIGITAL
POC
DELAY
CLOCK
PLL
CE
LLC
CLK0
RESINT
RES
Preliminary
NDA required
Confidential - NDA required
page 43
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.2
Output Formatter
The Output Formatter of the decoder part contains the ITU 656 8 bit / 10 bit formatter for the expansion port (X-Port) data
output (XPD[7:0], XRH, XRV) including the selection of the reference signals for the RT port (RTCO, RTS0 and RTS1)
and the expansion port (XRH, XRV and XDQ) (for a detailed description see Section 9.4.1) as well as the control circuitry
for the signals needed for the internal paths to the scaler and data slicer part.
This control circuitry requests decoded video data (Y-C
B
-C
R
4 : 2 : 2) or raw data from the combfilter decoder output to
be provided to expansion port (X-Port) output, to the scaler input and to the VBI data slicer input. This data request is
user controlled by the line control registers LCR2 to LCR24 (see also Chapter 16; subaddresses 41H to 57H).
Each of the registers LCR2 to LCR23 defines a data type to be decoded in the associated line; i.e.: the VBI data type
can be set independently for each of the lines. Therefore LCR2 to LCR23 refer to line numbers. The selection in LCR24
values is valid for the rest of the corresponding field. The upper nibble of each of the 23 LCR registers contains the value
for field 1 (odd), the lower nibble for field 2 (even). The relationship between LCR values and line numbers can be
adjusted via VOFF8 to VOFF0, located in subaddresses 5BH (bit 4) and 5AH (bits 7 to 0), FOFF subaddress 5BH
(bit D7) and VEP subaddress 5BH (bit D5). The recommended values are VOFF[8:0] = 03H for 50 Hz sources (with
FOFF = 0) and VOFF[8:0] = 06H for 60 Hz sources (with FOFF = 1), to accommodate line number conventions as used
for PAL, SECAM and NTSC standards; see Tables 7 to 10.
Note: The line counting scheme for 60 Hz standards, with VOFF = 0x06, as mentioned in Fig.23, table 7 and table 8,
leads the VBI slicer to take the old field ID as reference for it's field processing. For consistent ID interpretation the VOFF
value need to be set to 0x03.
Table 6
Data formats at decoder output
The adjustment of the slicer processing, the adjustment of video output data via the expansion port (X-Port) and the
adjustment of video data transferred to the scaler relative to the input signal source is defined by the programming
Data type
60Hz / 525 Lines VBI Data Standards
50Hz / 625 Lines VBI Data Standards
No.
binary
DESCRIPTION
Decoder
output data
format
DESCRIPTION
Decoder
output data
format
0
0000
do not acquire (active video)
Y-C
B
-C
R
4:2:2
do not acquire (active video)
Y-C
B
-C
R
4:2:2
1
0001
US Teletext (WST525)
raw data
Euro Teletext (WST625)
raw data
2
0010
NABTS
raw data
Euro Teletext with
progammable Framing Code
raw data
3
0011
Moji
raw data
reserved
reserved
4
0100
US Closed Caption (CC525)
raw data
Euro Closed Caption (CC625)
raw data
5
0101
CGMS (WSS525)
raw data
Euro Wide Screen Signalling
(WSS625)
raw data
6
0110
VITC525
raw data
VITC625
raw data
7
0111
Gemstar2x
raw data
VPS
raw data
8
1000
Gemstar1x
raw data
reserved
reserved
9
1001
reserved
reserved
reserved
reserved
10
1010
Open1 (5 MHz)
raw data
Open1 (5 MHz)
raw data
11
1011
Open2 (5,7272 MHz)
raw data
Open2 (5,7272 MHz)
raw data
12
1100
reserved
reserved
reserved
reserved
13
1101
do not acquire (RAW)
raw data
do not acquire (RAW)
raw data
14
1110
do not acquire (Test)
reserved
do not acquire (Test)
reserved
15
1111
do not acquire (active video)
Y-C
B
-C
R
4:2:2
do not acquire (active video)
Y-C
B
-C
R
4:2:2
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 44
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
registers 59h to 5BH, There are programmable offsets in the horizontal and vertical direction available: parameters HOFF[10:0] 5BH[2:0] 59H[7:0],
VOFF[8:0] 5BH[4] 5AH[7:0], FOFF[5BH[7]] and VEP[5BH[5]]). I.e. these control registers are defining the decoder data output format - active video, raw
samples (optionally a test line), which is delivered from combfilter video decoder output to the expansion port output, the scaler and the VBI Data Slicer.
Table 7
Relationship of LCR to line numbers in 525 lines/60 Hz systems (part 1)
Vertical line offset, VOFF[8:0] = 06H,resp. 03H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0]
and 59H[7:0]); FOFF = 1 (subaddress 5BH[7]), VEP = 0 (subaddress 5BH[5])
Table 8
Relationship of LCR to line numbers in 525 lines/60 Hz systems (part 2)
Vertical line offset, VOFF[8:0] = 06H,resp. 03H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0]
and 59H[7:0]); FOFF = 1 (subaddress 5BH[7]), VEP = 0 (subaddress 5BH[5])
LINE
NUMBER
(1ST FIELD)
521
522
523
524
525
1
2
3
4
5
6
7
8
9
ACTIVE VIDEO
EQUALIZATION PULSES
SERRATION PULSES
EQUALIZATION PULSES
LINE
NUMBER
(2ND FIELD)
259
260
261
262
263
264
265
266
267
268
269
270
271
272
ACTIVE VIDEO
EQUALIZATION PULSES
SERRATION PULSES
EQUALIZATION PULSES
LCR
VOFF = 06H
24
2
3
4
5
6
7
8
9
LCR
VOFF = 03H
24
2
3
4
5
6
LINE
NUMBER
(1ST FIELD)
10
11
12
18
19
20
21
22
23
24
25
26
27
28
NOMINAL VBI-LINES F1
ACTIVE VIDEO
LINE
NUMBER
(2ND FIELD)
273
274
275
281
282
283
284
285
286
287
288
289
290
291
NOMINAL VBI-LINES F2
ACTIVE VIDEO
LCR
VOFF = 06H
13
14
15
18
19
20
21
22
23
24
LCR
VOFF = 03H
7
8
9
15
16
17
18
19
20
21
22
23
24
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 45
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
Table 9
Relationship of LCR to line numbers in 625 lines/50 Hz systems (part 1)
Vertical line offset, VOFF[8:0] = 03H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0] and
59H[7:0]); FOFF = 0 (subaddress 5BH[7]), VEP = 0 (subaddress 5BH[5])
Table 10 Relationship of LCR to line numbers in 625 lines/50 Hz systems (part 2)
Vertical line offset, VOFF[8:0] = 03H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0] and
59H[7:0]); FOFF = 0 (subaddress 5BH[7]), VEP = 0 (subaddress 5BH[5])
The relationship of these programming values to the input signal and the recommended values is outlined in table 7 to table 10.
LINE
NUMBER
(1ST FIELD)
621
622
623
624
625
1
2
3
4
5
ACTIVE VIDEO
EQUALIZATION PULSES
SERRATION PULSES
EQUALIZATION PULSES
LINE
NUMBER
(2ND FIELD)
309
310
311
312
313
314
315
316
317
318
ACTIVE VIDEO
EQUALIZATION PULSES
SERRATION PULSES
EQUALIZATION PULSES
LCR
24
2
3
4
5
LINE
NUMBER
(1ST FIELD)
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
NOMINAL VBI-LINES F1
ACTIVE
VIDEO
LINE
NUMBER
(2ND FIELD)
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
NOMINAL VBI-LINES F2
ACTIVE VIDEO
LCR
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Preliminary
NDA required
Confidential - NDA required
page 46
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Fig.22 Vertical timing diagram for 50 Hz/625 line systems.
(1) The inactive going edge of the V123 signal indicates whether the field is odd or even. If HREF is active during
the falling edge of V123, the field is ODD (field 1). If HREF is inactive during the falling edge of V123, the field
is EVEN. The specific position of the slope is dependent on the internal processing delay and may change a
few clock cycles from version to version.
The control signals listed above are available on pins RTS0, RTS1, XRH and XRV according to the following table:
For further information see Section 16.2: Tables 69, 70 and 71.
NAME
RTS0
RTS1
XRH
XRV
HREF
X
X
X
-
F_ITU656
-
-
-
X
V123
X
X
-
X
VGATE
X
X
-
-
FID
X
X
-
-
MHB540
VGATE
VSTO[8:0] = 134H
VSTA[8:0] = 15H
(a) 1st field
CVBS
ITU counting
single field counting
1
1
2
2
3
3
4
4
5
5
6
6
7
7
. . .
. . .
22
22
625
312
624
311
623
310
622
309
23
23
FID
HREF
F_ITU656
V123
(1)
VGATE
CVBS
ITU counting
single field counting
FID
HREF
F_ITU656
V123
(1)
VSTO[8:0] = 134H
VSTA[8:0] = 15H
(b) 2nd field
313
313
314
1
315
2
316
3
317
4
318
5
319
6
. . .
. . .
335
22
312
312
311
311
310
310
309
309
336
23
Preliminary
NDA required
Confidential - NDA required
page 47
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Fig.23 Vertical timing diagram for 60 Hz/525 line systems.
(1) The inactive going edge of the V123 signal indicates whether the field is odd or even. If HREF is active during
the falling edge of V123, the field is ODD (field 1). If HREF is inactive during the falling edge of V123, the field
is EVEN. The specific position of the slope is dependent on the internal processing delay and may change a
few clock cycles from version to version.
The control signals listed above are available on pins RTS0, RTS1, XRH and XRV according to the following table:
For further information see Section 16.2: Tables 69, 70 and 71.
NAME
RTS0
RTS1
XRH
XRV
HREF
X
X
X
-
F_ITU656
-
-
-
X
V123
X
X
-
X
VGATE
X
X
-
-
FID
X
X
-
-
MHB541
VGATE
VSTO[8:0] = 101H
VSTA[8:0] = 011H
(a) 1st field
CVBS
ITU counting
single field counting
4
4
5
5
6
6
7
7
8
8
9
9
10
10
. . .
. . .
21
21
3
3
2
2
1
1
525
262
22
22
FID
HREF
F_ITU656
V123
(1)
VGATE
CVBS
ITU counting
single field counting
FID
HREF
F_ITU656
V123
(1)
VSTO[8:0] = 101H
VSTA[8:0] = 011H
(b) 2nd field
266
3
267
4
268
5
269
6
270
7
271
8
272
9
. . .
. . .
284
21
265
2
264
1
263
263
262
262
285
22
Preliminary
NDA required
Confidential - NDA required
page 48
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Fig.24 Horizontal timing diagram (50/60 Hz).
The signals HREF, HS, CREF2 and CREF are available on pins RTS0 and/or RTS1. Their polarity can be inverted via RTP0
and/or RTP1 (see Section 16.2: Tables 69, 70 and 71)
The signals HREF and HS are available on pin XRH (see Section 16.2 Table 72).
108
-
107
107
-
106
MHB542
CVBS input
140
1/LLC
5
2/LLC
expansion port
data output
12
2/LLC
720
2/LLC
144
2/LLC
138
2/LLC
720
2/LLC
burst
processing delay ADC to expansion port:
0
0
2
2/LLC
2
2/LLC
HREF (60 Hz)
HS (60 Hz)
sync clipped
16
2/LLC
1
2/LLC
programming range
(step size: 8/LLC)
programming range
(step size: 8/LLC)
HS (50 Hz)
HREF (50 Hz)
CREF
CREF2
CREF
CREF2
Preliminary
NDA required
Confidential - NDA required
page 49
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.3
Scaler
The high performance video scaler in the SAA7115 has the following major blocks:
Acquisition control (horizontal and vertical timer) and task handling (the region/field/frame based processing)
Prescaler, for horizontal down-scaling by an integer factor, combined with appropriate band limiting filters, especially
anti-aliasing for CIF format
Brightness, saturation, contrast control to adjust scale dependent amplification
Line buffer, with asynchronous read and write, to support vertical up-scaling (e.g. for videophone application,
converting 240 into 288 lines, Y-C
B
-C
R
4 : 2 : 2)
Vertical scaling, with phase accurate Linear Phase Interpolation (LPI) for zoom and downscale, or phase accurate
Accumulation Mode (ACM) for large downscaling ratios and better alias suppression
Variable Phase Delay (VPD), operates as horizontal phase accurate interpolation for arbitrary non-integer scaling
ratios, supporting conversion between square and rectangular pixel sampling
Output formatter for scaled Y-C
B
-C
R
4 : 2 : 2, Y-C
B
-C
R
4 : 1 : 1 and Y only (format also for raw data)
FIFO, 32-bit wide, with 64 pixel capacity in Y-C
B
-C
R
formats
Output interface, 8 or 16-bit (only if extended by H-port) data pins wide, synchronous or asynchronous operation, with
stream events on discrete pins, or coded in the data stream.
The overall H and V zooming (HV_zoom) is restricted by the input/output data rate relationships. With a safety margin of
2% for running in and running out,
the maximum HV_zoom is equal to:
For example:
1. Input from decoder: 50 Hz, 720 pixel, 288 lines, 16-bit data at 13.5 MHz data rate, 1 cycle per pixel; output: 8-bit data
at 27 MHz, 2 cycles per pixel;
the maximum HV_zoom is about:
2. Input from X-port: 60 Hz, 720 pixel, 240 lines, 8-bit data at 27 MHz data rate (ITU 656), 2 cycles per pixel; output via
I + H-port: 16-bit data at 27 MHz clock, 1 cycle per pixel;
the maximum HV_zoom is about:
The data flow in the scaler is controlled by internal data valid and data request flags (internal handshake signalling)
between the sub-blocks, as the scaling process itself is discontinuous and dynamical. Therefore the entire scaler acts as
a pipeline buffer. Depending on the actually programmed scaling parameters the effective buffer can exceed to an entire
line. This allows vertical upscaling, more flexible video stream timing at the image port, discontinuous transfers and
handshake. The access/bandwidth requirements to the VGA frame buffer are reduced significantly.
The video scaler receives its input signal from the video decoder or from the expansion port (X-port). It gets 16-bit
Y-C
B
-C
R
4 : 2 : 2 input data at a continuous rate of 13.5 MHz from the decoder. Discontinuous data stream can be
accepted from the expansion port (X-port), normally 8-bit wide ITU 656 like Y-C
B
-C
R
data, accompanied by a pixel
qualifier on XDQ.
The input data stream is sorted into two data paths, one for luminance (or raw samples) and one for time multiplexed
chrominance C
B
and C
R
samples. An Y-C
B
-C
R
4 : 1 : 1 input format from the X-port is converted to 4 : 2 : 2 for the
horizontal prescaling and vertical filter scaling operation.
The scaler operation is defined by two programming pages A and B, representing two different tasks, that can be applied
field alternating or to define two regions in a field (e.g. with different scaling range, factors and signal source during odd
and even fields).
Each programming page contains control:
0.98
T_input_field
T_v_blanking
in_pixel
in_lines
out_cycle_per_pix
T_out_clk
--------------------------------------------------------------------------------------------------------------------------------------
0.98
20 ms
24
64
s
720
288
2
37 ns
--------------------------------------------------------
1.18
=
0.98
16.666 ms
22
64
s
720
240
1
37 ns
--------------------------------------------------------------
2.34
=
Preliminary
NDA required
Confidential - NDA required
page 50
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
For signal source selection and formats
For task handling and trigger conditions
For input and output acquisition window definition
For H-prescaler, V-scaler and H-phase scaling.
Raw VBI-data is handled as specific input format and needs its own programming page (equals own task).
In VBI pass through operation the processing of prescaler and vertical scaling has to be set to no-processing, however,
the horizontal fine scaling VPD can be activated. Upscaling (oversampling, zooming), free of frequency folding, up to a
factor of 3.5 can be achieved, as required by some software data slicing algorithms.
These raw samples are transported through the image port as valid data and can be output as Y only format. Also this
Y only lines can be framed by SAV and EAV codes.
8.3.1
A
CQUISITION CONTROL AND TASK HANDLING
(
SUBADDRESSES
80H, 90H, 91H, 94H
TO
9FH
AND
C4H
TO
CFH)
The acquisition control receives horizontal and vertical synchronization signals from the decoder section or from the
X-port. The acquisition window is generated via pixel and line counters at the appropriate places in the data path. From
X-port only qualified pixels and lines (lines with qualified pixel) are counted.
The acquisition window parameters are as follows:
Signal source selection regarding input video stream and formats from the decoder, or from X-port (programming bits
SCSRC[1:0] 91H[5:4] and FSC[2:0] 91H[2:0])
Remark: The input of raw VBI-data from the internal decoder need to be controlled via the decoder output formatter
and the LCR registers (see Section 8.2)
Vertical offset defined in lines of the video source, parameter YO[11:0] 99H[3:0] 98H[7:0]
Vertical length defined in lines of the video source, parameter YS[11:0] 9BH[3:0] 9AH[7:0]
Vertical length defined in number of target lines, as a result of vertical scaling, parameter YD[11:0] 9FH[3:0] 9EH[7:0]
Horizontal offset defined in number of pixels of the video source, parameter XO[11:0] 95H[3:0] 94H[7:0]
Horizontal length defined in number of pixels of the video source, parameter XS[11:0] 97H[3:0] 96H[7:0]
Horizontal destination size, defined in target pixels after fine scaling, parameter XD[11:0] 9DH[3:0] 9CH[7:0].
The source start offset (XO11 to XO0 and YO11 to YO0) opens the acquisition window, and the target size
(XD11 to XD0, YD11 to YD0) closes the window, but the window is cut vertically, if there are less output lines than
expected. The trigger events for the pixel and line counts are the horizontal and vertical reference edges as defined in
subaddress 92H.
The task handling is controlled by subaddress 80H and 90H (see Section 8.3.1.2).
To support instable non standard input signals, different operational modes are implemented (bits CMOD and FMOD).
8.3.1.1
Input field processing
The scaler directly gets a corresponding field ID information from the SAA7115 decoder path.
If switched to the X-port, the trigger event for the field sequence detection from external signals (X-port) are defined in
subaddress 92H. From the X-port the state of the scalers H-reference signal at the time of the V-reference edge is taken
as field sequence identifier FID. For example, if the falling edge of the XRV input signal is the reference and the state of
XRH input is logic 0 at that time, the detected field ID is logic 0.
The bits XFDV[92H[7]] and XFDH[92H[6]] define the detection event and state of the flag from the X-port. For the default
setting of XFDV and XFDH at `00' the state of the H-input at the falling edge of the V-input is taken.
Preliminary
NDA required
Confidential - NDA required
page 51
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
The FID flag is used to determine whether the first or second field of a frame is going to be processed within the scaler
and it is used as trigger condition for the task handling (see bits STRC[1:0] 90H[1:0]).
According to ITU 656, when FID is at logic 0 means first field of a frame. To ease the application, the polarities of the
detection results on the X-port signals and the internal decoder ID can be changed via XFDH.
As the V-sync from the decoder path has a half line timing (due to the interlaced video signal), but the scaler processing
only knows about full lines, during 1st fields from the decoder the line count of the scaler possibly shifts by one line,
compared to the 2nd field. This can be compensated for by switching the V-trigger event, as defined by XDV0, to the
opposite V-sync edge or by using the vertical scalers phase offsets. The vertical timing of the decoder can be seen in
Figs 22 and 23.
As the H and V reference events inside the ITU 656 data stream (from X-port) and the real-time reference signals from
the decoder path are processed differently, the trigger events for the input acquisition also have to be programmed
differently.
Table 11 Processing trigger and start
8.3.1.2
Task handling
The task handler controls the switching between the two programming register sets. The main function is controlled by
subaddresses 90H and C0H.
The operational modes of the task handler are controlled by the bits CMOD[80H[7]] and FMOD[9bH[7]].
A task is enabled via the global control bits TEA[80H[4]] and TEB[80H[5]].
The handler is then triggered by events, which can be defined for each register set.
In case of a programming error the task handling and the complete scaler can be reset to the initial states by setting the
software reset bit SWRST[88H[5]] to logic 0. Especially if the programming registers, related acquisition window and
scale are reprogrammed while a task is active, a software reset MUST be performed after programming.
Contrary to the disabling/enabling of a task, which is evaluated at the end of a running task, when SWRST is at logic 0
it sets the internal state machines directly to their idle states.
The basic operation of the task handler is strongly orientated on the window definitions, which means, if a starting point
(in terms of XO and YO values) is missed, or the window definition (especially in terms of the (YO + YS) value) is larger
than the input field, the operation is inhibited or incoming video fields are skipped.
To better support non standard input signals and signal sources with varying field lengths (like a VCR in fast
forward/rewind mode), there are now some different operational modes implemented for the task handling.
Field Mode (bit FMOD [9BH[7]])
This is a task specific bit (for flexibility reasons), but normally both tasks should be programmed to the same value.
If the FMOD bit is set to `1' the YO and YS parameters change the meaning.
YO defines the start line and YS the end line (instead of the window length) for the scalers processing window.
Additionally the trigger conditions of the task handler are changed.
DESCRIPTION
XDV1
92H[5]
XDV0
92H[4]
XDH
92H[2]
Internal decoder: The processing triggers at the reference edge of the V123 pulse
(see Figs 22 (50 Hz) and 23 (60 Hz)), and starts earliest with the rising edge of the
decoder HREF at line number:
falling edge: 4/7 (50/60 Hz, 1st field), resp. 3/6 (50/60 Hz, 2nd field) (decoder count)
0
1
0
rising edge: 2/5 (50/60 Hz, 1st field), resp. 2/5 (50/60 Hz, 2nd field) (decoder count)
0
0
0
External ITU 656 stream: The processing starts earliest with SAV at line number 23
(50 Hz system), respectively line 20 (60 Hz system) (according to ITU 656 count)
0
0
0
Preliminary
NDA required
Confidential - NDA required
page 52
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
In `field mode' the vertical trigger event gets higher priority than the vertical window definition.
The processing is normally started at line number YO and ends at line number YS, but
- if a vertical trigger occurs, before the line number YS is reached, the field processing is terminated and the next task is
checked
- if the actual line count at V-trigger is between the YO and the YS value, the task processing is started, also if the line
number YO is missed.
Continuous Mode (bit CMOD [80H[7]])
Applications, which do not use the vertical scaling, may take advantage from the `continuous processing mode'. In this
mode a task is started via the SWRST bit and the task enable bits TEA or TEB. The horizontal window definition keeps
it's meaning, but YO and YS are ignored. The vertical blanking scheme is defined by the selected V-sync (see bits
V_EAV). Once started, the vertical retrigger pulses from the input are ignored and SWRST at `0' is needed to stop the
task processing.
Start, Repeat and Skip
The start condition for the handler is defined by bits STRC[1:0] 90H[1:0] and means: start immediately, wait for next
V-sync, next FID at logic 0 or next FID at logic 1. The FID is evaluated, if the vertical and horizontal offsets are reached.
When RPTSK[90H[2]] is at logic 1 the actual running task is repeated (under the defined trigger conditions), before
handing control over to the alternate task.
To support field rate reduction, the handler is also enabled to skip fields (bits FSKP[2:0] 90H[5:3]) before executing the
task. A TOGGLE flag is generated (used for the correct output field processing), which changes state at the beginning
of a task, every time a task is activated. Examples are given in Section 8.3.1.3.
Remarks:
To activate a task the start condition must be fulfilled and, in case of FMOD = 0, the acquisition window offsets
must be reached
.
For example, in case of `start immediately', and two regions are defined for one field, the offset of the lower region must
be greater than (offset + length) the upper region, if not, the actual counted H and V position at the end of the upper
task is beyond the programmed offsets and the processing will `wait for next V'.
Basically the trigger conditions are checked, when a task is activated. It is important to realize, that they are not
checked while a task is inactive. So you can not trigger to next logic 0 or logic 1 with overlapping offset and active video
ranges between the tasks (e.g. task A STRC[2:0] = 2, YO[11:0] = 310 and task B STRC[2:0] = 3, YO[11:0] = 310
results in output field rate of
50
/
3
Hz).
After power-on or software reset (via SWRST[88H[5]]) task B gets priority over task A.
8.3.1.3
Output field processing
As a reference for the output field processing, two signals are available for the back-end hardware.
These signals are the input field ID from the scaler source and a TOOGLE flag, which shows that an active task is used
an odd (1, 3, 5...) or even (2, 4, 6...) number of times. Using a single or both tasks and reducing the field or frame rate
with the task handling functionality, the TOGGLE information can be used, to reconstruct an interlaced scaled picture at
a reduced frame rate. The TOGGLE flag isn't synchronized to the input field detection, as it is only dependent on the
interpretation of this information by the external hardware, whether the output of the scaler is processed correctly (see
Section 8.3.3).
With OFIDC = 0, the scalers input field ID is available as output field ID on bit D6 of SAV and EAV, respectively on
pin IGP0 (IGP1), if FID output is selected.
When OFIDC[90H[6]] = 1, the TOGGLE information is available as output field ID on bit D6 of SAV and EAV, respectively
on pin IGP0 (IGP1), if FID output is selected.
Preliminary
NDA required
Confidential - NDA required
page 53
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Additionally the bit D7 of SAV and EAV can be defined via CONLH[90H[7]]. CONLH[90H[7]] = 0 (default) sets D7 to
logic 1, a logic 1 inverts the SAV/EAV bit D7. So it is possible to mark the output of the both tasks by different SAV/EAV
codes. This bit can also be seen as `task flag' on the pins IGP0 (IGP1), if TASK output is selected.
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 54
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
Table 12 Examples for field processing
Notes
1. Single task every field; OFIDC = 0; subaddress 90H at 40H; TEB[80H[5]] = 0.
2. Tasks are used to scale to different output windows, priority on task B after SWRST.
3. Both tasks at
1
/
2
frame rate; OFIDC = 0; subaddresses 90H at 43H and C0H at 42H.
4. In examples 3 and 4 OFIDC = 1, thus the association between input FID and tasks may be flipped, dependent on which time the SWRST is deasserted.
5. Task B at
2
/
3
frame rate constructed from neighbouring motion phases; task A at
1
/
3
frame rate of equidistant motion phases;
subaddresses 90H at 41H and C0H at 45H.
6. Task A and B at
1
/
3
frame rate of equidistant motion phases; subaddresses 90H at 41H and C0H at 49H.
7. Due to no data output for this field, the state of the prior field is hold.
8. It is assumed that input/output FID = 0 (= upper lines); UP = upper lines; LO = lower lines.
9. O = data output; NO = no output.
SUBJECT
EXAMPLE 1
(1)
EXAMPLE 2
(2)(3)
EXAMPLE 3
(2)(4)(5)
EXAMPLE 4
(2)(4)(6)
FIELD SEQUENCE
FRAME/FIELD
1/1
1/2
2/1
1/1
1/2
2/1
2/2
1/1
1/2
2/1
2/2
3/1
3/2
1/1
1/2
2/1
2/2
3/1
3/2
Processed by task
A
A
A
B
A
B
A
B
B
A
B
B
A
B
B
A
B
B
A
State of detected
ITU 656 FID
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
TOGGLE flag
1
0
1
1
1
0
0
1
0
1
1
0
0
0
(7)
1
1
1
(7)
0
0
Bit D6 of SAV/EAV byte
0
1
0
0
1
0
1
1
0
1
1
0
0
0
(7)
1
1
1
(7)
0
0
Required sequence
conversion at the vertical
scaler
(8)
UP
UP
LO
LO
UP
UP
UP
UP
LO
LO
UP
UP
LO
LO
UP
LO
LO
UP
UP
LO
LO
LO
UP
UP
LO
UP
UP
UP
LO
LO
UP
LO
LO
LO
UP
UP
LO
UP
Output
(9)
O
O
O
O
O
O
O
O
O
O
O
O
O
NO
O
O
NO
O
O
Preliminary
NDA required
Confidential - NDA required
page 55
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.3.2
H
ORIZONTAL SCALING
The overall horizontal required scaling factor has to be split into a binary and a rational value according to the equation:
With
there is
where the parameter of prescaler
XPSC[5:0]
= 1 to 63
and the parameter of VPD phase interpolation
XSCY[12:0]
= 300 to 8191 (0 to 299 are only theoretical values).
For example,
1
/
3.5
is to split in
1
/
4
1.14286. The binary factor is processed by the prescaler, the arbitrary non-integer
ratio is achieved via the variable phase delay VPD circuitry, called horizontal fine scaling. The latter calculates
horizontally interpolated new samples with a 6-bit phase accuracy, which relates to less than 1 ns jitter for regular
sampling scheme. Prescaler and fine scaler create the horizontal scaler of the SAA71157115.
Using the accumulation length function of the prescaler (XACL[5:0] A1H[5:0]), application and destination dependent
(e.g. scale for display or for a compression machine), a compromise between visible bandwidth and alias suppression
can be determined.
8.3.2.1
Horizontal prescaler (subaddresses A0H to A7H and D0H to D7H)
The prescaling function consists of an FIR anti-alias filter stage and an integer prescaler, which creates an adaptive
prescale dependent low-pass filter to balance sharpness and aliasing effects.
The FIR prefilter stage implements different low-pass characteristics to reduce alias for downscales in the range of
1 to
1
/
2
. A CIF optimized filter is built-in, which reduces artefacts for CIF output formats (to be used in combination with
the prescaler set to
1
/
2
scale); see Table 13.
Fade-in and fade-out of the filters is achieved by copying an original source sample each as first and last pixel after
prescaling.
Figs 25 and 26 show the frequency characteristics of the selectable FIR filters.
Table 13 FIR prefilter functions
The function of the prescaler is defined by:
An integer prescaling ratio XPSC[5:0] A0H[5:0] (equals 1 to 63), which covers the integer downscale range 1 to
1
/
63
An averaging sequence length XACL[5:0] A1H[5:0] (equals 0 to 63); range 1 to 64
A DC gain renormalization XDCG[2:0] A2H[2:0]; 1 down to
1
/
128
The bit XC2_1[A2H[3]], which defines the weighting of the incoming pixels during the averaging process:
XC2_1 = 0
1 + 1...+ 1 +1
XC2_1 = 1
1 + 2...+ 2 +1
The prescaler creates a prescale dependent FIR low-pass, with up to (64 + 7) filter taps. The parameter XACL[5:0] can
be used to vary the low-pass characteristic for a given integer prescale of
1
/
XPSC[5:0]
. The user can therewith decide
between signal bandwidth (sharpness impression) and alias.
PFUV[1:0] A2H[7:6]
PFY[1:0] A2H[5:4]
LUMINANCE FILTER COEFFICIENTS
CHROMINANCE COEFFICIENTS
00
bypassed
bypassed
01
1 2 1
1 2 1
10
-
1 1 1.75 4.5 1.75 1
-
1
3 8 10 8 3
11
1 2 2 2 1
1 2 2 2 1
H-scale ratio
output pixel
input pixel
------------------------------
=
H-scale ratio
1
XPSC[5:0]
----------------------------
1024
XSCY[12:0]
-------------------------------
=
Preliminary
NDA required
Confidential - NDA required
page 56
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Remark: Due to bandwidth considerations XPSC[5:0] and XACL[5:0] can be chosen different to the mentioned equations
or Table 14, as the H-phase scaling is able to scale in the range from zooming up by factor 3 to downscale by a factor
of
1024
/
8191
.
Equation for XPSC[5:0] calculation is:
where,
the range is 1 to 63 (value 0 is not allowed);
Npix_in = number of input pixel, and
Npix_out = number of desired output pixel over the complete horizontal scaler.
The use of the prescaler results in a XACL[5:0] and XC2_1 dependent gain amplification.
The amplification can be calculated according to the equation:
DC gain = (XC2_1 + 1)
XACL[5:0] + (1
-
XC2_1).
It is recommended to use sequence lengths and weights, which results in a DC gain amplification of 2
N
, as these
amplitudes can be renormalized by the XDCG[2:0] controlled
shifter of the prescaler.
Other amplifications have to be normalized by using the following BCS control circuitry according to the equation:
Where: 2
XDCG[2:0]
DC gain
In these cases the prescaler has to be set to an overall gain of
1, e.g. for an accumulation sequence of `1 + 1 + 1'
(XACL[5:0] = 2 and XC2_1 = 0), XDCG[2:0] must be set to `010', this equals
1
/
4
and the BCS has to amplify the signal
to
4
/
3
(SATN[7:0] and CONT[7:0] value = lower integer of
4
/
3
64).
The use of XACL[5:0] is XPSC[5:0] dependent. XACL[5:0] must be < 2
XPSC[5:0].
XACL[5:0] can be used to find a compromise between bandwidth (sharpness) and alias effects.
Figs 27 and 28 show some resulting frequency characteristics of the prescaler.
Table 14 shows the recommended prescaler programming. Other programming settings, than given in Table 14, may
result in better alias suppression, but the resulting DC gain amplification needs to be compensated by the BCS control
For example, if XACL[5:0] = 5, XC2_1 = 1, then the DC gain = 10 and the required XDCG[2:0] = 4.
The horizontal source acquisition timing and the prescaling ratio is identical for both the luminance path and chrominance
path, but the FIR filter settings can be defined differently in the two channels.
XPSC[5:0]
lower integer of
Npix_in
Npix_out
-----------------------
=
1
2
N
------
CONT[7:0]
SATN[7:0]
lower integer of
2
XDCG[2:0]
DC gain
64
----------------------------------
=
=
Preliminary
NDA required
Confidential - NDA required
page 57
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
MHB543
V
(dB)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
f_sig/f_clock
(1)
(2)
(3)
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
6
3
Fig.25 Luminance prefilter characteristic.
(1) PFY[1:0] = 01.
(2) PFY[1:0] = 10.
(3) PFY[1:0] = 11.
MHB544
V
(dB)
0
0.025
0.05
0.075
0.1
0.125
0.15
0.175
0.2
0.225
0.25
f_sig/f_clock
(1)
(2)
(3)
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
6
3
Fig.26 Chrominance prefilter characteristic.
(1) PFUV[1:0] = 01.
(2) PFUV[1:0] = 10.
(3) PFUV[1:0] = 11.
Preliminary
NDA required
Confidential - NDA required
page 58
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
XC2_1 = 0; Zero's at
with XACL = (1), (2), (3), (4) or
(5)
f
n
1
XACL
1
+
-------------------------
=
MHB545
V
(dB)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
(1)
(2)
(3)
(4)
(5)
f_sig/f_clock
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
6
3
Fig.27 Examples for prescaler filter characteristics: effect of increasing XACL[5:0].
Fig.28 Examples for prescaler filter characteristics: setting XC2_1 =1.
(1) XC2_1 = 0 and XACL[5:0] = 1.
(2) XC2_1 = 1 and XACL[5:0] = 2.
(3) XC2_1 = 0 and XACL[5:0] = 3.
(4) XC2_1 = 1 and XACL[5:0] = 4.
(5) XC2_1 = 0 and XACL[5:0] = 7.
(6) XC2_1 = 1 and XACL[5:0] = 8.
MHB546
-
42
-
39
-
36
-
33
-
30
-
27
-
24
-
21
-
18
-
15
-
12
-
9
-
6
-
3
0
6
3
V
(dB)
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
f_sig/f_clock
(1)
(2)
(3)
(4)
(5)
(6)
3 dB at 0.25
6 dB at 0.33
Preliminary
NDA required
Confidential - NDA required
page 59
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 14 XACL[5:0] example of usage
Note
1. Resulting FIR function.
PRESCALE
RATIO
XPSC
[5:0]
RECOMMENDED VALUES
FIR
PREFILTER
PFY (P
B
-P
R
)
FOR LOWER BANDWIDTH
REQUIREMENTS
FOR HIGHER BANDWIDTH
REQUIREMENTS
XACL[5:0]
XC2_1
XDCG[2:0]
XACL[5:0]
XC2_1
XDCG[2:0]
1
1
0
0
0
0
0
0
0 to 2
1
/
2
2
2
1
2
1
0
1
0 to 2
(1 2 1)
1
/
4
(1)
(1 1)
1
/
2
(1)
1
/
3
3
4
1
3
3
0
2
2
(1 2 2 2 1)
1
/
8
(1)
(1 1 1 1)
1
/
4
(1)
1
/
4
4
7
0
3
4
1
3
2
(1 1 1 1 1 1 1 1)
1
/
8
(1)
(1 2 2 2 1)
1
/
8
(1)
1
/
5
5
8
1
4
7
0
3
2
(1 2 2 2 2 2 2 2 1)
1
/
16
(1)
(1 1 1 1 1 1 1 1)
1
/
8
(1)
1
/
6
6
8
1
4
7
0
3
3
(1 2 2 2 2 2 2 2 1)
1
/
16
(1)
(1 1 1 1 1 1 1 1)
1
/
8
(1)
1
/
7
7
8
1
4
7
0
3
3
(1 2 2 2 2 2 2 2 1)
1
/
16
(1)
(1 1 1 1 1 1 1 1)
1
/
8
(1)
1
/
8
8
15
0
4
8
1
4
3
(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)
1
/
16
(1)
(1 2 2 2 2 2 2 2 1)
1
/
16
(1)
1
/
9
9
15
0
4
8
1
4
3
(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)
1
/
16
(1)
(1 2 2 2 2 2 2 2 1)
1
/
16
(1)
1
/
10
10
16
1
5
8
1
4
3
(1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1)
1
/
32
(
1)
(1 2 2 2 2 2 2 2 1)
1
/
16
(1)
1
/
13
13
16
1
5
16
1
5
3
1
/
15
15
31
0
5
16
1
5
3
1
/
16
16
32
1
6
16
1
5
3
1
/
19
19
32
1
6
32
1
6
3
1
/
31
31
32
1
6
32
1
6
3
1
/
32
32
63
1
7
32
1
6
3
1
/
35
35
63
1
7
63
1
7
3
Preliminary
NDA required
Confidential - NDA required
page 60
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.3.2.2
Horizontal fine scaling (variable phase delay filter; subaddresses A8H to AFH and D8H to DFH)
The horizontal fine scaling (VPD) should operate at scaling ratios between
1
/
2
and 2 (0.8 and 1.6), but can also be used
for direct scaling in the range from
1
/
7.999
to (theoretical) zoom 3.5 (restriction due to the internal data path architecture),
without prescaler.
In combination with the prescaler a compromise between sharpness impression and alias can be found, which is signal
source and application dependent.
For the luminance channel a filter structure with 10 taps is implemented, and for the chrominance a filter with 4 taps.
Luminance and chrominance scale increments (XSCY[12:0] A9H[4:0]A8H[7:0] and XSCC[12:0] ADH[4:0]ACH[7:0]) are
defined independently, but must be set in a 2 : 1 relationship in the actual data path implementation. The phase offsets
XPHY[7:0] AAH[7:0] and XPHC[7:0] AEH[7:0] can be used to shift the sample phases slightly. XPHY[7:0] and XPHC[7:0]
covers the phase offset range 7.999T to
1
/
32
T. The phase offsets should also be programmed in a 2 : 1 ratio.
The underlying phase controlling DTO has a 13-bit resolution.
According to the equations
and
the VPD covers the scale range from 0.125 to zoom 3.5. VPD acts equivalent to a polyphase filter with 64 possible
phases. In combination with the prescaler, it is possible to get very accurate samples from a highly anti-aliased integer
downscaled input picture.
8.3.3
V
ERTICAL SCALING
The vertical scaler of the SAA7115 consists of a line FIFO buffer for line repetition and the vertical scaler block, which
implements the vertical scaling on the input data stream in 2 different operational modes from theoretical zoom by 64
down to icon size
1
/
64
. The vertical scaler is located between the BCS and horizontal fine scaler, so that the BCS can be
used to compensate the DC gain amplification of the ACM mode (see Section 8.3.3.2) as the internal RAMs are only 8-bit
wide.
8.3.3.1
Line FIFO buffer (subaddresses 91H, B4H and C1H, E4H)
The line FIFO buffer is a dual ported RAM structure for 768 pixels, with asynchronous write and read access. The line
buffer can be used for various functions, but not all functions may be available simultaneously.
The line buffer can buffer a complete unscaled active video line or more than one shorter lines (only for non-mirror mode),
for selective repetition for vertical zoom-up.
For zooming up 240 lines to 288 lines e.g., every fourth line is requested (read) twice from the vertical scaling circuitry
for calculation.
For conversion of a 4 : 2 : 0 or 4 : 1 : 0 input sampling scheme (MPEG, video phone, Indeo YUV-9) to ITU like sampling
scheme 4 : 2 : 2, the chrominance line buffer is read twice or four times, before being refilled again by the source. It has
to be preserved by means of the input acquisition window definition, so that the processing starts with a line containing
luminance and chrominance information for 4 : 2 : 0 and 4 : 1 : 0 input. The bits FSC[2:1] 91H[2:1] define the distance
between the Y/C lines. In the case of 4 : 2 : 2 and 4 : 1 : 1 FSC2 and FSC1 have to be set to `00'.
The line buffer can also be used for mirroring, i.e. for flipping the image left to right, for the vanity picture in video phone
applications (bit YMIR[B4H[4]]). In mirror mode only one active prescaled line can be held in the FIFO at a time.
The line buffer can be utilized as an excessive pipeline buffer for discontinuous and variable rate transfer conditions at
the expansion port or image port.
Remark to 4 : X : 0 input from X-port: These input streams need to look like regular 4:2:2 input and are formatted to
the internal 16 bit YUV format. At it's input port the line fifo only ignores 1 of 2, resp. 3 of 4 chrominance lines, where FSC
defines the skipping sequence.
XSCY[12:0]
1024
Npix_in
XPSC[5:0]
----------------------------
1
Npix_out
-----------------------
=
XSCC[12:0]
XSCY[12:0]
2
-------------------------------
=
Preliminary
NDA required
Confidential - NDA required
page 61
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.3.3.2
Vertical scaler (subaddresses B0H to BFH and E0H to EFH)
Vertical scaling of any ratio from 64 (theoretical zoom) to
1
/
63
(icon) can be applied.
The vertical scaling block consists of another line delay, and the vertical filter structure, that can operate in two different
modes; Linear Phase Interpolation (LPI) and accumulation (ACM) mode. These are controlled by YMODE[B4H[0]]:
LPI mode: In LPI mode (YMODE = 0) two neighbouring lines of the source video stream are added together, but
weighted by factors corresponding to the vertical position (phase) of the target output line relative to the source lines.
This linear interpolation has a 6-bit phase resolution, which equals 64 intra line phases. It interpolates between two
consecutive input lines only. LPI mode should be applied for scaling ratios around 1 (down to
1
/
2
), it must be applied
for vertical zooming.
ACM mode: The vertical Accumulation (ACM) mode (YMODE = 1) represents a vertical averaging window over
multiple lines, sliding over the field. This mode also generates phase correct output lines. The averaging window length
corresponds to the scaling ratio, resulting in an adaptive vertical low-pass effect, to greatly reduce aliasing artefacts.
ACM can be applied for downscales only from ratio 1 down to
1
/
64
. ACM results in a scale dependent DC gain
amplification, which has to be precorrected by the BCS control of the scaler part.
The phase and scale controlling DTO calculates in 16-bit resolution, controlled by parameters YSCY[15:0] B1H[7:0]
B0H[7:0] and YSCC[15:0] B3H[7:0] B2H[7:0], continuously over the entire filed. A start offset can be applied to the phase
processing by means of the parameters YPY3[7:0] to YPY0[7:0] in BFH[7:0] to BCH[7:0] and YPC3[7:0] to YPC0[7:0] in
BBH[7:0] to B8H[7:0]. The start phase covers the range of
255
/
32
to
1
/
32
lines offset.
By programming appropriate, opposite, vertical start phase values (subaddresses B8H to BFH and E8H to EFH)
depending on odd/even field ID of the source video stream and A/B-page cycle, frame ID conversion and field rate
conversion are supported (i.e. de-interlacing, re-interlacing).
Figs 29 and 30 and Tables 15 and 16 describe the use of the offsets.
Remark: The vertical start phase, as well as scaling ratio are defined independently for luminance and
chrominance channel, but must be set to the same values in the actual implementation for accurate 4 : 2 : 2
output processing.
The vertical processing communicates on its input side with the line FIFO buffer. The scale related equations are:
Scaling increment calculation for ACM and LPI mode, downscale and zoom:
YSCY[15:0] and YSCC[15:0]
BCS value to compensate DC gain in ACM mode (contrast and saturation have to be set):
CONT[7:0] A5H[7:0] respectively SATN[7:0] A6H[7:0]
,
or
8.3.3.3
Use of the vertical phase offsets
As described in Section 8.3.1.3, the scaler processing may run randomly over the interlaced input sequence (see
parameters STRC[1:0], FSKP[2:0] and RPTSK). Additionally the interpretation and timing between ITU 656 field ID and
real-time detection by means of the state of H-sync at the falling edge of V-sync may result in different field ID
interpretation.
A vertically scaled interlaced output also gets a larger vertical sampling phase error, if the interlaced input fields are
processed, without regard to the actual scale at the starting point of operation (see Fig.29).
For correct interlaced processing the vertical scaler must be used with respect to the interlace properties of the input
signal and, if required, for conversion of the field sequences.
lower integer of
=
1024
Nline_in
Nline_out
-------------------------
lower integer of
Nline_out
Nline_in
-------------------------
64
=
lower integer of
1024
YSCY[15:0]
-------------------------------
64
=
Preliminary
NDA required
Confidential - NDA required
page 62
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Four events should be considered, they are illustrated in Fig.30.
MHB547
mismatched vertical line distances
scale dependent start offset
correct scale dependent position
unscaled input
scaled output,
no phase offset
scaled output,
with phase offset
field 1
field 2
field 1
field 2
field 1
field 2
Fig.29 Basic problem of interlaced vertical scaling (example: downscale
3
/
5
).
field 1
field 2
field 1
field 2
field 1
field 2
case UP-UP case LO-LO case UP-LO case LO-UP
upper
lower
A
B
C
D
A = 1/2 input line shift = 16
B = 1/2 input line shift +1/2 scale increment = YSCY/64 + 16
C = 1/2 scale increment= YSCY / 64
D = no offset = 0
Example: interlace vertical scaling down to 3 / 5, with field conversion
Note: Offset = 1024 / 32 = 32 = 1 line shift
Fig.30 Derivation of the phase related equations
R = reference position for upper output field
R
Preliminary
NDA required
Confidential - NDA required
page 63
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
In Tables 15 and 16 PHO is a usable common phase offset.
It should be noted that the equations of Fig.30 produce an interpolated output, also for the unscaled case, as the
geometrical reference position ( R ) for all conversions is the position of the first line of the lower field (see Table 15).
If there is no need for UP-LO and LO-UP conversion and the input field ID is the reference for the back-end operation,
then it is UP-LO = UP-UP and LO-UP = LO-LO and the
1
/
2
line phase shift (PHO + 16) can be skipped.
This case is listed in Table 16.
The SAA7115 supports 4 phase offset registers per task and component (luminance and chrominance). The value of
20H represents a phase shift of one line.
The registers are assigned to the following events; e.g. subaddresses B8H to BBH:
B8H: 00 = input field ID 0, task status bit 0 (toggle status, see Section 8.3.1.3)
B9H: 01 = input field ID 0, task status bit 1
BAH: 10 = input field ID 1, task status bit 0
BBH: 11 = input field ID 1, task status bit 1.
Depending on the input signal (interlaced or non-interlaced) and the task processing 50 Hz or field reduced processing
with one or two tasks (see examples in Section 8.3.1.3), other combinations may also be possible, but the basic
equations are the same.
Table 15 Examples for vertical phase offset usage: global equations (referring to reference position R)
Table 16 Vertical phase offset usage; assignment of the phase offsets for OFIDC[90[6]] = 0,
scaler input field ID as output ID
Notes
1. referring to the upper input field as reference position, a value of 16 is to be substracted from the global equations of
table 15.
INPUT FIELD UNDER
PROCESSING
OUTPUT FIELD
INTERPRETATION
USED ABBREVIATION
EQUATION FOR PHASE OFFSET
CALCULATION (DECIMAL VALUES)
Upper input lines
upper output lines
UP-UP
PHO + 16
Upper input lines
lower output lines
UP-LO
Lower input lines
upper output lines
LO-UP
PHO
Lower input lines
lower output lines
LO-LO
assumed backend interprets output field ID at "0" as upper output lines
detected input
field ID
task status bit
vertical phase
offset
equation to be used (values)
0 = upper lines
0
YPY(C)0
UP-UP (PHO)
0 = upper lines
1
YPY(C)1
UP-UP (PHO)
1 = lower lines
0
YPY(C)2
LO-LO (PHO + YSCY / 64 - 16)
1 = lower lines
1
YPY(C)3
LO-LO (PHO + YSCY / 64 - 16)
PHO
YSCY[15:0]
64
-------------------------------
16
+
+
PHO
YSCY[15:0]
64
-------------------------------
+
Preliminary
NDA required
Confidential - NDA required
page 64
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 17 Vertical phase offset usage: Assignment of the phase offsets for OFIDC[90[6]] = 1
detected input
field ID
task status
bit
vertical phase
offset
backend interprets output
field ID "0" as upper lines;
equation to be used
backend interprets output
field ID "1" as upper lines;
equation to be used
0 = upper lines
0
YPY(C)0
UP-UP
UP-LO
0 = upper lines
1
YPY(C)1
UP-LO
UP-UP
1 = lower lines
0
YPY(C)2
LO-UP
LO-LO
1 = lower lines
1
YPY(C)3
LO-LO
LO-UP
Preliminary
NDA required
Confidential - NDA required
page 65
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.4
VBI-data decoder and capture (subaddresses 40H to 7FH)
The SAA7115 contains a versatile VBI-data decoder and the option of reading back sliced VBI data for low bitrate
standards.
8.4.1
VBI D
ATA
S
LICER
The circuitry recovers the actual clock phase during the clock run-in period, slices the data bits with the selected data
rate, and groups them into bytes. The result is buffered into a dedicated VBI-data FIFO with a capacity of 2
56 bytes
(2
14 Dwords).
The VBI data slicing is controlled by the programming registers 40H to 5DH. Register 40H and 58H are controlling the
slicing process itself. The Line Control Registers (LCR registers) 41H to 57H are defining the data type (VBI data
standard) to be decoded. The data type is specified on a line by line basis for the lines two to 23 separately for even and
odd field and depends additionally on the detected video standard (i.e. whether the incoming video is a 50Hz / 625 lines
or 60Hz / 525 lines signal).
The definition for line control register LCR24 is valid for the rest of the corresponding field, normally no text data (video
data) should be selected there (LCR24_[7:0] = FFH) to stop the activity of the VBI-data slicer during active video.
The supported VBI-data standards are shown in Table 18 for 60Hz / 525 lines signals and 19 for 50Hz / 625 lines signals.
Table 18 60Hz / 525 Lines VBI Data types supported by the data slicer block
Data type
60Hz / 525 Lines VBI Data Standards
No.
binary
DESCRIPTION
Data rate
(Mbits/s)
FRAMING
CODE
FRAMING
CODE
WINDOW
Hamming
check
Decoder
output data
format
0
0000
do not acquire (active video)
-
-
-
-
Y-C
B
-C
R
4:2:2
1
0001
US Teletext (WST525)
5.7272
0x27
WST525
always
raw data
2
0010
NABTS
5.7272
programmable
NABTS
optional
raw data
3
0011
Moji
5.7272
programmable
(1)
1.
should be set to 0x47 for Moji
MOJI
-
raw data
4
0100
US Closed Caption (CC525,
Line21)
0.503
001 binary
CC525
-
raw data
5
0101
US Wide Screen Signalling
(WSS525, CGMS)
0.447443
10 binary
WSS525
-
raw data
6
0110
VITC525
1.7898
10 binary
VITC525
-
raw data
7
0111
Gemstar2x
1.007
0x4ED
4ED H
-
raw data
8
1000
Gemstar1x
0.503
001 binary
-
raw data
9
1001
reserved
-
-
-
-
reserved
10
1010
Open1 (5 MHz)
5
programmable
8-16us
-
raw data
11
1011
Open2 (5,7272 MHz)
5.7272
programmable
8-16us
-
raw data
12
1100
reserved
-
-
-
-
reserved
13
1101
do not acquire (RAW)
-
-
-
-
raw data
14
1110
do not acquire (Test)
-
-
-
-
reserved
15
1111
do not acquire (active video)
-
-
-
-
Y-C
B
-C
R
4:2:2
Preliminary
NDA required
Confidential - NDA required
page 66
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 19 50Hz / 625 Lines VBI Data types supported by the data slicer block
The adjustment of the slicer processing to the input signal source is defined by the programming registers 59h to 5BH,
There are programmable offsets in the horizontal and vertical direction available: parameters HOFF[10:0] 5BH[2:0]
59H[7:0], VOFF[8:0] 5BH[4] 5AH[7:0], FOFF[5BH[7]] and VEP[5BH[5]]).
Contrary to the scaler counting scheme, the slicer offsets define the position of the H and V trigger events related to the
processed video field. The trigger events are the falling edge of HREF and the falling or rising edge of V123 (defined by
VEP[5BH[5]]) from the decoder processing part.
Note:
The field ID, used for the slicers data packing, is taken at the internal pixel `1' and line `1' position. Hence for correct line
counting according ITU656 and for 60 Hz input signals (see Fig.23), the old value of the field ID is taken as ID reference.
This has effect on the I2C read back registers, on the LCR table, the LCR controlled field ID generation and the internal
header information of the slicers output stream.
For consistent ID interpretation, the vertical offset parameter VOFF for NTSC has to be set to 0x03. For this case the
LCR table covers the range from line 5 to 27 and line 21 corresponds to LCR18.
The relationship of these programming values to the input signal and the recommended values is outlined in table 7 to
table 10.
The register SLDMOD[4:0] 5DH[4:0] defines the Slicer Data Output Mode at the I-Port of the SAA7115.
This register enables the VBI output and defines the mode of data insertion into the I-port data stream.
Status Information can be read form register 5EH.
Data type
50Hz / 625 Lines VBI Data Standards
No.
binary
DESCRIPTION
Data rate
(Mbits/s)
FRAMING
CODE
FRAMING
CODE
WINDOW
Hamming
check
Decoder
output data
format
0
0000
do not acquire (active video)
-
-
-
-
Y-C
B
-C
R
4:2:2
1
0001
European Teletext (WST625),
Chinese Teletext (CCST625)
6.9375
0x27
WST625
always
raw data
2
0010
Euro Teletext with
progammable Framing Code
6.9375
programma
ble
gen_text
optional
raw data
3
0011
reserved
-
-
-
-
raw data
4
0100
Euro Closed Caption (CC625)
0.500
001 binary
CC625
-
raw data
5
0101
Euro Wide Screen Signalling
(WSS625)
5
0x1E3C1F
WSS625
-
raw data
6
0110
VITC625
1.8125
10 binary
VITC625
-
raw data
7
0111
VPS
5
0x9951
VPS
-
raw data
8
1000
reserved
-
-
-
-
raw data
9
1001
reserved
-
-
-
-
reserved
10
1010
Open1 (5 MHz)
5
programma
ble
8-16us
-
raw data
11
1011
Open2 (5,7272 MHz)
5.7272
programma
ble
8-16us
-
raw data
12
1100
reserved
-
-
-
-
reserved
13
1101
do not acquire (RAW)
-
-
-
-
raw data
14
1110
do not acquire (Test)
-
-
-
-
reserved
15
1111
do not acquire (active video)
-
-
-
-
Y-C
B
-C
R
4:2:2
Preliminary
NDA required
Confidential - NDA required
page 67
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.4.2
I
2
C R
EADBACK OF SLICED
VBI
DATA
The I
2
C Readback unit offers readback for the following VBI data standards via the I
2
C bus (subaddresses 66H 7FH):
60Hz / 525 lines VBI data standards
US Closed Caption (CC525):
1 byte header + 2 x 2 bytes payload
Copy Generation Management System (CGMS, US Wide Screen Signalling (WSS525)):
1 byte header + 2 x 3 bytes payload
Gemstar1x:
1 byte header + 2 x 2 bytes payload
Gemstar2x:
1 byte header + 2 x 4 bytes payload
50Hz / 625 lines VBI data standards
European Closed Caption (CC625):
1 byte header + 2 x 2 bytes payload
European Wide Screen Signalling (WSS625, majority decoded and be-phase decoded):
1 byte header + 2 x 2 bytes payload
For each VBI data standard the amount of data of one frame (one line per field) and a one byte header can be stored.
The I2C Readback registers for Wide Screen Signalling and Closed Caption are shared for 60Hz / 525 lines VBI data
standards and 50Hz / 625 lines VBI data standards. In case of decoding WSS625 this data is sore to the same registers
than decoded WSS525 data with the third payload byte of each line left unconsidered.
The one byte header delivers decoding error status and the current update status separately for each field as well as a
free running 4 bit field counter as reference information, to be able to detect multiple read data or loss of data (refer to
table 20)
Table 20 Structure of the I
2
C readback header
The I2C Readback unit guarantees consistency between header information and sliced data using internal
mirror-registers for the sliced data, which updated at the same time the header is accessed for reading via the I
2
C bus.
I.e. The I
2
C Readback header must be always accessed before getting the latest data. In case the sliced data has been
read already or is being updated at the time the header is accessed for reading, this will be signalled in the header bits
7 and 5 for each field separately.
Additionally to the read access to the header the data coming from VBI data slicer is copied into one of the mirror registers
only, if the following additional conditions are satisfied:
The data type as set in the LCR register must equal to the one of the sampled data.
The data must be indicated as valid data.
The maximum number of data bytes per line (CC, WSS625, Gemstar1x:2, CGMS:3, Gemstar2x: 4) is not exceeded
BIT
HEADER DESCRIPTION
7
data of odd field (field_id = 0) is incomplete, i.e. not updated since last read, if set.
6
one or more data bytes of odd field (field_id = 0) are erroneous (data valid signal became inactive), if set.
5
data of even field (field_id = 1) is incomplete. i.e. not updated since last read, if set.
4
one or more data bytes of even field (field_id = 1) are erroneous (data valid signal became inactive), if set.
3:1
field_count (counts up, field identifier represents the LSB)
Preliminary
NDA required
Confidential - NDA required
page 68
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
If there is less data in a line than expected for the appropriate data type, this is marked as an error inside the header.
If there is more data in a line, this does not lead to an error, and the additional data bytes are neglected.
8.4.3
S
LICED
VBI D
ATA
O
UTPUT AT THE
I-P
ORT
The following sections are describing the sliced VBI payload data output at the I-Port. Chapter 8.5 describes the output
modes for VBI data at the I-Port.
8.4.3.1
Euro WST, US WST and NABTS Data
Euro WST, US WST and NABTS Data are stored in transmission order; first received bit becomes LSB of byte in payload.
8.4.3.2
WSS 625 Data
Each payload byte contains are a group of 6 bits (LSB aligned) representing a single symbol (a WSS625 bit) bi-phase
coded and then oversampled at 3 times the baud rate. To decode the individual bits, it is usual to take a majority decision
on each group of 3 bits (majority of 0s or 1s), then compare the first and second three-bit groups to do bi-phase decoding.
8.4.3.3
WSS 525 Data
The received data contains 20 bits including 6 bits of CRC code; all 20 bits are packed into 3 bytes (LSB aligned in byte
3) and written to the packet with the first received bit becoming LSB of the first payload byte. CRC checking is performed
on the received data (indicated in in the MSB of byte 3; set to `0' in case of no errors). Unused bytes are set to zero.
8.4.3.4
VPS Data
Each pair of two consecutive bits in a payload data byte is a single symbol, biphase coded. 01 represents a 1 symbol,10
represents a 0 symbol. 00 and 11 are biphase errors. The data can be decoded in minimum processor time by using a
look-up table (256 bytes) using the received data as index, which gives the correct decoded biphase data in the ls 4 bits
of each byte and 4 corresponding error flags; e.g.: a stored byte with hex value 0x1B (binary 00.01.10.11) would be
decoded as 1001.0100 (i.e.: the middle two pairs 01 and 10 decode correctly to 1 and 0, but the outer two pairs 00 and
11 are errors).
8.4.3.5
Closed Caption
Closed Caption is stored in transmission order - first received bit becomes LSB of the first payload byte.
8.4.3.6
Moji Data
The Moji Data Line contains 272 bits, made up of a 14-bit prefix, 22 Information Data bytes (176 bits) and an 82-bit Parity
Check. The captured bits are constructed into bytes, LSB first, in transmission order, but the first payload byte of the
packet contains only 6 bits of trans-mitted data in bits 2 -7. Bit 2 corresponds to the first transmitted bit; bits 1 and 0 are
filled with zeros.
This is done in order to align the Information Data bytes to byte boundaries in the constructed data packet. It also means
that the last data byte in the packet contains only 2 transmitted bits (in positions 0 - 1) - the remaining 6 bits are undefined
and should be ignored.
Preliminary
NDA required
Confidential - NDA required
page 69
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.4.3.7
VITC Data
The VITC data line in both 625- and 525-line video formats contains 90 bits, which can be divided into nine 10-bit groups.
The first two bits of each group are defined as Synchronising Bits, and consist of a fixed 1 followed by a fixed 0 . These
Synchronising Bits are excluded from the data packet constructed by the VBI Slicer, leaving exactly nine 8-bit bytes of
useful data. The payload bytes are presented in transmission order, with the LSB of each corresponding to the first
transmit-ted bit.
Note that this behaviour is different from the VBI Data Slicer of the predecessors of the SAA7115 that supported the VITC
data types.
8.4.3.8
Open Data Types
The Open data types are provided primarily to allow capture of low bitrate data types that are not specifically supported
by the Data Capture Unit, by oversampling the transmitted data and leaving software to extract the individual bytes.
Acquisition starts when a match is found for the programmable framing code; bytes are then captured, LSB first, in
transmission order at the specified bit-rate. The search window for the framing code is open between approximately 8
and 16ms into the line, referenced to the falling edge of the H-Sync pulse. The number of bytes captured in the open
data types depends on when in this period the framing code match is found: the maximum numbers of bytes to be
received are 38 Data Bytes for Open1 and 43 Bytes for Open2.They are the maximum assuming earliest possible
detection of the framing code. If the framing code is detected any later, fewer bytes may be captured; also, data capture
may extend into the region of the following line, in which case the last few data bytes in the packet will be meaningless.
It is left up to the software to process the appropriate amount of data from the packet, as defined by the application for
which the open data type is being used.
Preliminary
NDA required
Confidential - NDA required
page 70
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.5
Image port output interface (subaddresses 84H to 87H)
The output interface consists of a FIFO for video and for sliced text data, an arbitration circuit, which controls the mixed
transfer of video and sliced text data over the I-port and a decoding and multiplexing unit, which generates the 8 or 16-bit
wide output data stream and the accompanied reference and supporting information.
The clock for the output interface can be derived from an internal clock (decoder or X-port), from the second internal PLL
set (PLL2 and CGC2) or an externally provided clock which is appropriate for e.g. VGA and frame buffer. The clock can
be up to 33 MHz.
The scaler provides the following video related timing reference events (signals), which are available on pins as defined
by subaddresses 84H and 85H:
Output field ID
Start and end of vertical active video range
Start and end of active video line
Data qualifier or gated clock
Actually activated programming page (if CONLH is used)
Threshold controlled FIFO filling flags (empty, full, filled)
Sliced data marker.
The data stream at the scaler output is accompanied by a data valid flag (or data qualifier) or is transported using a gated
clock. The discontinuous output data after the scaling process can be output as they occur or the data may be packed
to continuous output lines by means of a trigger mechanism, which is controlled by a separate pulse generator
(see addresses F5H to FBH).
Clock cycles with invalid data on the I-port data bus (including the HPD pins in 16-bit output mode) are handled in two
different ways (controlled by INS80 86H[7]). As before, invalid cycles may be marked with 00H, but additionally a blanking
value insertion (80H and 10H) as required by ITU656 is now implemented.
The output interface also arbitrates the transfer between scaled video data and sliced text data over the I-port output.
The bits SLDOM (5DH) and VITX (86H) are used to control the arbitration.
As a further operation the serialization of the internal 32-bit Dwords to 8-bit or optional 16-bit output, as well as the
insertion of the extended ITU 656 codes (SAV/EAV for video data, ANC or SAV/EAV codes for sliced text data) are done
here.
For handshake with the VGA controller, or other memory or bus interface circuitry, programmable FIFO flags are
provided (see Section 8.5.2).
Preliminary
NDA required
Confidential - NDA required
page 71
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.5.1
S
CALER OUTPUT FORMATTER
(
SUBADDRESSES
93H
AND
C3H)
The output formatter organizes the packing into the output FIFO. The following formats are available: Y-C
B
-C
R
4 : 2 : 2,
Y-C
B
-C
R
4 : 1 : 1, Y-C
B
-C
R
4 : 2 : 0, Y-C
B
-C
R
4 : 1 : 0, Y only (e.g. for raw samples). The formatting is controlled by
FSI[2:0] 93H[2:0], FOI[1:0] 93H[4:3] and FYSK[93H[5]].
The data formats are defined on Dwords, or multiples, and are similar to the video formats as recommended for PCI
multimedia applications, but planar formats are not supported.
FSI[2:0] defines the horizontal packing of the data, FOI[1:0] defines how many Y only lines are expected, before a Y/C
line will be formatted. If FYSK is set to logic 0 preceding Y only lines will be skipped, and the output will always start with
a Y/C line.
Additionally the output formatter limits the amplitude range of the video data (controlled by ILLV[85H[5]]); see Table 23.
Table 21 Byte stream for different output formats
Table 22 Explanation to Table 21
Table 23 Limiting range on I-port
8.5.2
V
IDEO
FIFO (
SUBADDRESS
86H)
The video FIFO at the scaler output contains 32 Dwords. That corresponds to 64 pixels in 16-bit Y-C
B
-C
R
4 : 2 : 2 format.
But as the entire scaler can act as a pipeline buffer, the actual available buffer capacity for the image port is much higher,
and can exceed beyond a video line.
The video FIFO provides 4 internal flags, reporting to what extent the FIFO is actually filled.
These are:
The FIFO Almost Empty (FAE) flag
The FIFO Combined Flag (FCF) or FIFO filled, which is set at almost full level and reset, with hysteresis, only after the
level crosses below the almost empty mark
The FIFO Almost Full (FAF) flag
The FIFO Overflow (FOVL) flag.
OUTPUT FORMAT
BYTE SEQUENCE FOR 8-BIT OUTPUT MODES
Y-CB-CR 4 : 2 : 2
CB0
Y0
CR0
Y1
CB2
Y2
CR2
Y3
CB4
Y4
CR4
Y5
CB6
Y6
Y-CB-CR 4 : 1 : 1
CB0
Y0
CR0
Y1
CB4
Y2
CR4
Y3
Y4
Y5
Y6
Y7
CB8
Y8
Y only
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10
Y11
Y12
Y13
NAME
EXPLANATION
CBn
CB (B
-
Y) colour difference component, pixel number n = 0, 2, 4 to 718
Yn
Y (luminance) component, pixel number n = 0, 1, 2, 3 to 719
CRn
CR (R
-
Y) colour difference component, pixel number n = 0, 2, 4 to 718
LIMIT STEP
ILLV[85H[5]]
VALID RANGE
SUPPRESSED CODES (HEXADECIMAL VALUE)
DECIMAL VALUE
HEXADECIMAL VALUE
LOWER RANGE
UPPER RANGE
0
1 to 254
01 to FE
00
FF
1
8 to 247
08 to F7
00 to 07
F8 to FF
Preliminary
NDA required
Confidential - NDA required
page 72
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
The trigger levels for FAE and FAF are programmable by FFL[1:0] 86H[3:2] (16, 24, 28, full) and FEL[1:0] 86H[1:0] (16,
8, 4, empty).
The state of this flag can be seen on the pins IGP0 or IGP1. The pin mapping is defined by subaddresses 84H and 85H
(see Section 9.5).
8.5.3
T
EXT
FIFO
The data of the internal VBI-data slicer is collected in the text FIFO before the transmission over the I-port is requested
(normally before the video window starts). It is partitioned into two FIFO sections. A complete line is filled into the FIFO
before a data transfer is requested. So normally, one line of text data is ready for transfer, while the next text line is
collected. Thus sliced text data is delivered as a block of qualified data, without any qualification gaps in the byte stream
of the I-port.
The decoded VBI-data is collected in the dedicated VBI-data FIFO. After capture of a line is completed, the FIFO can be
streamed through the image port, preceded by a header, telling line number and standard.
The VBI-data period can be signalled via the sliced data flag on pin IGP0 or IGP1. The decoded VBI-data is lead by the
ITU ancillary data header (SLDOM[4:0] 5DH[5:0] at value > 0H and <8H) or by SAV/EAV codes (SLDOM[4:0] 5DH[5:0]
at value > 0H and bit D3 = 1 ). Similar to the global data qualifier on pin IDQ, the sliced data flag frames the transfer of
sliced VBI data from the first to the last byte and can be taken to distinguish video from sliced VBI data.
The decoded VBI-data are presented in two different data formats, controlled by bit D0 of SLDOM[4:0].
SLDOM[0] = 1: values 00H and FFH will be recoded to even parity values 03H and FCH
SLDOM[0] = 0: values 00H and FFH may occur in the data stream as detected.
8.5.4
V
IDEO
/
TEXT ARBITRATION AND
D
ATA PACKING
(
SUBADDRESS
86H)
Sliced text data and scaled video data are transferred over the same bus, the I-port. The mixed transfer is controlled by
an arbitration circuit and the SLDOM programming.
If the video data are output for the whole field (also during vertical blanking) and the video FIFO does not need to buffer
any output pixel, the text data is inserted after the end of a scaled video line, normally during the horizontal blanking
interval of the video.
8.5.4.1
VBI insertion in SAV/EAV mode (bit SLDOM[3] = `1')
VBI insertion in SAV/EAV mode (bit SLDOM[3] = `1'):
Especially for external devices, which do not recognize the ANC framing of the sliced VBI data and which need to use the
SAV/EAV framing, there are now different levels of VBI/video data insertion implemented.
This functionality is controlled by SLDOM [5DH].
Levels of sliced data insertion:
1. SLDOM[4] = 0: video and sliced data, according SLDOM[1], in parallel, VBI data after EAV sequence of a video line
2. SLDOM[4] = 1: sliced data, according SLDOM[1], video output is skipped for these lines
Note:
1.the insertion after EAV and the skipping is only done, if the scaler region overlaps with the LCR defined VBI region.
Preliminary
NDA required
Confidential - NDA required
page 73
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.5.4.2
Data Packing (bit IMPAK (86H) and programming of the pulse generator via addr. F5H to FBH)
To make use of the synthesized line locked PLL2 clock and to enable the use of the scaler for a wider application range,
it is now possible to retain the output data of the scaler, until a scaled line can be output as a continuous data package.
This is done via internal trigger pulses, one for each type of scaler output data (video from page A or B or sliced VBI data).
The parameters PGHAPS (video page A), PGHBPS (video page B) and PGHCPS (sliced VBI data) are defining the delay
related to the rising edge of the decoders HREF or of the synthesized HREF (generated by the internal pulse generator,
see addr. F5H and F6H). The delay is counted in clock cycles and as a rough estimate for the internal buffering level you
can take the following equation for the video data streaming.
With
num_buf_pix = number of buffered pixel,
num_buf_lifo = number of pixel buffered in the internal line FIFO
num_buf_fifo = number of pixel buffered in the output FIFO
h_blanking = number of clock cycles during horizontal blanking = 288 (PAL), 276 (NTSC)
sc_run_in = number of clock cycles for scaler running in = about 72 clock cycles for unscaled video
num_buf_pix is about ~= (PGHAPS - h_blanking - sc_run_in) / 2 = num_buf_lifo + num_buf_fifo
Where
num_buf_lifo = 0 for num_buf_pix =< 64 and the maximum value of num_buf_lifo = 768dec
num_buf_fifo = 64 for num_buf_pix > 64
For unscaled video a level around 1/2 of the buffer capacity (num_buf_lifo + num_buf_fifo = 832dec) is recommended.
This leads to a PGHAPS value of about ~= 2 x 416 + h_blanking + sc_run_in = 1192 (PAL case)
for the unscaled case.
To be able to align the EAV sequences for different scales and regions, PGHBPS of page B is a separate parameter.
The number of bytes per line and region defines, whether PGHBPS is to be programmed differently to PGHAPS.
If all data types are to be mixed and a fixed SAV/EAV pattern is needed, the VBI slicer has to become the timing master
for the data packing. To avoid timing shifts in the EAV pattern, the latest point of text line completion defines the earliest
packing timing. This is about 48 clocks before rising edge of the decoders HREF. The slicer data need to be shifted to a
position later than this point. The latest point in time is defined by the internal video skipping procedure (SLDOM[4] ='1').
Therefore the end of a video line (EAV) need to have a distance of (number of pixels per line) of clock cycles from the
mentioned point of text line completion.
Considering the PLL behaviour and for correct video skipping, the recommendation for this situation and EAV alignment
for 720 pixel per line and PAL (=1728) is:
1728 - (48+56) - 720 - 1448 = -544 = 1184 >= PGHCPS >= 1728 - (48-20) = 1700
PGHAPS = PGHCPS - num_bytes_per_video_line + num_bytes_per_VBI_package = e.g. 1700 - 1448 + 56 = 308dec
For other clock rates than 27 MHz, the mentioned values need to be scaled according to the clock relations, e.g.
24.545454 MHz would give
1560 - 94 - 640 - 1288 = -462 = 1098 >= PGHCPS >= 1560 - 25 = 1535
PGHAPS = e.g. 500 - 1288 + 51 = -737 = 823dec
8.5.5
D
ATA STREAM CODING AND REFERENCE SIGNAL GENERATION
(
SUBADDRESSES
84H, 85H
AND
93H)
As H and V reference signals are logic 1, active gate signals are generated, which frame the transfer of the valid output
data. As an alternative to the gates, H and V trigger pulses are generated on the rising edges of the gates.
Due to the dynamic FIFO behaviour of the complete scaler path, the output signal timing has no fixed timing relationship
to the real-time input video stream. So fixed propagation delays, in terms of clock cycles, related to the analog input
cannot be defined.
The data stream is accompanied by a data qualifier. ITU 656 like codes need to be activated by means of the bit ICODE
set to `1'.
The behaviour during non qualified clock cycles is defined by the bit INS80 [93H[6]].
With INS80 = `0' the interface behaves like SAA7118/7114 and invalid data cycles are marked with code 00H.
Preliminary
NDA required
Confidential - NDA required
page 74
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
For INS80 ='1' the behaviour changes and inside the scalers output line (scaler H-gate on IGPH = `1'), the data are hold
during IDQ ='0'. Outside the scalers output, in the remaining horizontal blanking interval, blanking values are inserted.
As a further option, it is possible to provide the scaler with an external gating signal on pin ITRDY. Thereby making it
possible to hold the data output for a certain time and to get valid output data in bursts of a guaranteed length.
The sketched reference signals and events can be mapped to the I-port output pins IDQ, IGPH, IGPV, IGP0 and IGP1.
For flexible use the polarities of all the outputs can be modified. The default polarity for the qualifier and reference signals
is logic 1 (active).
Table 24 shows the relevant and supported SAV and EAV coding, the figures 34, 33, 35, 36 show some basic pulse
diagrams.
Table 24 SAV/EAV codes on I-port
Notes
1. The leading byte sequence is: FFH-00H-00H.
2. The MSB of the SAV/EAV code byte is controlled by:
a) Scaler output data: task A
MSB = CONLH[90H[7]]; task B
MSB = CONLH[C0H[7]].
b) VBI-data slicer output data: SLDOM[2] = `1'
MSB = 1; SLDOM[2] = `0'
MSB = 0.
EVENT DESCRIPTION
SAV/EAV CODES ON I-PORT
(1)
(HEX)
COMMENT
MSB
(2)
OF SAV/EAV
BYTE = 0
MSB
(2)
OF SAV/EAV
BYTE = 1
FIELD ID = 0
FIELD ID = 1
FIELD ID = 0
FIELD ID = 1
Next pixel is FIRST pixel of any
active line
0E
49
80
C7
HREF = active;
VREF = active
Previous pixel was LAST pixel of
any active line, but not the last
13
54
9D
DA
HREF = inactive;
VREF = active
Next pixel is FIRST pixel of any
V-blanking line
25
62
AB
EC
HREF = active;
VREF = inactive
Previous pixel was LAST pixel of
the last active line or of any
V-blanking line
38
7F
B6
F1
HREF = inactive;
VREF = inactive
No valid data, don't capture and
don't increment pointer
00 (only for INS80 = `0')
IDQ pin inactive
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Confidential - NDA required
page 75
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Preliminary
NDA required
Fig.31
Sliced data formats on the I-port
in 8-bit mode
Timing Ref
. Code
Timing Ref
. Code
in
v
alid data
...
Inter
nal Header
Sliced Data
FF
00
00
SA
V
SDID
DC
D
2_2
D
2_1
IDI1
IDI2
D
DC_2
D
DC_1
FF
00
00
EA
V
00
00
00
00
...
...
00
FF
FF
DID
00
00
00
EA
V
...
or
end of r
a
w VBI line
in
v
alid data
...
- data output is filled upto the DC count
D
2_3
and Filling Data
D
W
ord - boundar
y
ANC Header
Inter
nal Header
SDID
DC
D
2_2
D
2_1
IDI1
IDI2
...
D
DC_2
D
DC_1
Sliced Data
FF
00
- ANC header active for SLDOM[3] = 0
BC
CS
D
1_2
D
1_1
BC
CS
...
and Filling Data
D
1_4
D
1_3
D
DC_3
D
DC_4
D
1_2
D
1_1
D
1_4
D
1_3
D
DC_3
D
DC_4
Preliminary
NDA required
Confidential - NDA required
page 76
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 25 Explanation to Fig.31
Notes
1. Inverted EP (bit 7); for EP see note 2.
2. Even parity (bit 6) of bits 5 to 0.
3. Odd parity (bit 7) of bits 6 to 0.
NAME
EXPLANATION
SAV
start of active data; see Table 26
SDID
sliced data identification: NEP
(1)
, EP
(2)
, SDID5 to SDID0, freely programmable via I2C-bus subaddress
5EH, D5 to D0, e. g. to be used as source identifier
DC
Dword count: NEP
(1)
, EP
(2)
, DC5 to DC0. DC describes the number of succeeding 32-bit words:
For SAV/EAV mode DC is fixed to 12 Dwords (byte value 8CH)
For ANC mode the data count DC can be taken from table 27.
The count starts with the SDID byte and ends with BC
It should be noted that the number of valid bytes inside the stream can be seen in the BC byte.
IDI1
internal data identification 1: OP
(3)
, FID (field 1 = 0, field 2 = 1),
LineNumber8 to LineNumber3 = Dword 1 byte 1; see Table 26
IDI2
internal data identification 2: OP
(3)
, LineNumber2 to LineNumber0,
DataType3 to DataType0 = Dword 1 byte 2; see Table 26
Dn_m
Dword number n, byte number m
DDC_4
last Dword byte 4, note: for SAV/EAV framing DC is fixed to 0BH, missing data bytes are filled up; the fill
value is A0H
CS
the check sum byte, the check sum is accumulated from the SAV (respectively DID) byte to the DDC_4 byte
BC
number of valid sliced bytes counted from the D1_3 byte
EAV
end of active data; see Table 26
Preliminary
NDA required
Confidential - NDA required
page 77
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 26 Bytes stream of the data slicer
Notes
1. NEP = inverted EP (see note 2).
2. EP = Even Parity of bits 5 to 0.
3. FID = 0: field 1; FID = 1: field 2.
4. I1 = 0 and I0 = 0: before line 1; I1 = 0 and I0 = 1: lines 1 to 23; I1 = 1 and I0 = 0: after line 23; I1 = 1 and I0 = 1:
line 24 to end of field.
5. Subaddress 5DH at 3EH and 3FH are used for ITU 656 like SAV/EAV header generation; recommended value.
6. V = 0: active video; V = 1: blanking.
7. H = 0: start of line; H = 1: end of line.
8. DC = Data Count in Dwords according to the data type.
9. OP = Odd Parity of bits 6 to 0.
10. LN = Line Number.
11. DT = Data Type according to table.
NICK
NAME
COMMENT
D7
D6
D5
D4
D3
D2
D1
D0
DID,
SAV,
EAV
subaddress 5DH
SLDOM[3:2] = `00'
NEP
EP
0
D4[5DH] D3[5DH] D2[5DH] D1[5DH] D0[5DH]
subaddress 5DH
SLDOM[3:2] = `01'
NEP
(1)
EP
(2)
0
1
0
FID
(3)
I1
(4)
I0
(4)
subaddress 5DH
SLDOM[3:2] = `10'
0
FID
(3)
V
(6)
H
(7)
P3
P2
P1
P0
subaddress 5DH
SLDOM[3:2] = `11'
1
FID
(3)
V
(6)
H
(7)
P3
P2
P1
P0
SDID
programmable via
subaddress 5EH
NEP
EP
D5[5EH]
D4[5EH]
D3[5EH]
D2[5EH]
D1[5EH]
D0[5EH]
DC
(8)
NEP
EP
(2)
DC5
DC4
DC3
DC2
DC1
DC0
IDI1
OP
(9)
FID
(3)
LN8
(10)
LN7
(10)
LN6
(10)
LN5
(10)
LN4
(10)
LN3
(10)
IDI2
OP
LN2
(10)
LN1
(10)
LN0
(10)
DT3
(11)
DT2
(11)
DT1
(11)
DT0
(11)
CS
check sum byte
CS6
CS6
CS5
CS4
CS3
CS2
CS1
CS0
BC
valid byte count
OP
0
CNT5
CNT4
CNT3
CNT2
CNT1
CNT0
Preliminary
NDA required
Confidential - NDA required
page 78
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 27 Data count (DC) in ANC mode for the various VBI standards
Notes
1. `nop' = no data output
Data type
50Hz / 625 Lines
60Hz / 525 Lines
No.
binary
DATA COUNT (DC)
IN 32 BIT DW
DATA COUNT (DC)
IN 32 BIT DW
0
0000
nop
nop
1
0001
12
10
2
0010
12
10
3
0011
nop
11
4
0100
2
2
5
0101
5
3
6
0110
5
5
7
0111
8
3
8
1000
nop
3
9
1001
2
2
10
1010
12
12
11
1011
12
12
12
1100
nop
nop
13
1101
nop
nop
14
1110
nop
nop
15
1111
nop
nop
Preliminary
NDA required
Confidential - NDA required
page 79
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.6
Scaler Backend clock generation (subaddresses 30H to 3FH)
The SAA7115 incorporates with its Audio clock PLL (APLL), its second digital PLL (PLL2) and its second analog PLL
(CGC2) the generation of multiple different clocks for internal and external usage. The following types of clocks can be
generated:
A Backend Clock to drive the Scaler backend including Image Port data output (refer to chapter 8.6.1):
This is an internal clock which is used for the output of data at the image port (I-Port). It can be defined as a square
pixel clock for PAL and NTSC (29,5 MHz and 24,5454 MHz respectively).
A frame locked Audio Master clock (output at device pin 37, AMCLK; refer to chapter 8.7):
This clock, which is locked to the frame frequency, ensures that there is always the same predefined number of audio
samples associated with a frame. This ensures e.g. synchronous recording of audio and video (e.g. capture to hard
disk, or non-linear editing).
(digital)
Audio
PLL
second
PLL
(PLL2)
6
6
CGC2
DAC
6
DTO MSB only
ASLRCLK
ASCLK
ALRCLK
AMXCLK
AMCLK
V-Pulse
Line based Reference
Frame Reference
Fig.32 Square Pixel clock and Audio Clock generation
H-Pulse
(Pin 37)
(Pin 41)
(Pin 39)
(Pin 40)
1/4
1/3
Backend
1/4
Clock
UCGC
CGCDIV
Preliminary
NDA required
Confidential - NDA required
page 80
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.6.1
S
QUARE
P
IXEL
C
LOCK
G
ENERATION
The SAA7115 is capable to output video data especially in Square Pixel formats. i.e.:
PAL video line (625 lines per frame) is output with 768/176 continuous active/inactive video pixel at 29.5 MHz clock
frequency
NTSC Video line(525 lines per frame) is output with 640/140 continuous active/inactive video pixel at 24.54 MHz clock
frequency.
To generate the clock which allows a continuous data stream at the image port the SAA7115 has implemented the
second analog PLL (CGC2) which is stimulated by the line locked second digital PLL (PLL2, alias "Square Pixel" PLL).
The CGC2 output clock drives the Scaler Backend and the Pulse Generator to deliver video data with Square Pixel format
at the I-Port. To avoid Scaler FIFO overflows/underruns the pixel clock must be phase aligned to the video input signal.
Hence the reference of the second digital PLL (PLL2) is a horizontal reference signal obtained from the combfilter
decoder or the X-Port input XRH (controlled by SPHSEL, register address F1 H [D1]).
Only the square pixel clock frequencies of 29.5 MHz and 24.5454 MHz are targeted for driving the scaler backend with
PLL2 / CGC2.
8.6.1.1
The second PLL (PLL2)
The second PLL (PLL2) consists of a discrete time oscillator (DTO), a phase detector which computes the phase error
once per video line while taking into account the current DTO phase and a PI -Loop Filter with programmable P/I
coefficients.
If the phase error become less then a programmed locking threshold value SPTHRM [3:0] (register address FF H [3:0])
for a period of time defined number of lines programmed in SPTHRL [3:0] register (register address FF H [7:4]), the PLL2
indicates the status locked. If the PLL is locked, a status register SPLOCK (register address F1H [0]) is set.
The PLL2 is controlled by the following settings:
Number of target clock cycles per line divided by 4 (SPLPL, register addresses F1 h [D0], F0 H [D7:D0]
Nominal DTO increment (SPNINC, register addresses F3 H [D7:D0], F2 H [D7:D0]):
The nominal Increment is basic clock frequency setting for PLL2 and hence for CGC2 clock output (CGC2frequency,
in scaler backend clock generation mode). If PLL2 is opened it is the only parameter which defines the defines the
clock frequency. It depends on the crystal frequency (32.11 MHz or 24.576 MHz) and is calculated as:
PLL2 operation mode (SPMOD, register address F1 H [D3:D2]):
PLL-closed (normal operation mode, SPMOD = 01 bin):
This is the normal operation mode of the second PLL (PLL2): the nominal increment plus the content of loop filter
define the output (CGC2) frequency.
Synthesize Clock Mode (SPMOD = 00 bin):
The PLL2 is opened and hence the generated clock frequency at CGC2 output depends only on the nominal
increment defined by the register SPNINC. The contribution of the loop filter is disabled. The I and P proportion of
the loop filter is set to zero.
PLL-hold (SPMOD = 10 bin):
The CGC2 output keeps the same clock frequency which was generated when entering this mode. In this mode
content of the loop filter of PLL2 will be frozen.
PLL-Re-Sync (SPMOD = 11 bin)
The phase detector of PLL2 is continuously re-synchronized to the selected horizontal reference signal controlled
by SPHSEL. The remaining phase error is fed into the loop filter.
Loop Filter Mode (P/I parameter selection; SPPI, register address F1 H [D7:D4]):
As long as the PLL2 is in un-locked state the Loop Filter operates at a fast time constant to enable fast locking to the
SPINC
integer
CGC2frequency
4 XTALfrequency
------------------------------------------------------
2
16
=
Preliminary
NDA required
Confidential - NDA required
page 81
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
input signal. As soon as the status is locked the PI-filter is controlled by the SPPI setting. Four different modes can be
selected controlled via SPPI:
Mode 0 H (default); Adaptive mode:
The proportional part is controlled dynamically by the magnitude of the phase error.
Mode 1 H; Fast mode
Both P and I parameters of the Loop Filter remain on the "unlocked" values, even if PLL2 has locked.
Mode E H; Medium mode:
The proportional part (P) of the Loop Filter is set to a medium value and the integral part (I) is set to minimum.
Mode F H; Slow mode:
Both the proportional part and the integral part are set to minimum value.
Preliminary
NDA required
Confidential - NDA required
page 82
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.7
Audio clock generation (subaddresses 30H to 3FH)
The SAA7115 incorporates with its Audio clock PLL (APLL), its second analog PLL (CGC2) the generation of multiple
different audio clocks for external usage. There are two basic modes for generating an audio clock (refer to figure 32):
Generating a frame locked Audio Master clock without using the second analog PLL (CGC2) (refer to chapter 8.7.1):
This frame locked audio clock is directly obtained from the digital Audio PLL and output at the device pin AMCLK (pin
37). Hence this signal carries the correct number of clock cycles per frame but still has a high frequency jitter. This
clock can be fed to an external PLL and than returned to the AMXCLK pin (pin 41) to generate an serial bitclock - output
at the ASCLK pin (pin 39) - and a word select signal - output at the ALRCLK pin (pin 40).
Using this audio clock generation method audio clock frequencies it is not possible to generate frequencies of 384*fs
and 512*fs (fs = audio sampling frequency)
Generating a low jitter frame locked Audio Master clock supported by the second analog PLL (CGC2) (refer to chapter
8.7.2):
In this mode the digital Audio PLL output signal feeds the internal second analog PLL (CGC2) to remove high
frequency jitter from the audio clock signal. The resulting clock is output at the device pin AMCLK (pin 37).
This is already the audio clock for some high frequency audio clocks. All other audio clocks must be generated by
feeding back the AMCLK output signal into the AMXCLK input pin. The audio clock frequency will be defined by the
programming value of the SDIV[5:0] register (subaddress 38hex) and output at the ASCLK output pin (pin 39).
Both modes ensure that there is always the same predefined number of audio samples associated with a frame, because
the audio clock is locked to the frame frequency.
8.7.1
A
UDIO CLOCK GENERATION WITHOUT ANALOG
PLL (CGC2)
ENHANCEMENT
8.7.1.1
Master audio clock
The audio clock is synthesized from the same crystal frequency as the line-locked video clock is generated. The master
audio clock is defined by the parameters:
Audio master Clocks Per Field, ACPF[17:0] 32H[1:0] 31H[7:0] 30H[7:0] according to the equation:
Audio master Clocks Nominal Increment, ACNI[21:0] 36H[5:0] 35H[7:0] 34H[7:0] according to the equation:
See Table 28 for examples.
Remark: For standard applications the synthesized audio clock AMCLK can be used directly as master clock and as
input clock for port AMXCLK (short cut) to generate ASCLK and ALRCLK. For high-end applications it is recommended
to either use the second CGC for audio clock generation by setting UCGC = 1 (see subaddress 3AH, bit 7) or use an
external analog PLL circuit to enhance the performance of the generated audio clock.
ACPF[17:0]
round
audio master clock frequency
field frequency
------------------------------------------------------------------------------
=
ACNI[21:0]
round
audio master clock frequency
crystal frequency
------------------------------------------------------------------------------
2
23
=
Preliminary
NDA required
Confidential - NDA required
page 83
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 28 Programming examples for audio master clock generation (no CGC2 support)
8.7.1.2
Signals ASCLK and ALRCLK
Two binary divided signals ASCLK and ALRCLK are provided for slower serial digital audio signal transmission and for
channel-select. The frequencies of these signals are defined by the following parameters:
SDIV[5:0] 38H[5:0] according to the equation:
LRDIV[5:0] 39H[5:0] according to the equation:
See Table 29 for examples.
XTALO
(MHz)
FIELD
(Hz)
ACPF
ACNI
DECIMAL
HEX
DECIMAL
HEX
AMCLK = 256
48 kHz (12.288 MHz)
32.11
50
245760
3C000
3210190
30FBCE
59.94
205005
320CD
3210190
30FBCE
24.576
50
-
-
-
-
59.94
-
-
-
-
AMCLK = 256
44.1 kHz (11.2896 MHz)
32.11
50
225792
37200
2949362
2D00F2
59.94
188348
2DFBC
2949362
2D00F2
24.576
50
225792
37200
3853517
3ACCCD
59.94
188348
2DFBC
3853 517
3ACCCD
AMCLK = 256
32 kHz (8.192 MHz)
32.11
50
163840
28000
2140127
20A7DF
59.94
136670
215DE
2140127
20A7DF
24.576
50
163840
28000
2796203
2AAAAB
59.94
136670
215DE
2796203
2AAAAB
f
ASCLK
f
AMXCLK
SDIV
1
+
(
)
2
--------------------------------------
=
SDIV[5:0]
f
AMXCLK
2f
ASCLK
--------------------
1
=
f
ALRCLK
f
ASCLK
LRDIV
2
---------------------------
=
LRDIV[5:0]
f
ASCLK
2f
ALRCLK
-----------------------
=
Preliminary
NDA required
Confidential - NDA required
page 84
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 29 Programming examples for ASCLK/ALRCLK clock generation
8.7.2
A
UDIO CLOCK GENERATION WITH ANALOG
PLL (CGC2)
SUPPORT
When generating the Audio clock using the second analog PLL (CGC2) the CGC2 is driven by the digital Audio Clock
PLL. The Output of CGC2 again is output at the audio master clock output pin AMCLK (pin 37) controlled by the UCGC
(address 3A H [7]) programming register. For audio clock frequencies of 512 * fs, with fs = 48.0 KHz or 44.1 KHz this is
already the low jitter audio clock. All other low jitter audio clocks are output at the ASCLK pin (pin 39) using the internal
divider controlled by SDIV (address 38 H [5:0]) programming register (refer to table 30 and 31). Therefore the audio
master clock AMCLK must be returned into the device via the AMXCLK pin (pin 41).
The audio master clock again is synthesized from the same crystal frequency as the line-locked video clock and is
defined as:
Audio master Clocks Per Field, ACPF[17:0] 32H[1:0] 31H[7:0] 30H[7:0] according to the equation:
Audio master Clocks Nominal Increment, ACNI[21:0] 36H[5:0] 35H[7:0] 34H[7:0] according to the equation:
Note that in this case the audio master clock is not identical to the clock output by the digital audio clock PLL any more.
The second analog PLL (CGC2) operates at a centre frequency of 36 MHz if CGCDIV (register address 3A H [6]) is set
to 1 and 27 MHz if CGCDIV is set to 0. CGC2 can operate in a range of -18% and +15.8% around these centre
frequencies.
AMXCLK
(MHz)
ASCLK
(kHz)
SDIV
ALRCLK
(kHz)
LRDIV
DECIMAL
HEX
DECIMAL
HEX
12.288
1536
3
03
48
16
10
768
7
07
8
08
11.2896
1411.2
3
03
44.1
16
10
2822.4
1
01
32
10
8.192
1024
3
03
32
16
10
2048
1
01
32
10
ACPF[17:0]
round
audio master clock frequency
field frequency
------------------------------------------------------------------------------
4
CGCDIV
(
)
16
---------------------------------------
=
ACNI[21:0]
round
audio master clock frequency
crystal frequency
------------------------------------------------------------------------------
2
23
4
CGCDIV
(
)
16
---------------------------------------
=
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 85
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
Table 30 Programming examples for frame locked audio clock generation supported by CGC2, fxtal = 24.576 MHz, 625 /525 line systems
n * fs
CGCDIV
[bin]
AMCLK
Freq.
[MHz]
ACNI
ACPF
SDIV
AMXCLK /
ASCLK
Ratio
Audio Clock
[dec]
[hex]
625 /
525
[dec]
[hex]
[dec]
[hex]
[MHz]
Output pin
(AMCLK /
ASCLK)
fs = 48 KHz
512
0
24.576
2097152
200000
122880 /
102502
1e000 /
19066
na.
na.
na.
24.576
AMCLK
384
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
0
00
2
18.432
ASCLK
256
0
24.576
2097152
200000
122880 /
102502
1e000 /
19066
0
00
2
12.288
ASCLK
192
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
1
01
4
9.216
ASCLK
128
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
2
02
6
6.144
ASCLK
96
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
3
03
8
4.608
ASCLK
64
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
5
05
12
3.072
ASCLK
48
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
7
07
16
2.304
ASCLK
32
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
11
0B
24
1.536
ASCLK
fs = 44.1 KHz
512
0
22.5792
1926758
1d6666
112896 /
94174
1b900 /
16fde
na.
na.
na.
22.5792
AMCLK
384
1
33.8688
2167603
211333
127008 /
105946
1f020 /
19dda
0
00
2
16.9344
ASCLK
256
0
22.5792
1926758
1d6666
112896 /
94174
1b900 /
16fde
0
00
2
11.2896
ASCLK
192
1
33.8688
2167603
211333
127008 /
105946
1f020 /
19dda
1
01
4
8.4672
ASCLK
128
1
33.8688
2167603
211333
127008 /
105946
1f020 /
19dda
2
02
6
5.6448
ASCLK
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 86
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
96
1
33.8688
2167603
211333
127008 /
105946
1f020 /
19dda
3
03
8
4.2336
ASCLK
64
1
33.8688
2167603
211333
127008 /
105946
1f020 /
19dda
6
06
12
2.8224
ASCLK
48
1
33.8688
2167603
211333
127008 /
105946
1f020 /
19dda
7
07
14
2.1168
ASCLK
32
1
33.8688
2167603
211333
127008 /
105946
1f020 /
19dda
11
0b
24
1.4112
ASCLK
fs = 32 KHz
512
1
32.768
2097152
200000
122880 /
102502
1e000 /
19066
0
00
2
16.384
ASCLK
384
0
24.576
2097152
200000
122880 /
102502
1e000 /
19066
0
00
2
12.288
ASCLK
256
1
32.768
2097152
200000
122880 /
102502
1e000 /
19066
1
01
4
8.192
ASCLK
192
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
2
02
6
6.144
ASCLK
128
0
24.576
2097152
200000
122880 /
102502
1e000 /
19066
2
02
6
4.096
ASCLK
96
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
5
05
12
3.072
ASCLK
64
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
8
08
18
2.048
ASCLK
48
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
11
0b
24
1.536
ASCLK
32
1
36.864
2359296
240000
138240 /
115315
21c00 /
1c273
17
11
36
1.024
ASCLK
n * fs
CGCDIV
[bin]
AMCLK
Freq.
[MHz]
ACNI
ACPF
SDIV
AMXCLK /
ASCLK
Ratio
Audio Clock
[dec]
[hex]
625 /
525
[dec]
[hex]
[dec]
[hex]
[MHz]
Output pin
(AMCLK /
ASCLK)
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 87
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
Table 31 Programming examples for frame locked audio clock generation supported by CGC2, fxtal = 32.11MHz, 625 /525 line systems
n * fs
CGCDIV
[bin]
AMCLK
Freq.
[MHz]
ACNI
ACPF
SDIV
AMXCLK /
ASCLK
Ratio
Audio Clock
[dec]
[hex]
625 /
525
[dec]
[hex]
[dec]
[hex]
[MHz]
Output pin
(AMCLK /
ASCLK)
fs = 48 KHz
512
0
24.576
1605095 187de7
122880 /
102502
1e000 /
19066
na.
na.
na.
24.576
AMCLK
384
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
0
00
2
18.432
ASCLK
256
0
24.576
1605095 187de7
122880 /
102502
1e000 /
19066
0
00
2
12.288
ASCLK
192
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
1
01
4
9.216
ASCLK
128
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
2
02
6
6.144
ASCLK
96
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
3
03
8
4.608
ASCLK
64
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
5
05
12
3.072
ASCLK
48
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
7
07
16
2.304
ASCLK
32
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
11
0B
24
1.536
ASCLK
fs = 44.1 KHz
512
0
22.5792 1474681 168079
112896 /
94174
1b900 /
16fde
na.
na.
na.
22.5792
AMCLK
384
1
33.8688 1659016 195088
127008 /
105946
1f020 /
19dda
0
00
2
16.9344
ASCLK
256
0
22.5792 1474681 168079
112896 /
94174
1b900 /
16fde
0
00
2
11.2896
ASCLK
192
1
33.8688 1659016 195088
127008 /
105946
1f020 /
19dda
1
01
4
8.4672
ASCLK
128
1
33.8688 1659016 195088
127008 /
105946
1f020 /
19dda
2
02
6
5.6448
ASCLK
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 88
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
96
1
33.8688 1659016 195088
127008 /
105946
1f020 /
19dda
3
03
8
4.2336
ASCLK
64
1
33.8688 1659016 195088
127008 /
105946
1f020 /
19dda
6
06
12
2.8224
ASCLK
48
1
33.8688 1659016 195088
127008 /
105946
1f020 /
19dda
7
07
14
2.1168
ASCLK
32
1
33.8688 1659016 195088
127008 /
105946
1f020 /
19dda
11
0b
24
1.4112
ASCLK
fs = 32 KHz
512
1
32.768
1605095 187de7
122880 /
102502
1e000 /
19066
0
00
2
16.384
ASCLK
384
0
24.576
1605095 187de7
122880 /
102502
1e000 /
19066
0
00
2
12.288
ASCLK
256
1
32.768
1605095 187de7
122880 /
102502
1e000 /
19066
1
01
4
8.192
ASCLK
192
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
2
02
6
6.144
ASCLK
128
0
24.576
1605095 187de7
122880 /
102502
1e000 /
19066
2
02
6
4.096
ASCLK
96
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
5
05
12
3.072
ASCLK
64
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
8
08
18
2.048
ASCLK
48
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
11
0b
24
1.536
ASCLK
32
1
36.864
1805732 1b8da4
138240 /
115315
21c00 /
1c273
17
11
36
1.024
ASCLK
n * fs
CGCDIV
[bin]
AMCLK
Freq.
[MHz]
ACNI
ACPF
SDIV
AMXCLK /
ASCLK
Ratio
Audio Clock
[dec]
[hex]
625 /
525
[dec]
[hex]
[dec]
[hex]
[MHz]
Output pin
(AMCLK /
ASCLK)
Preliminary
NDA required
Confidential - NDA required
page 89
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
8.7.3
O
THER CONTROL SIGNALS FOR AUDIO CLOCK GENERATION
Further control signals are available to define reference clock edges and vertical references:
APLL[3AH[3]]; Audio PLL mode:
0: PLL closed
1: PLL open
AMVR[3AH[2]]; Audio Master clock Vertical Reference:
0: internal V
1: external V
LRPH[3AH[1]]; ALRCLK Phase
0: invert ASCLK, ALRCLK edges triggered by falling edge of ASCLK
1: don't invert ASCLK, ALRCLK edges triggered by rising edge of ASCLK
SCPH[3AH[0]]; ASCLK Phase:
0: invert AMXCLK, ASCLK edges triggered by falling edge of AMXCLK
1: don't invert AMXCLK, ASCLK edges triggered by rising edge of AMXCLK.
Preliminary
NDA required
Confidential - NDA required
page 90
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
9
INPUT/OUTPUT INTERFACES AND PORTS
The SAA7115 has 5 different I/O interfaces:
Analog video input interface, for analog CVBS and/or Y and C input signals
Audio clock port
Digital real-time signal port (RT port)
Digital video expansion port (X-port), for unscaled digital video input and output
Digital image port (I-port) for scaled video data output and programming
Digital host port (H-port) for extension of the image port (output mode) or expansion port (input mode) from 8 to 16-bit.
9.1
Analog terminals
The SAA7115 has 6 analog inputs AI21 to AI24 and AI11 to AI12 for composite video CVBS or S-video Y/C signal pairs.
Additionally, there are two differential reference inputs, which must be connected to ground via a capacitor equivalent to
the decoupling capacitors at the 6 inputs. Per connected input there are no peripheral components required other than
a decoupling capacitor of 47nF directly connected to the analog device inputs pins), an 18
(connected in series directly
to the source) and 56
(connected between the capacitor and the 18
resistor to ground) termination resistor. Two
anti-alias filters are integrated.
Clamp and gain control for the ADCs are also integrated. An analog video output (pin AOUT) is provided for testing
purposes.
Table 32 Analog pin description
9.2
Audio clock signals
The SAA7115 also synchronizes the audio clock and sampling rate to the video frame rate, via a very slow PLL. This
ensures that the multimedia capture and compression processes always gather the same predefined number of samples
per video frame.
There are two basic modes as described in chapter 8.7 . Depending on these modes the signals AMCLK, ASCLK and
ALRCLK are generated (Note: To generate ASCLK and ALRCLK the Audio Master clock AMCLK must be fed back into
the device via the AMXCLK pin.).
Generating a frame locked Audio Master clock without using the second analog PLL (CGC2):
AMCLK: is the audio clock.
ASCLK: can be used as audio serial clock.
ALRCLK: audio left/right channel clock.
Generating a low jitter frame locked Audio Master clock supported by the second analog PLL (CGC2):
AMCLK: is the audio clock for 512*fs (fs = 48KHz or 44.1KHz).
SYMBOL
PIN
I/O
DESCRIPTION
BIT
AI11 and AI12
20, 18
I
analog video signal inputs, e.g. six CVBS signals or two
Y/C plus two CVBS pairs signal groups can be connected
simultaneously to this device; several combinations are
possible; see table 54.
MODE3 to MODE0
(02H[3:0])
AI21, AI22,
AI23 and AI24
16, 14, 12,
10
AOUT
22
O
analog video output, for test purposes
AOSL2 to AOSL0
(01H[7], 14H[5:4])
AI1D, AI2D
19, 13
I
analog reference pins for differential ADC operation;
connect to ground via 47 nF
-
Preliminary
NDA required
Confidential - NDA required
page 91
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
ASCLK: is the audio clock for all other audio clock frequencies.
The ratios are programmable; see also chapter 8.7.
Table 33 Audio clock pin description
9.3
Clock and real-time synchronization signals
For the generation of the line-locked video (pixel) clock LLC, and of the frame-locked audio serial bit clock, a crystal
accurate frequency reference is required. An oscillator is built-in for fundamental or third harmonic crystals. The
supported crystal frequencies are 32.11 MHz and 24.576 MHz (defined during reset by strapping pin ALRCLK).
Alternatively pin XTALI can be driven from an external single-ended oscillator.
The crystal oscillation can be propagated as a clock to other ICs in the system via pin XTOUT.
The Line-Locked Clock (LLC) is the double pixel clock of nominal 27 MHz. It is locked to the selected video input,
generating baseband video pixels according to
"ITU recommendation 601". In order to support interfacing circuits, a
direct pixel clock (LLC2) is also provided.
The pins for line and field timing reference signals are RTCO, RTS1 and RTS0. Various real-time status information can
be selected for the RTS pins. The signals are always available (output) and reflect the synchronization operation of the
decoder part in the SAA7115. The function of the RTS1 and RTS0 pins can be defined by bits RTSE1[3:0] 12H[7:4] and
RTSE0[3:0] 12H[3:0].
SYMBOL
PIN
I/O
DESCRIPTION
BIT
AMCLK
37
O
Audio master clock output without use of CGC2 ACPF[17:0] (32H[1:0] 31H[7:0] 30H[7:0]),
ACNI[21:0] (36H[5:0] 35H[7:0] 34H[7:0]),
AMVR (3AH[2]),
APLL (3AH[3]),
UCGC (3AH[3]; must be set to 0)
Audio master clock output using of CGC2 (low
jitter audio clock)
ACPF[17:0] (32H[1:0] 31H[7:0] 30H[7:0]),
ACNI[21:0] (36H[5:0] 35H[7:0] 34H[7:0]),
AMVR (3AH[2]),
APLL (3AH[3]),
UCGC (3AH[3]; must be set to 1),
CGCDIV (3AH[6])
AMXCLK
41
I
External audio master clock input for the clock
division circuit, can be directly connected to
output AMCLK for standard applications
-
ASCLK
39
O
Serial audio clock output, can be synchronized
to rising or falling edge of AMXCLK
SDIV[5:0] (38H[5:0]),
SCPH (3AH[0]),
ALRCLK
40
O
Audio channel (left/right) clock output, can be
synchronized to rising or falling edge of
ASCLK.
LRDIV[5:0] (39H[5:0]),
LRPH(3AH[1])
I
Strapping during reset determines the crystal
oscillator frequency to be used.
-
Preliminary
NDA required
Confidential - NDA required
page 92
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 34 Clock and real-time synchronization signals
9.4
Video expansion port (X-port)
The expansion port can be used either to output eight or ten bit video from the combfilter decoder directly or to receive
video data from other external digital video sources such as MPEG decoder for output at the image port (I-port) whilst.
The expansion port consists of three main groupings of signals:
8-bit dithered or 10-bit data output of component video Y-C
B
-C
R
4 : 2 : 2, i.e. in C
B
-Y-C
R
-Y, sequence. In 10-bit wide
video mode the two data LSB's are output on the XRH and XRV signal lines.
Exceptionally raw video samples (e.g. ADC test).
8-bit data input of component video Y-C
B
-C
R
4 : 2 : 2, i.e. C
B
-Y-C
R
-Y, byte serial. In input mode optionally the data bus
can be extended to 16-bit by pins HPD7 to HPD0. In this mode XPD [7:0] carries the luminance data and HPD [7:0]
carries the Chrominance data.
Clock, synchronization and auxiliary I/O signals, accompanying the data stream.
The data transfers through the expansion port represent a single D1 port, with half duplex mode. The SAV and EAV
codes may be inserted optionally for data input (controlled by bit XCODE (92H[3])). The input/output direction is switched
for complete fields only.
SYMBOL
PIN
I/O
DESCRIPTION
BIT
Crystal oscillator
XTALI
7
I
input for crystal oscillator or reference clock
-
XTALO
6
O
output of crystal oscillator
-
XTOUT
4
O
reference (crystal) clock output drive (optional)
XTOUTE (14H[3])
Real-time signals (RT port)
LLC
28
O
line-locked clock, nominal 27 MHz, double pixel clock locked to the
selected video input signal, for backward compatibility only, do not use
for new applications
-
LLC2
29
O
line-locked pixel clock, nominal 13.5 MHz, for backward compatibility
only, do not use for new applications
-
RTCO
36
O
real-time control output, transfers real-time status information
supporting RTC level 3.1 (see document "RTC Functional Description",
available on request)
-
I
Strapping during reset determines the I
2
C read/write addresses
address.
-
RTS0
34
O
real-time status information line 0, can be programmed to carry various
real-time information (see Table 70)
RTSE0[3:0]
(12H[3:0])
RTS1
35
O
real-time status information line 1, can be programmed to carry various
real-time information (see Table 71)
RTSE1[3:0]
(12H[7:4])
Preliminary
NDA required
Confidential - NDA required
page 93
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 35 Signals dedicated to the expansion port
SYMBOL
PIN
I/O
DESCRIPTION
BIT
XPD7 to
XPD0
81, 82,
84 -87,
89, 90
I/O
X-port data:
in output mode controlled by decoder section, data
format see Table 36;
in input mode Y-CB-CR 4 : 2 : 2 serial input data or
luminance part of a 16-bit Y-CB-CR 4 : 2 : 2 data
stream
OFTS[3:0] (1BH[4], 13H[2:0]),
CONLV (91H[7], C1H[7]),
HLDFV (91H[6], C1H[6]),
SCSRC[1:0] (91H[5:4], C1H[5:4]),
SCRQE (91H[3], C1H[3]),
FSC[2:0] (91H[2:0], C1H[2:0])
HPD7 to
HPD0
64 -67,
69 - 72
I/(O) With the X-port, these signals are used as input only,
for 16-bit Y-CB-CR 4 : 2 : 2 video data. In this case
HPD[7:0] carries chrominance data.
ICKS[3:0] (80H[3:0]),
SCSRC[1:0] (91H[5:4], C1H[5:4])
XCLK
94
I/O
clock at expansion port: if output, then copy of LLC;
as input normally a double pixel clock of up to
32 MHz or a gated clock (clock gated with a qualifier)
XCKS (92H[0], C2H[0])
XDQ
95
I/O
data valid flag of the expansion port input (qualifier):
if output, then decoder (HREF and VGATE) gate
(see Fig.24)
-
XRDY
96
O
data request flag = ready to receive, to work with
optional buffer in external device, to prevent internal
buffer overflow;
second function: input related task flag A/B
XRQT (83H[2])
XRH
92
I/O
horizontal reference signal for the X-port:
as output: HREF or HS from the decoder (see
Fig.24) or bit 1 of D1 decoder 10 bit output;
as input: a reference edge for horizontal input timing
and a polarity for input field ID detection can be
defined
XRHS (13H[6]),
XFDH (92H[6], C2H[6]),
XDH (92H[2], C2H[2]]
XRV
91
I/O
vertical reference signal for the X-port:
as output: V123 or field ID from the decoder,
see Figs 22 and or 23 or bit 0 of D1 decoder 10 bit
output;
as input: a reference edge for vertical input timing
and for input field ID detection can be defined
XRVS[1:0] (13H[5:4]),
XFDV (92H[7], C2H[7]),
XDV[1:0] (92H[5:4], C2H[5:4])
XTRI
80
I
port control: switches X-port input 3-state
XPE[1:0] (83H[1:0])
Preliminary
NDA required
Confidential - NDA required
page 94
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
9.4.1
X-
PORT CONFIGURED AS OUTPUT
If data output is enabled at the expansion port, then the data stream from the decoder is presented. The data format of
the 8-bit data bus is dependent on the chosen data type, selectable by the line control registers LCR2 to LCR24; see
Table 6. In contrast to the image port, the sliced data format is not available on the expansion port. Instead, raw CVBS
samples are always transferred if any sliced data type is selected.
Some details of data types on the expansion port are as follows:
Active video (data types 0 and 15): contains component Y-C
B
-C
R
4 : 2 : 2 signal, 720 active pixels per line. The
amplitude and offsets are programmable via DBRI7 to DBRI0, DCON7 to DCON0, DSAT7 to DSAT0, OFFU1,
OFFU0, OFFV1 and OFFV0. For nominal levels see Fig.18.
Test line (data type 14): is similar to the active video format, with some constraints within the data processing:
adaptive chrominance comb filter, vertical filter (chrominance comb filter for NTSC standards, PAL phase error
correction) within the chrominance processing are disabled
adaptive luminance comb filter, peaking and chrominance trap are bypassed within the luminance processing
This data type is defined for future enhancements. It could be activated for lines containing standard test signals within
the vertical blanking period. Currently the most sources do not contain test lines. For nominal levels see Fig.18.
Raw samples (data types 1 to 13): C
B
-C
R
samples are similar to data type 6, but CVBS samples are transferred
instead of processed luminance samples within the Y time slots.
The amplitude and offset of the CVBS signal is programmable via RAWG7 to RAWG0 and RAWO7 to RAWO0; see
Chapter 16, Tables 78 and 79. For nominal levels see Fig.19.
The relationship of LCR programming to line numbers is described in Section 8.4, see Tables 7 to 10.
The data type selections by LCR are overruled by setting OFTS[3:0] = 1110 (ADC1 bypass mode) or OFTS[3:0] = 1111
(ADC2 bypass mode) at subaddresses 1BH, bit 4 and 13H bit 2 to 0. This setting is mainly intended for device production
test. The X-port (XPD[7:0]) carries the upper 8 bits of either of the two ADCs, the LSB is provided on pin XRH; see
Table 72 "RT / X-port output control (SA 13, SA 1B)". The analog input configuration is done via MODE[3:0] 02H[3:0]
settings; see table 53 "Analog control 1 (SA 02)". No timing reference codes are generated in this mode.
The SAV/EAV timing reference codes define the start and end of valid data regions. The ITU-blanking code sequence
`- 80 - 10 - 80 - 10 -...' is transmitted during the horizontal blanking period between EAV and SAV.
The position of the F-bit is constant in accordance with ITU 656; see Tables 38 and 39.
The V-bit can be generated in two different ways (see Tables 38 and 39) controlled via OFTS1 and OFTS0; see
Table 72.
In case of enabling 10-bit video output mode via OFTS[3:0] then XPD[7:0] carries the video data bits 9 to 2 and SAV/EAV
codes and the signals XRH and XRV the data LSBs 1 and 0 respectively. During blanking both LSBs are zero.
The F and V bits change synchronously with the EAV code.
Table 36 Data format on the expansion port
Notes
1. The generation of the timing reference codes and the ITU-blanking code sequence can be suppressed by setting
OFTS[3:0] to `x010', see Table 72.
2. If raw samples or sliced data are selected by the line control registers (LCR2 to LCR24), the Y samples are replaced
by CVBS samples.
BLANKING
PERIOD
TIMING
REFERENCE
CODE (HEX)
(1)
720 PIXELS Y-C
B
-C
R
4 : 2 : 2 DATA
(2)
TIMING
REFERENCE
CODE (HEX)
(1)
BLANKING
PERIOD
...
80
10 FF 00 00 SAV
CB
0
Y0
CR
0
Y1
CB
2
Y2 ...
CR71
8
Y719 FF 00 00 EAV 80
10
...
Preliminary
NDA required
Confidential - NDA required
page 95
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 37 Format of the control byte of SAV/EAV codes on expansion port XPD7 to XPD0
Table 38 525 lines/60 Hz vertical timing
Table 39 625 lines/50 Hz vertical timing
BIT 7
BIT 6
(F)
BIT 5
(V)
BIT 4
(H)
BIT 3
(P3)
BIT 2
(P2)
BIT 1
(P1)
BIT 0
(P0)
1
field bit
vertical blanking bit
format
reserved; evaluation not
recommended (protection
bits according to ITU 656)
1st field: F = 0
2nd field: F = 1
VBI: V = 1
active video: V = 0
H = 0 in SAV format
H = 1 in EAV format
for vertical timing see Tables 38 and 39
LINE NUMBER
F (ITU 656)
V
OFTS[3:0] = 0000 OR
OFTS[3:0] = 1000 (ITU 656)
OFTS[3:0] = 0001 OR
OFTS[3:0] = 1001
1 to 3
1
1
according to selected VGATE
position type via VSTA and
VSTO
(subaddresses 15H to 17H);
see Tables 75 to 76
4 to 19
0
1
20
0
0
21
0
0
22 to 261
0
0
262
0
0
263
0
0
264 and 265
0
1
266 to 282
1
1
283
1
0
284
1
0
285 to 524
1
0
525
1
0
LINE NUMBER
F (ITU 656)
V
OFTS[3:0] = 0000 OR
OFTS[3:0] = 1000 (ITU 656)
OFTS[3:0] = 0001 OR
OFTS[3:0] = 1001
1 to 22
0
1
according to selected VGATE
position type via VSTA and
VSTO
(subaddresses 15H to 17H);
see Tables 75 to 76
23
0
0
24 to 309
0
0
310
0
0
311 and 312
0
1
313 to 335
1
1
336
1
0
337 to 622
1
0
623
1
0
624 and 625
1
1
Preliminary
NDA required
Confidential - NDA required
page 96
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
9.4.2
X-
PORT CONFIGURED AS INPUT
If data input mode is selected at the expansion port, then the scaler can choose its input data stream from the on-chip
video decoder, or from the expansion port (controlled by bit SCSRC[1:0] (91H[5:4]), C1H[5:4])). Byte serial Y-C
B
-C
R
4 : 2 : 2, or subsets for other sampling schemes, or raw samples from an external ADC may be input (see also bits
FSC[2:0] (91H[2:0], C1H[2:0])). The input stream must be accompanied by an external clock (XCLK), qualifier XDQ and
reference signals XRH and XRV. Instead of the reference signal, embedded SAV and EAV codes according to ITU 656
are also accepted. The protection bits are not evaluated.
XRH and XRV carry the horizontal and vertical synchronization signals for the digital video stream through the expansion
port. The field ID of the input video stream is carried in the phase (edge) of XRV and state of XRH, or directly as FS
(frame sync, odd/even signal) on the XRV pin (controlled by XFDV (92H[7], C2H[7[), XFDH (92H[6], C2H[6]) and
XDV[1:0] (92H[5:4], C2H[5:4])).
The trigger events on XRH (rising/falling edge) and XRV (rising/falling/both edges) for the scalers acquisition window are
defined by XDV[1:0] and XDH (92H[2], C2H[2]). The signal polarity of the qualifier can also be defined (bit XDQ (92H[1],
C2H[1])). Alternatively to a qualifier, the input clock can be applied to a gated clock (means clock gated with a data
qualifier, controlled by bit XCKS (92H[0], C2H[0])). In this case, all input data will be qualified.
In case if 16 bit wide data input is required for the X-port input then the HPD[7:0] port is enabled for input via SCSRC[1:0]
(91H[5:4], C1H[5:4]) whilst the I-port must be set to 8-bit output mode by ICKS[3:0] (80H[3:0]).
9.5
Image port (I-port)
The image port transfers data from the scaler as well as from the VBI-data slicer, if selected (maximum 33 MHz). The
reference clock is available at the ICLK pin, as an output, or as an input (maximum 33 MHz). As output, ICLK is derived
either from the line-locked decoder or from the expansion port input clock or from PLL2/CGC2 combination, which
enables square pixel clock generation feature.
The data stream from the scaler output is usually discontinuous, which basically depends on the scale ratio. Therefore
valid data during a clock cycle is accompanied by a data qualifying (data valid) flag on pin IDQ. For pin constrained
applications the IDQ pin can be programmed to function as a gated clock output (bit ICKS2[80H[2]]).
The pulsegenerator allows however to squeeze all pixels of a video line so that a continuous video stream at the I-port
output is obtained. For details refer to chapter 8.2..
The data formats at the image port are defined in Dwords of 32 bits (4 bytes), such as the related FIFO structures.
However the physical data stream at the image port is only 16-bit or 8-bit wide; in 16-bit mode data pins HPD7 to HPD0
are used for chrominance data. The four bytes of the Dwords are serialized in words or bytes.
Available formats are as follows:
Y-C
B
-C
R
4 : 2 : 2
Y-C
B
-C
R
4 : 1 : 1
Raw samples
Decoded VBI-data.
For handshake with the receiving VGA controller, or other memory or bus interface circuitry, F, H and V reference signals
and programmable FIFO flags are provided. The information is provided on pins IGP0, IGP1, IGPH and IGPV. The
functionality on these pins is controlled via subaddresses 84H and 85H.
VBI-data is collected over an entire line in its own FIFO, and transferred as an uninterrupted block of bytes. Decoded
VBI-data can be indicated by the VBI flag on pin IGP0 or IGP1.
As scaled video data and decoded VBI-data may come from different and asynchronous sources, an arbitration scheme
is needed. Normally the VBI-data slicer has priority.
The image port consists of the pins and/or signals, as listed in Table 40.
Preliminary
NDA required
Confidential - NDA required
page 97
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
For pin constrained applications, or interfaces, the relevant timing and data reference signals can also be encoded into
the data stream. Therefore the corresponding signal pins do not need to be connected. The minimum image port
configuration requires 9 pins only, i.e. 8 pins for data including codes, and 1 pin for clock or gated clock. The inserted
codes are defined in close relationship to the ITU-R BT.656 (D1) recommendation, where possible.
In the case of scaling and for CMOD [80[7]] = `0', the following deviations from
"ITU 656 recommendation" are
implemented at the SAA7115s image port interface:
SAV and EAV codes are only present in those lines, where data is to be transferred, i.e. active video lines, or VBI raw
samples, no codes for empty lines (=lines not covered by the scalers window definition)
There may be more or less than 720 pixels between SAV and EAV depending on the scaler settings
Data content and the number of clock cycles during horizontal and vertical blanking is undefined, and may not be
constant. To get a regular pattern in case of scaling, the internal trigger positions for data packing (see section 8.5.4.2.)
need to be balanced.
Data stream may be interleaved with not-valid data, 00H codes or old data (see bit INS80 [93[6]]), but SAV and EAV
4-byte codes are not interleaved with not-valid data codes
There may be an irregular pattern of not-valid data, or IDQ, and as a result, C
B
-Y-C
R
-Y is not in a fixed phase to a
regular clock divider
VBI raw sample streams are enveloped with SAV and EAV, like normal video
Decoded VBI-data is transported as Ancillary (ANC) data or enveloped with SAV and EAV (see bits SLDOM [5D[4:0]]),
two modes:
direct decoded VBI-data bytes (8-bit), 00H and FFH codes may appear in the data block (violation to ITU-R BT.656)
recoded VBI-data bytes (8-bit), 00H and FFH codes will be recoded to even parity codes 03H and FCH to suppress
invalid ITU-R BT.656 codes.
Sliced VBI data are transferred as continuous packages with no empty cycles.
The data codes 00H and FFH are suppressed (changed to 01H or FEH respectively) in the active video stream, as well
as in the VBI raw sample stream (VBI pass-through). Optionally, the number range can be further limited
(see bit ILLV [85[5]]).
If the video data are not packed and ITRDY = `1', due to the internal 32 bit wide backend FIFO, valid data occur as 4 byte
(8 bit output), respec. 2 byte (16 bit output) packages of valid data.
Preliminary
NDA required
Confidential - NDA required
page 98
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 40 Signals dedicated to the image port
9.6
Host port for 16-bit extension of video data I/O (H-port)
The H-port pins HPD can be used for extension of the data I/O paths to 16-bit. For the X-port HPD[7:0] are used as 16-bit
input extension where as the I-port uses HPD[7:0] as 16-bit output extension.
The I-port has functional priority. If a 16 bit output mode is set via ICKS[3:2], see table 121 "I-port and scaler backend
clock selection (SA 80)" the output drivers of the H-port are enabled depending on the I-port enable control.
SYMBOL
PIN
I/O
DESCRIPTION
BIT
IPD7 to
IPD0
54 -57,
59 -62
I/O
I-port data
ICODE (93H[7], C3H(7)),
ISWP[1:0] (85H[7:6]),
IPE[1:0] (87H[1:0])
HPD7 to
HPD0
64 -67,
69 - 72
(I)/O
With the I-port, these signals are used as output
only, for 16-bit Y-CB-CR 4 : 2 : 2 video data. In
this case HPD[7:0] carries chrominance data.
ICKS[3:0] (80H[3:0]),
SCSRC[1:0] (91H[5:4], C1H[5:4]),
IPE[1:0] (87H[1:0])
ICLK
45
I/O
continuous reference clock at image port, can be
input or output, as output decoder LLC or XCLK
from X-port
ICKS[3:0] (80H[3:0]),
IPE[1:0] (87H[1:0])
IDQ
46
O
data valid flag at image port, qualifier, with
programmable polarity;
secondary function: gated clock
ICKS[3:0] (80H[3:0]),
IPE[1:0] (87H[1:0])
IDQP[85H[0]]
IGPH
53
O
horizontal reference output signal, copy of the
H-gate signal of the scaler, with programmable
polarity; alternative function: HRESET pulse
IDH[1:0] (84H[1:0]),
IRHP(85H[1]),
IPE[1:0] 87H[1:0]
IGPV
52
O
vertical reference output signal, copy of the
V-gate signal of the scaler, with programmable
polarity; alternative function: VRESET pulse
IDV[1:0] 84H[3:2],
IRVP (85H[2]),
IPE[1:0] (87H[1:0])
IGP1
49
O
general purpose output signal for I-port
IDG12 (86H[4]),
IDG1[1:0] (84H[5:4]),
IG1P (85H[3]),
IPE[1:0] (87H[1:0])
IGP0
48
O
general purpose output signal for I-port
IDG02 (86H[5]),
IDG0[1:0] (84H[7:6]),
IG0P (85H[4]),
IPE[1:0] (87H[1:0])
ITRDY
42
I
target ready input signals
-
ITRI
47
I
port control, switches I-port into 3-state
IPE[1:0] (87H[1:0])
Preliminary
NDA required
Confidential - NDA required
page 99
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 41 Signals dedicated to the host port
9.7
Basic input and output timing diagrams I-port and X-port
9.7.1
I-
PORT OUTPUT TIMING
The following diagrams (figures 33 to 39) illustrate the output timing via the I-port. IGPH and the scalers IGPV are logic 1
active gate signals. If reference pulses are programmed, these pulses are generated on the rising edge of the logic 1
active gates. Valid data is accompanied by the output data qualifier on pin IDQ.
An data request via ITRDY = `1' is answered with the next clock cycle by marking this cycle as valid or invalid data.
Due to the scaling and the output processing, it may last several ITRDY = `1' cycles, before a request is answered with
valid data. After running in and if the requested data rate is matched to the scaled data rate, valid data are normally
provided with the next clock cycle.
The behaviour during invalid clock cycles depend on the INS80 bit and the ITRDY input.
For INS80 = `0' the value 00H is inserted on IPD[7:0], resp. HPD[7:0], for all clock cycles marked with IDQ = `0'
For INS80 = `1' data are hold during a line, if ITRDY ='0' or IDQ='0'. Outside the active line and in 8 bit output mode,
the inserted blanking values (`80H', `10H') change with every ITRDY = `1'.
As there are now internal counters for data packing implemented (see sect. 8.5.4.2 and parameters PGHAPS, PGHBPS
and PGHCPS), the ITRDY packing is mainly useful for burst data transfers.
The IDQ output pin may be defined to be a gated clock output signal (ICLK AND internal IDQ).
9.7.2
X-
PORT INPUT TIMING
At the X-port the input timing requirements are the same as those for the I-port output. But different to those below:
It is not necessary to mark invalid cycles with a 00H code
No constraints on the input qualifier (can be a random pattern)
XCLK may be a gated clock (XCLK AND external XDQ).
Remark: All timings illustrated in figures 33 to 39 are given for an uninterrupted output stream (no handshake with the
external hardware).
SYMBOL
PIN
I/O
DESCRIPTION
BIT
HPD7 to
HPD0
64 -67, 69 - 72
I/(O) With the X-port, these signals are used
as input only, for 16-bit
Y-CB-CR 4 : 2 : 2 video data. In this
case HPD[7:0] carries chrominance
data.
ICKS[3:0] (80H[3:0]),
SCSRC[1:0] (91H[5:4], C1H[5:4]),
IPE[1:0] (87H[1:0]),
ITRI ([8FH[6])
(I)/O
With the I-port, these signals are used
as output only, for 16-bit
Y-CB-CR 4 : 2 : 2 video data. In this
case HPD[7:0] carries chrominance
data.
Preliminary
NDA required
Confidential - NDA required
page 100
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
ICLK
Fig.33 Output Timing I-port for serial 8 Bit Data
(ICODE = 1, INS80 = 0)
IDQ
IPD[7:0]
IGPH
Cb
Y
Cb
Cr
Y
Y
Cr
FF
00
00
SAV
00
00
00
FF
00
00
EAV
00
ICLK
Fig.34 Output Timing I-port for serial 8 Bit Data
(ICODE = 0, INS80 = 0)
IDQ
IPD[7:0]
IGPH
Cb
Y
Cb
Cr
Y
Y
Cr
00
00
00
Preliminary
NDA required
Confidential - NDA required
page 101
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
ICLK
Fig.35 Output Timing I-port for serial 8 Bit Data
(ICODE = 1, INS80 = 1)
IDQ
IPD[7:0]
IGPH
Cb
Y
Cb
Cr
Y
Y
Cr
FF
00
00
SAV
10(80)
FF
00
00
EAV
80
10
ICLK
Fig.36 Output Timing I-port using the ITRDY pin
(ICODE = 1)
ITRDY
IPD[7:0]
FF
00
Y
00
Cr
80
IDQ
r
p
nr
r
p
nr
= request new data
= no request
= new data are placed
r
r
r
r
r
r
r
r
nr
nr
nr
nr
h
= hold data
h
p
h
h
p
p
p
IGPH
p
p
IDQ = 1 and IGPH = 0 = SAV or EAV sequence
h
p
h
h
nr
r
h
nr
h
Y
EAV
10
Preliminary
NDA required
Confidential - NDA required
page 102
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
ICLK
Fig.37 Output Timing for 16 Bit Data output via I-port and H-port with codes
(ICODE = 1, INS80 = 0), timing is like 8 bit output, but packages of 2 bytes per valid cycle
IDQ
IPD[7:0]
IGPH
Y2
00
FF
Y3
Y1
Y
n-1
Y0
Y
n
FF
00
HPD[7:0]
Cb
SAV
00
Cr
Cr
Cb
Cb
Cr
00 EAV
00
00
00
00
00
00
00
00
00
00
IDQ
Fig.38 the scalers H-gate and V-gate output timing
IGPH
IGPV
Preliminary
NDA required
Confidential - NDA required
page 103
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
ICLK
Fig.39 Output Timing for sliced VBI data in 8 Bit serial output mode
(for INS80 = 1)
IDQ
IPD[7:0]
sliced data flag
XX YY
BC
CS
ZZ
10
80
00
FF FF DID
10
SDID
80
FF
00
00 SAV
00
FF
00
00 EAV
BC
on IGP0 or IGP1
10
80
Preliminary
NDA required
Confidential - NDA required
page 104
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
10 BOUNDARY SCAN TEST
The SAA7115 has built-in logic and 5 dedicated pins to support boundary scan testing which allows board testing without
special hardware (nails). The SAA7115 follows the
"IEEE Std. 1149.1 - Standard Test Access Port and Boundary-Scan
Architecture" set by the Joint Test Action Group (JTAG) chaired by Philips.
The 5 special pins are Test Mode Select (TMS), Test Clock (TCK), Test Reset (TRSTN), Test Data Input (TDI) and Test
Data Output (TDO).
The Boundary Scan Test (BST) functions BYPASS, EXTEST, INTEST, SAMPLE, CLAMP and IDCODE are all supported
(see Table 42). Details about the JTAG BST-TEST can be found in specification "
IEEE Std. 1149.1". A file containing the
detailed Boundary Scan Description Language (BSDL) description of the SAA7115 is available on request.
Table 42 BST instructions supported by the SAA7115
10.1
Initialization of boundary scan circuit
The TAP (Test Access Port) controller of an IC should be in the reset state (TEST_LOGIC_RESET) when the IC is in
functional mode. This reset state also forces the instruction register into a functional instruction such as IDCODE or
BYPASS.
To solve the power-up reset, the standard specifies that the TAP controller will be forced asynchronously to the
TEST_LOGIC_RESET state by setting the TRSTN pin LOW.
10.2
Device identification codes
A device identification register is specified in
"IEEE Std. 1149.1b-1994". It is a 32-bit register which contains fields for the
specification of the IC manufacturer, the IC part number and the IC version number. Its biggest advantage is the
possibility to check for the correct ICs mounted after production and determination of the version number of ICs during
field service.
When the IDCODE instruction is loaded into the BST instruction register, the identification register will be connected
between TDI and TDO of the IC. The identification register will load a component specific code during the
CAPTURE_DATA_REGISTER state of the TAP controller and this code can subsequently be shifted out. At board level
this code can be used to verify component manufacturer, type and version number. The device identification register
contains 32 bits, numbered 31 to 0, where bit 31 is the most significant bit (nearest to TDI) and bit 0 is the least significant
bit (nearest to TDO); see Fig.40.
INSTRUCTION
DESCRIPTION
BYPASS
This mandatory instruction provides a minimum length serial path (1 bit) between TDI and TDO
when no test operation of the component is required.
EXTEST
This mandatory instruction allows testing of off-chip circuitry and board level interconnections.
SAMPLE
This mandatory instruction can be used to take a sample of the inputs during normal operation of
the component. It can also be used to preload data values into the latched outputs of the boundary
scan register.
CLAMP
This optional instruction is useful for testing when not all ICs have BST. This instruction addresses
the bypass register while the boundary scan register is in external test mode.
IDCODE
This optional instruction will provide information on the components manufacturer, part number
and version number.
INTEST
This optional instruction allows testing of the internal logic (no customer support available).
USER1
This private instruction allows testing by the manufacturer (no customer support available).
Preliminary
NDA required
Confidential - NDA required
page 105
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
handbook, full pagewidth
MHB734
00000010101
0111000100011000
nnnn
4-bit
version
code
16-bit part number
11-bit manufacturer
identification
TDI
TDO
31
MSB
LSB
28 27
12 11
1
0
1
Fig.40 32 bits of identification code.
0111 0001 0001 0101
Preliminary
NDA required
Confidential - NDA required
page 106
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
11 LIMITING VALUES
Table 43 Limiting Values
12 THERMAL CHARACTERISTICS
Table 44 Thermal characteristics
SYMBOL
PARAMETER
Conditions
MIN
MAX
UNIT
VDDx
supply voltage digital
-0.5
+4.6
V
VDDAx
supply voltage analog
-0.5
+4.6
V
VIA
input voltage at analog inputs
note 3
-0.5
VDDA + 0.5
(4.6 max)
V
VOA
output voltage at analog output
-0.5
VDDA + 0.5
V
VID
input voltage at digital inputs
outputs in
tristate,
note 2, 3
-0.5
+5.5
V
VOD
output voltage at digital outputs
outputs active
-0.5
VDDx + 0.5
V
VdiffGND
difference voltage between
VSSAall and VSSall
-
100
mV
Tstg
storage temperature
-65
+150
C
Tamb
operating ambient temperature
range
0
+70
C
VESD
electrostatic handling for all pins
note 1
-2000
+2000
V
Note
1. Equivalent to discharging a 100pF capacitor through an 1.5kW series resistor (Human Body Model)
2. With the exception of pin XTALI
3. The chip must be supplied correctly with at least the minimum supply voltage of 3.0V
SYMBOL
PARAMETER
CONDITIONS
VALUE
UNIT
R
th(j-a)
thermal resistance from junction to ambient
in free air
52.5
K/W
Preliminary
NDA required
Confidential - NDA required
page 107
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
13 CHARACTERISTICS
Table 45 Characteristics
V
DDD
= 3.0 to 3.6 V; V
DDA
= 3.1 to 3.5 V; T
amb
= 25
C; timings and levels refer to drawings and conditions illustrated in
Fig.41; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
V
DDD
digital supply
voltage
3.0
3.3
3.6
V
I
DDD
digital supply
current
X-port 3-state; 8-bit I-port
-
TBD.
-
mA
P
D
power dissipation
digital part
-
tbd.
-
mW
V
DDA
analog supply
voltage
3.1
3.3
3.5
V
I
DDA
analog supply
current
AOSL1 and AOSL0 = 0
CVBS mode
-
tbd.
-
mA
Y/C mode
-
tbd.
-
mA
component mode
-
tbd.
-
mA
P
A
power dissipation
analog part
CVBS mode
-
tbd.
-
mW
Y/C mode
-
tbd.
-
mW
component mode
-
tbd.
-
mW
P
tot(A+D)
total power
dissipation analog
and digital part
CVBS mode
-
tbd.
-
mW
Y/C mode
-
tbd.
-
mW
P
tot(A+D)(pd)
total power
dissipation analog
and digital part in
power-down mode
CE pulled down to ground
-
TBD.
-
mW
P
tot(A+D)(ps)
total power
dissipation analog
and digital part in
power-save mode
I
2
C-bus controlled via subaddress
88H
-
tbd.
-
mW
P
tot(A+D)(ps)
total power
dissipation analog
and digital part in
power-save mode
Controlled via chip enable input
(CE, Pin 27)
-
tbd.
-
mW
Analog part
I
clamp
clamping current
V
I
= 1 V DC
-
8
-
A
V
i(p-p)
input voltage
(peak-to-peak
value)
for normal video levels 1 V (p-p),
-
3 dB termination 18/56
and
AC coupling required; coupling
capacitor is 47 nF
-
0.7
-
V
Z
i
input impedance
clamping current off
200
-
-
k
C
i
input capacitance
-
-
10
pF
cs
channel crosstalk
f
i
< 5 MHz
-
-
-
50
dB
Preliminary
NDA required
Confidential - NDA required
page 108
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
9-bit analog-to-digital converters
B
analog bandwidth
at
-
3 dB
-
7
-
MHz
diff
differential phase
amplifier plus anti-alias filter
bypassed
-
2
-
deg
G
diff
differential gain
amplifier plus anti-alias filter
bypassed
-
2
-
%
f
clk(ADC)
ADC clock
frequency
25.4
-
28.6
MHz
LE
dc(d)
DC differential
linearity error
-
0.7
-
LSB
LE
dc(i)
DC integral
linearity error
-
1
-
LSB
G
ADC
ADC gain
inequality
note 1
-
3
-
%
Digital inputs
V
IL(SCL,SDA)
LOW-level input
voltage pins SDA
and SCL
note 2
-
0.5
-
+0.3V
DD(I2C)
V
V
IH(SCL,SDA)
HIGH-level input
voltage pins SDA
and SCL
note 2
0.7V
DD(I2C)
-
V
DD(I2C)
+ 0.5 V
V
IL(XTALI)
LOW-level CMOS
input voltage pin
XTALI
-
0.3
-
+0.8
V
V
IH(XTALI)
HIGH-level CMOS
input voltage pin
XTALI
2.0
-
V
DDD
+ 0.3
V
V
IL(n)
LOW-level input
voltage all other
inputs
-
0.3
-
+0.8
V
V
IH(n)
HIGH-level input
voltage all other
inputs
2.0
-
5.5
V
I
LI
input leakage
current
-
-
1
A
I
LI/O
I/O leakage
current
-
-
10
A
C
i
input capacitance
I/O at high-impedance
-
-
8
pF
Digital outputs; note 3
V
OL(SDA)
LOW-level output
voltage pin SDA
SDA at 3 mA sink current
-
-
0.4
V
V
OL(clk)
LOW-level output
voltage for clocks
-
0.5
-
+0.6
V
V
OH(clk)
HIGH-level output
voltage for clocks
2.4
-
V
DDD
+ 0.5
V
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
maximum deviation
minimum deviation
---------------------------------------------------
1
100
Preliminary
NDA required
Confidential - NDA required
page 109
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
V
OL(n)
LOW-level output
voltage all other
digital outputs
0
-
0.4
V
V
OH(n)
HIGH-level output
voltage all other
digital outputs
2.4
-
V
DDD
+ 0.5
V
Clock output timing (LLC and LLC2); note 4
C
L
output load
capacitance
15
-
50
pF
T
cy
cycle time
pin LLC
35
-
39
ns
pin LLC2
70
-
78
ns
duty factors
t
CLKH
/T
cy
C
L
= 40 pF
40
-
60
%
t
r
rise time LLC and
LLC2
0.2 V to V
DDD
-
0.2 V
-
-
5
ns
t
f
fall time LLC and
LLC2
V
DDD
-
0.2 V to 0.2 V
-
-
5
ns
t
d(LLC-LLC2)
delay time
between LLC and
LLC2 output
measured at 1.5 V; C
L
= 25 pF
tbd.
-
tbd.
ns
Horizontal PLL
f
hor(n)
nominal line
frequency
50 Hz field
-
15625
-
Hz
60 Hz field
-
15734
-
Hz
f
hor
/f
hor(n)
permissible static
deviation
-
-
5.7
%
Subcarrier PLL
f
sc(n)
nominal subcarrier
frequency
PAL BGHI
-
4433619
-
Hz
NTSC M
-
3579545
-
Hz
PAL M
-
3575612
-
Hz
PAL N
-
3582056
-
Hz
f
sc
lock-in range
400
-
-
Hz
Crystal oscillator for 32.11 MHz; note 5
f
xtal(nom)
nominal frequency 3rd harmonic
-
32.11
-
MHz
f
xtal(nom)
permissible
nominal frequency
deviation
-
-
70
10
-
6
f
xtal(nom)(T)
permissible
nominal frequency
deviation with
temperature
-
-
30
10
-
6
C
RYSTAL SPECIFICATION
(X1)
T
amb(X1)
ambient
temperature
0
-
70
C
C
L
load capacitance
8
-
-
pF
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Preliminary
NDA required
Confidential - NDA required
page 110
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
R
s
series resonance
resistor
-
40
80
C
1
motional
capacitance
-
1.5
20%
-
fF
C
0
parallel
capacitance
-
4.3
20%
-
pF
Crystal oscillator for 24.576 MHz; note 5
f
xtal(n)
nominal frequency 3rd harmonic
-
24.576
-
MHz
f
xtal(n)
permissible
nominal frequency
deviation
-
-
50
10
-
6
f
xtal(n)(T)
permissible
nominal frequency
deviation with
temperature
-
-
20
10
-
6
C
RYSTAL SPECIFICATION
(X1)
T
amb(X1)
ambient
temperature
0
-
70
C
C
L
load capacitance
8
-
-
pF
R
s
series resonance
resistor
-
40
80
C
1
motional
capacitance
-
1.5
20%
-
fF
C
0
parallel
capacitance
-
3.5
20%
-
pF
Expansion port (X-Port) output timing with XCLK clock output
T
cy
cycle time
XCLK output
35
-
39
ns
C
L
output load
capacitance
15
-
50
pF
duty factors for
t
XCLKH
/t
XCLKL
tbd.
-
tbd.
%
t
r
rise time
0.6 to 2.6 V
-
-
tbd.
ns
t
f
fall time
2.6 to 0.6 V
-
-
tbd.
ns
Data and control signal output timing X-port including RT port, related to XCLK output
(for XPCK[1:0] 83H[5:4] = 11); note
4
C
L
output load
capacitance
15
-
50
pF
t
OHD;DAT
output data hold
time
VALID FOR OUTPUTS:
XPD [7:0], XRH, XRV, XDQ,
RTS0, RTS1, RTCO
tbd.
-
-
ns
t
PD
propagation delay
from positive edge
of XCLK output
-
-
tbd.
ns
Expansion port (X-Port) input timing with XCLK clock input
T
cyX
XCLK cycle time
XCLK input
31
-
45
ns
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Preliminary
NDA required
Confidential - NDA required
page 111
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
duty factor:
t
XCLKH
/T
cy
tbd.
50
tbd.
%
t
r
rise time
-
-
5
ns
t
f
fall time
-
-
5
ns
Data and control signal input timing X-port, related to XCLK input (for XPCK[1:0] 83H[5:4] = 11);
t
SU;DAT
input data set-up
time
VALID FOR INPUTS:
XPD [7:0], HPD [7:0], XRH, XRV,
XDQ
tbd.
-
-
ns
t
HD;DAT
input data hold
time
-
-
tbd.
ns
t
OHD;DAT
output data hold
time
VALID FOR OUTPUT:
XRDY
tbd.
-
-
ns
t
PD
propagation delay
from positive edge
of XCLK input
-
-
tbd.
ns
Image port (I-Port) output timing with ICLK clock output
C
L
output load
capacitance
15
-
50
pF
T
cy
cycle time
31
-
90
ns
duty factor:
t
ICLKH
/t
ICLKL
C
L
= 40 pF
tbd.
-
tbd.
%
t
r
rise time
0.6 to 2.6 V
-
-
5
ns
t
f
fall time
2.6 to 0.6 V
-
-
5
ns
Data and control signal output timing I-port, related to ICLK output (for IPCK[1:0] 87H[5:4] = 11)
C
L
output load
capacitance at all
outputs
15
-
50
pF
t
OHD;DAT
output data hold
time
VALID FOR OUTPUTS:
IPD [7:0], HPD [7:0], IGPH,
IGPV, IDQ, IGP1, IGP0
tbd.
-
-
ns
t
o(d)
output delay time
-
-
23
ns
Data and control signal input timing I-port, related to ICLK output (for IPCK[1:0] 83H[5:4] = 11);
t
SU;DAT
input data set-up
time
Valid for input:
ITRDY
18
-
-
ns
t
HD;DAT
input data hold
time
-
-
tbd.
ns
Image port (I-Port) output timing with ICLK clock input
T
cy
cycle time
31
-
100
ns
duty factors:
t
ICLKH
/Tcy
tbd.
50
tbd.
%
t
r
rise time
0.6 to 2.6 V
-
-
5
ns
t
f
fall time
2.6 to 0.6 V
-
-
5
ns
Data and control signal output timing I-port, related to ICLK input (for IPCK[1:0] 87H[5:4] = 11)
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Preliminary
NDA required
Confidential - NDA required
page 112
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Notes
1. ADC1 is not taken into account, since component video is always converted by ADC2, ADC3 and ADC4.
2. V
DD(I2C)
is the supply voltage of the I
2
C-bus. For V
DD(I2C)
= 3.3 V is V
IL(SCL,SDA)(max)
= 1 V; for V
DD(I2C)
= 5 V is
V
IL(SCL,SDA)(max)
= 1.5 V. For V
DD(I2C)
= 3.3 V is V
IH(SCL,SDA)(min)
= 2.3 V; for V
DD(I2C)
= 5 V is V
IH(SCL,SDA)(min)
= 3.5 V.
3. The levels must be measured with load circuits; 1.2 k
at 3 V (TTL load); C
L
= 50 pF.
4. The effects of rise and fall times are included in the calculation of t
OHD;DAT
and t
PD
. Timings and levels refer to
drawings and conditions illustrated in Fig.41.
5. The crystal oscillator drive level is typical 0.28 mW.
C
L
output load
capacitance at all
outputs
15
-
50
pF
t
OHD;DAT
output hold time
VALID FOR OUTPUTS:
IPD [7:0], HPD [7:0], IGPH,
IGPV, IDQ, IGP1, IGP0
tbd.
-
-
ns
t
PD
propagation delay
from positive edge
of LLC output
-
-
tbd.
ns
Data and control signal input timing I-port, related to ICLK input (for IPCK[1:0] 83H[5:4] = 11);
t
SU;DAT
input data set-up
time
Valid for input:
ITRDY
tbd.
-
-
ns
t
HD;DAT
input data hold
time
-
-
tbd.
ns
AMCLK clock output
C
L
output load
capacitance
15
-
50
pF
t
r
rise time
0.6 to 2.6 V
-
-
5
ns
t
f
fall time
2.6 to 0.6 V
-
-
5
ns
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Preliminary
NDA required
Confidential - NDA required
page 113
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
handbook, full pagewidth
MHB735
tXCLKH
tr
tr
tf
tHD;DAT
tSU;DAT
tSU;DAT
tHD;DAT
Tcy
tX(I)CLKH
tX(I)CLKL
tf
clock input
XCLK
data and
control inputs
(X port)
data and
control outputs
X port, I port
clock outputs
LLC, LLC2, XCLK, ICLK
and ICLK input
input
XDQ
2.4 V
1.5 V
0.6 V
-
2.6 V
-
1.5 V
-
0.6 V
2.0 V
0.8 V
tOHD;DAT
to(d)
-
2.4 V
-
0.6 V
2.0 V
0.8 V
not valid
Fig.41 Data input/output timing diagram (X-port, RT port and I-port).
Preliminary
NDA required
Confidential - NDA required
page 114
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
14 APPLICATION INFORMATION
Fig.42 Application example
IP
D
7
IP
D
1
IP
D
0
IP
D
4
IP
D
3
IP
D
6
IP
D
5
IP
D
2
BST0
BST1
BST2
IM
C
O
N
0
IM
C
O
N
5
IM
C
O
N
1
IM
C
O
N
3
AI
2
2
AI
2
1
AI
1
2
AI
1
1
I
P
D
[
0
..7
]
RE
SN
SD
A
AI
2
3
AI
2
4
TD
I
B
S
T
[
0
..2
]
TD
O
XP
D[
0
.
.
7
]
I
M
C
O
N
[
0
..7
]
SCL
HP
D[
0
.
.
7
]
X
C
ON
[
0
..6
]
RCON
[
0
..2
]
C2
47nF
C
3
47nF
C4
47nF
R5
18R
R3
18R
R2
18R
C1
47nF
C5
47nF
C6
47nF
R4
18R
R1
18R
R10
56R
R11
56R
R12
56R
R13
56R
R14
56R
R15
56R
R6
18R
C1
0
10p
F
C1
1
10p
F
Y1
32.
11M
H
z
C9
1nF
L3
10
H
AG
ND
DG
ND
IM
C
O
N
4
DG
ND
XPD0
XPD1
XPD2
XPD3
XPD4
XPD5
XPD6
XPD7
AUDI
O
[
0
.
.
3
]
3V
3D
DG
ND
HPD0
HPD1
HPD2
HPD3
HPD4
HPD5
HPD6
HPD7
C7
47nF
C8
47nF
AG
ND
AG
ND
HP
D[
0
.
.
7
]
I
P
D
[
0
..7
]
I
M
C
O
N
[
0
..7
]
XP
D[
0
.
.
7
]
X
C
ON
[
0
..6
]
B
S
T
[
0
..2
]
3V
3D
3V
3A
AG
ND
3V
3D
RCON
[
0
..2
]
RCON
0
RCON
1
RCON
2
XCON0
XCON1
XCON2
XCON3
XCON4
XCON5
XCON6
IM
C
O
N
2
IM
C
O
N
6
IM
C
O
N
7
AUDI
O
[
0
.
.
3
]
AUDI
O
0
AUDI
O
1
AUDI
O
2
AUDI
O
3
'
S
t
r
ap
p
i
ng'
I2C
S
l
ave A
d
d
r
es
s
DG
ND
R
7
33R
R
8
33R
R
9
33R
'
S
t
r
ap
p
i
ng'
C
l
o
c
k F
r
eq
uenc
y
C2
5
100nF
C2
4
100nF
AG
ND
C2
3
100nF
C2
0
100nF
C1
9
100nF
C1
8
100nF
C1
7
100nF
C2
1
100nF
C2
2
100nF
C1
4
100nF
C1
3
100nF
C1
2
100nF
DG
ND
C1
5
100nF
C1
6
100nF
R1
9
ope
n
R2
0
3k3
R1
7
0R
3V
3A
L2
F
e
rri
te
L1
F
e
rri
te
VDDD
VDDA
CP1
10
F
CP2
10
F
R1
6
0R
R1
8
ope
n
3V
3D
IP
D
7
54
IG
P
H
53
IG
P
1
49
IG
P
0
48
IT
R
I
47
ID
Q
46
IC
L
K
45
VSSE
50
IP
D
0
62
IP
D
1
61
IP
D
3
59
IP
D
2
60
VDDI
58
IP
D
4
57
IP
D
5
56
IP
D
6
55
AOUT
22
HPD4
67
VDDE
51
VDDI
43
RTS1
35
LLC
28
VDDA2
11
AI
2
D
13
VSSA
1
15
VDDA1
17
AI
1
D
19
AGND
21
XT
ALI
7
VXDD
8
VSSA
2
9
RTCO
36
AM
C
L
K
37
VDDE
25
AI
1
2
18
AI
2
2
14
AI
2
4
10
VSSI
63
IT
R
D
Y
42
VSSI
38
AM
XC
LK
41
VDDA0
23
HPD6
65
HPD5
66
VDDI
68
IG
P
V
52
TEST0
44
RTS0
34
CE
27
LLC2
29
RESON
30
SCL
31
VSSE
26
VDDI
33
SDA
32
A
L
RCL
K
40
AS
C
L
K
39
TDI
3
VSSA
0
24
AI
1
1
20
AI
2
1
16
AI
2
3
12
TDO
2
VDDE
1
XTOUT
4
VXSS
5
XT
AL
6
HPD7
64
HPD3
69
HPD2
70
HPD1
71
HPD0
72
TEST1
73
TEST2
74
VDDE
75
VSSE
76
TEST3
77
TEST4
78
TEST5
79
XTRI
80
XPD7
81
XPD6
82
VDDI
83
XPD5
84
XPD4
85
XPD3
86
XPD2
87
VSSI
88
XPD1
89
XPD0
90
XRV
91
XRH
92
VDDI
93
XCLK
94
XDQ
95
XRDY
96
TRSTN
97
TCK
98
TMS
99
VSSE
100
S
A
A
7115H
L
U1
S
A
A
7115
R21
4k7
C
o
nnec
t
t
o
3V
3D
o
r
o
t
her
C
o
nt
r
o
l
-
S
i
gnal
SAA7115HL
Preliminary
NDA required
Confidential - NDA required
page 115
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
6
7
SAA7115
XTALO
XTALI
6
7
SAA7115
XTALO
XTALI
6
7
SAA7115
XTALO
XTALI
6
7
SAA7115
XTALO
XTALI
6
7
SAA7115
XTALO
XTALI
6
7
SAA7115
XTALO
XTALI
6
7
SAA7115
XTALO
XTALI
(1a) With 3rd harmonic quartz.
Crystal load = 8 pF
4.7
H
1nF
15 pF 15 pF
32.11 MHz
(1b) With fundamental quartz.
Crystal load = 20 pF
39 pF 39 pF
32.11 MHz
(1c) With fundamental quartz.
Crystal load = 8 pF
15 pF 15 pF
32.11 MHz
(2a) With 3rd harmonic quartz.
4.7
H
1nF
18 pF 18 pF
24.576 MHz
(2b) With fundamental quartz.
39 pF 39 pF
(2c) With fundamental quartz.
15 pF 15 pF
(3a) With direct clock
24.576 MHz
n.c.
Clock
32.11 MHz or
24.576 MHz
24.576 MHz
(3b) With fundamental quartz crystal and restricted drive level. When
Pdrive of the internal oscillator is too high a resistance Rs can be
placed in series with the output of the oscillator XTALO.
Note: The decreased crystal amplitude results in a lower drive level but
on the other hand the jitter performance will decrease.
Rs
6
7
SAA7115
XTALO
XTALI
Fig.43 Oscillator applications
Preliminary
NDA required
Confidential - NDA required
page 116
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
15 DEVICE PROGRAMMING OVERVIEW
15.1
I2C-bus description
Table 46 Description of I
2
C-bus format
Note
1. If pin RTCO strapped to supply voltage via a 4.7 k
resistor.
CODE
DESCRIPTION
S
START condition
Sr
repeated START condition
SLAVE ADDRESS W
`0100 0010' (42H, default) or `0100 0000' (40H; note 1)
SLAVE ADDRESS R
`0100 0011' (43H, default) or `0100 0001' (41H; note 1)
ACK-s
acknowledge generated by the slave
ACK-m
acknowledge generated by the master
SUBADDRESS
subaddress byte; see Tables 47 and 48
DATA
data byte; see figure 44; if more than one byte DATA is transmitted the subaddress pointer is
automatically incremented
P
STOP condition
X
read/write control bit (LSB slave address); X = 0, order to write (the circuit is slave receiver);
X = 1, order to read (the circuit is slave transmitter)
ACK-s
ACK-s
DATA
SLAVE ADDRESS W
data transferred
(n bytes + acknowledge)
MHB339
P
S
ACK-s
SUBADDRESS
a. Write procedure.
b. Read procedure (combined).
ACK-s
ACK-m
SLAVE ADDRESS R
MHB340
P
Sr
ACK-s
ACK-s
DATA
SUBADDRESS
SLAVE ADDRESS W
S
data transferred
(n bytes + acknowledge)
Fig.44 I
2
C-bus format.
Preliminary
NDA required
Confidential - NDA required
page 117
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
15.2
Register Overview
Table 47 Subaddress description and access
SUBADDRESS
DESCRIPTION
ACCESS (READ/WRITE)
00H
chip version
read only
Video decoder: 01H to 2FH
01H to 05H
front-end part
read and write
06H to 19H
decoder part
read and write
1AH to 1DH
color decoding, misc
read and write
1EH to 1FH
video decoder status byte
read only
20H to 2FH
reserved
-
Audio clock generation: 30H to 3FH
30H to 3AH
audio clock generator
read and write
3BH to 3FH
reserved
-
General purpose VBI-data slicer: 40H to 7FH
40H to 5BH
VBI-data slicer
read and write
5CH
reserved
-
5DH to 5EH
VBI-data slicer
read and write
5FH
reserved
-
60H to 65H
VBI-data slicer status
read only
66H to 7FH
I
2
C readback of sliced VBI data
read only
X-port, I-port, scaler and power save control: 80H to EFH
80H to 8FH
task independent global settings
read and write
90H to BFH
task A definition
read and write
C0H to EFH
task B definition
read and write
Second PLL (PLL2) and Pulsegenerator: F0H to FFH
F0H to F4H
Second PLL settings
read and write
F5H to FBH
Pulsegenerator
read and write
FCH to FEH
reserved
read and write
FFH
Second PLL, lock status definition
read and write
Preliminary
NDA required
Confidential - NDA required
page 118
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 48 I
2
C-subaddress Overview
(1)
REGISTER
FUNCTION
SUB
ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Register 00 to 2F used by chip version part
Chip version
(read only)
00
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
Registers 01 to 1F used by the video decoder part
Increment Delay
01
AOSL2
WPOFF
GUDL1
GUDL0
IDEL3
IDEL2
IDEL1
IDEL0
Analog Input Control
1
02
FUSE1
FUSE0
0
0
MODE3
MODE2
MODE1
MODE0
Analog Input Control
2
03
TEST
HLNRS
VBSL
CPOFF
HOLDG
GAFIX
GAI28
GAI18
Analog Input Control
3
04
GAI17
GAI16
GAI15
GAI14
GAI13
GAI12
GAI11
GAI10
Analog Input Control
4
05
GAI27
GAI26
GAI25
GAI24
GAI23
GAI22
GAI21
GAI20
Horizontal sync start
06
HSB7
HSB6
HSB5
HSB4
HSB3
HSB2
HSB1
HSB0
Horizontal sync stop
07
HSS7
HSS6
HSS5
HSS4
HSS3
HSS2
HSS1
HSS0
Sync Control
08
AUFD
FSEL
FOET
HTC1
HTC0
HPLL
VNOI1
VNOI0
Luminance Control
09
BYPS
YCOMB
LDEL
LUBW
LUFI3
LUFI2
LUFI1
LUFI0
Luminance
Brightness
adjustment
0A
DBRI7
DBRI6
DBRI5
DBRI4
DBRI3
DBRI2
DBRI1
DBRI0
Luminance Contrast
adjustment
0B
DCON7
DCON6
DCON5
DCON4
DCON3
DCON2
DCON1
DCON0
Chroma Saturation
adjustment
0C
DSAT7
DSAT6
DSAT5
DSAT4
DSAT3
DSAT2
DSAT1
DSAT0
Chroma Hue control
0D
HUEC7
HUEC6
HUEC5
HUEC4
HUEC3
HUEC2
HUEC1
HUEC0
Chroma Control 1
0E
CDTO
CSTD2
CSTD1
CSTD0
DCVF
FCTC
AUTO0
CCOMB
Chroma Gain
Control
0F
ACGC
CGAIN6
CGAIN5
CGAIN4
CGAIN3
CGAIN2
CGAIN1
CGAIN0
Chroma Control 2
10
OFFU1
OFFU0
OFFV1
OFFV0
CHBW
LCBW2
LCBW1
LCBW0
Mode/Delay Control
11
COLO
RTP1
HDEL1
HDEL0
RTP0
YDEL2
YDEL1
YDEL0
RT signal Control
12
RTSE13
RTSE12
RTSE11
RTSE10
RTSE03
RTSE02
RTSE01
RTSE00
RT / X-port output
Control
13
RTCE
XRHS
XRVS1
XRVS0
HLSEL
OFTS2
OFTS1
OFTS0
analog / ADC /
compatibility control
14
CM99
UPTCV
AOSL1
AOSL0
XTOUTE
AUTO1
APCK1
APCK0
VGATE start,
FID change
15
VSTA7
VSTA6
VSTA5
VSTA4
VSTA3
VSTA2
VSTA1
VSTA0
VGATE stop
16
VSTO7
VSTO6
VSTO5
VSTO4
VSTO3
VSTO2
VSTO1
VSTO0
(1) Colour codes in this table:
- green: new or modified functionality (related to ALL previous decoder designs),
- yellow: new or modified functionality already realized in SAA7118 (where SAA7115 is mainly derived from)
- red: hidden functionality
Preliminary
NDA required
Confidential - NDA required
page 119
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
MISC / VGATE
MSB's
17
LLCE
LLC2E
LATY2
LATY1
LATY0
VGPS
VSTO8
VSTA8
Raw Data Gain
18
RAWG7
RAWG6
RAWG5
RAWG4
RAWG3
RAWG2
RAWG1
RAWG0
Raw Data Offset
19
RAWO7
RAWO6
RAWO5
RAWO4
RAWO3
RAWO2
RAWO1
RAWO0
ColorKiller Thresholds
1A
QTHR3
QTHR2
QTHR1
QTHR0
STHR3
STHR2
STHR1
STHR0
MISC /TVVCRDET
1B
ATVT1
ATVT0
0
OFTS3
0
0
ACOL
FSQC
enhanced comb ctrl1
1C
HODG1
HODG0
VEDG1
VEDG0
MEDG1
MEDG0
CMBT1
CMBT0
enhanced comb ctrl2
1 D
0
0
0
0
0
0
VEDT1
VEDT0
Status Byte Decoder
1
(read only)
1E
NFLD
HLCK
SLTCA
GLIMT
GLIMB
WIPA
DCSTD1 DCSTD0
Status Byte Decoder
2 (read only)
1F
INTL
HLVLN
FIDT
STTB
TYPE3
COLSTR
COPRO
RDCAP
Registers 20 to 2F reserved for future extensions (e.g. component processing saa7118+)
reserved
20 to 2F
0
0
0
0
0
0
0
0
Registers 30 to 3F used by audio clock generator
audio master clock
cycles per field
30
ACPF7
ACPF6
ACPF5
ACPF4
ACPF3
ACPF2
ACPF1
ACPF0
audio master clock
cycles per field
31
ACPF15
ACPF14
ACPF13
ACPF12
ACPF11
ACPF10
ACPF9
ACPF8
audio master clock
cycles per field
32
0
0
0
0
0
0
ACPF17
ACPF16
reserved for future
extensions
33
0
0
0
0
0
0
0
0
audio master clock
nominal increment
34
ACNI7
ACNI6
ACNI5
ACNI4
ACNI3
ACNI2
ACNI1
ACNI0
audio master clock
nominal increment
35
ACNI15
ACNI14
ACNI13
ACNI12
ACNI11
ACNI10
ACNI9
ACNI8
audio master clock
nominal increment
36
0
0
ACNI21
ACNI20
ACNI19
ACNI18
ACNI17
ACNI16
reserved for future
extensions
37
0
0
0
0
0
0
0
0
clock ratio AMXCLK
to ASCLK
38
0
0
SDIV5
SDIV4
SDIV3
SDIV2
SDIV1
SDIV0
clock ratio ASCLK to
ALRCLK
39
0
0
LRDIV5
LRDIV4
LRDIV3
LRDIV2
LRDIV1
LRDIV0
audio clock gen.
basic setup
3A
UCGC
CGCDIV
0
0
APLL
AMVR
LRPH
SCPH
reserved
3B to 3F
0
0
0
0
0
0
0
0
Registers 40 to 7F used by general purpose VBI data slicer
AC1
40
CHKWSS HAM_N
FCE
HUNT_N
0
0
0
0
LCR2
41
LCR02_7 LCR02_6 LCR02_5 LCR02_4 LCR02_3 LCR02_2 LCR02_1 LCR02_0
REGISTER
FUNCTION
SUB
ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Preliminary
NDA required
Confidential - NDA required
page 120
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
LCR3
42
LCR03_7 LCR03_6 LCR03_5 LCR03_4 LCR03_3 LCR03_2 LCR03_1 LCR03_0
...
...
...
...
...
...
...
...
...
...
LCR23
56
LCR23_7 LCR23_6 LCR23_5 LCR23_4 LCR23_3 LCR23_2 LCR23_1 LCR23_0
LCR24
57
LCR24_7 LCR24_6 LCR24_5 LCR24_4 LCR24_3 LCR24_2 LCR24_1 LCR24_0
FC
58
FC7
FC6
FC5
FC4
FC3
FC2
FC1
FC0
HOFF
59
HOFF7
HOFF6
HOFF5
HOFF4
HOFF3
HOFF2
HOFF1
HOFF0
VOFF
5A
VOFF7
VOFF6
VOFF5
VOFF4
VOFF3
VOFF2
VOFF1
VOFF0
HVOFF
5B
FOFF
0
VEP
VOFF8
0
HOFF10
HOFF9
HOFF8
reserved
5C
0
0
0
0
0
0
0
0
sliced data output
mode
5D
0
0
0
SLDOM4 SLDOM3 SLDOM2 SLDOM1 SLDOM0
D7,D6 are read only,
2nd text data ident.
code SDID
5E
FC8V
FC7V
SDID5
SDID4
SDID3
SDID2
SDID1
SDID0
reserved
5F
0
0
0
0
0
0
0
0
reserved (don't use)
65
-
-
-
-
-
-
-
-
i2c-Readback 1
CC-header
66
CCH_7
CCH_6
CCH_5
CCH_4
CCH_3
CCH_2
CCH_1
CCH_0
i2c-Readback 2
CC-odd byte 1
67
CCO1_7
CCO1_6
CCO1_5
CCO1_4
CCO1_3
CCO1_2
CCO1_1
CCO1_0
i2c-Readback 3
CC-odd byte 2
68
CCO2_7
CCO2_6
CCO2_5
CCO2_4
CCO2_3
CCO2_2
CCO2_1
CCO2_0
i2c-Readback 4
CC-even byte 1
69
CCE1_7
CCE1_6
CCE1_5
CCE1_4
CCE1_3
CCE1_2
CCE1_1
CCE1_0
i2c-Readback 5
CC-even byte 2
6A
CCE2_7
CCE2_6
CCE2_5
CCE2_4
CCE2_3
CCE2_2
CCE2_1
CCE2_0
i2c-Readback 6
WSS-header
6B
WSSH_7
WSSH_6
WSSH_5
WSSH_4
WSSH_3
WSSH_2
WSSH_1
WSSH_0
i2c-Readback 7
WSS-odd byte 1
6C
WSSO1_7 WSSO1_6 WSSO1_5 WSSO1_4 WSSO1_3 WSSO1_2 WSSO1_1 WSSO1_0
i2c-Readback 8
WSS-odd byte 2
6D
WSSO2_7 WSSO2_6 WSSO2_5 WSSO2_4 WSSO2_3 WSSO2_2 WSSO2_1 WSSO2_0
i2c-Readback 9
WSS-odd byte 3
6E
WSSO3_7 WSSO3_6 WSSO3_5 WSSO3_4 WSSO3_3 WSSO3_2 WSSO3_1 WSSO3_0
i2c-Readback 10
WSS-even byte 1
6F
WSSE1_7
WSSE1_6
WSSE1_5 WSSE1_4 WSSE1_3 WSSE1_2 WSSE1_1 WSSE1_0
i2c-Readback 11
WSS-even byte 2
70
WSSE2_7
WSSE2_6
WSSE2_5 WSSE2_4 WSSE2_3 WSSE2_2 WSSE2_1 WSSE2_0
i2c-Readback 12
WSS-even byte 3
71
WSSE3_7
WSSE3_6
WSSE3_5 WSSE3_4 WSSE3_3 WSSE3_2 WSSE3_1 WSSE3_0
i2c-Readback 13
GS1-header
72
GS1H_7
GS1H_6
GS1H_5
GS1H_4
GS1H_3
GS1H_2
GS1H_1
GS1H_0
i2c-Readback 14
GS1-odd 1
73
GS1O1_7
GS1O1_6
GS1O1_5
GS1O1_4
GS1O1_3
GS1O1_2
GS1O1_1
GS1O1_0
REGISTER
FUNCTION
SUB
ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Preliminary
NDA required
Confidential - NDA required
page 121
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
i2c-Readback 15
GS1-odd 2
74
GS1O2_7
GS1O2_6
GS1O2_5
GS1O2_4
GS1O2_3
GS1O2_2
GS1O2_1
GS1O2_0
i2c-Readback 16
GS1-even 1
75
GS1E1_7
GS1E1_6
GS1E1_5
GS1E1_4
GS1E1_3
GS1E1_2
GS1E1_1
GS1E1_0
i2c-Readback 17
GS1-even 2
76
GS1E2_7
GS1E2_6
GS1E2_5
GS1E2_4
GS1E2_3
GS1E2_2
GS1E2_1
GS1E2_0
i2c-Readback 18
GS2-header
77
GS2H_ 7
GS2H_ 6
GS2H_ 5
GS2H_ 4
GS2H_ 3
GS2H_ 2
GS2H_ 1
GS2H_ 0
i2c-Readback 19
GS2-odd 1
78
GS2O1_ 7 GS2O1_ 6 GS2O1_ 5 GS2O1_ 4 GS2O1_ 3 GS2O1_ 2 GS2O1_ 1 GS2O1_ 0
i2c-Readback 20
GS2-odd 2
79
GS2O2_ 7 GS2O2_ 6 GS2O2_ 5 GS2O2_ 4 GS2O2_ 3 GS2O2_ 2 GS2O2_ 1 GS2O2_ 0
i2c-Readback 21
GS2-odd 3
7A
GS2O3_ 7 GS2O3_ 6 GS2O3_ 5 GS2O3_ 4 GS2O3_ 3 GS2O3_ 2 GS2O3_ 1 GS2O3_ 0
i2c-Readback 22
GS2-odd 4
7B
GS2O4_ 7 GS2O4_ 6 GS2O4_ 5 GS2O4_ 4 GS2O4_ 3 GS2O4_ 2 GS2O4_ 1 GS2O4_ 0
i2c-Readback 23
GS2-even 1
7C
GS2E1_ 7
GS2E1_ 6
GS2E1_ 5 GS2E1_ 4 GS2E1_ 3 GS2E1_ 2 GS2E1_ 1 GS2E1_ 0
i2c-Readback 24
GS2-even 2
7D
GS2E2_ 7
GS2E2_ 6
GS2E2_ 5 GS2E2_ 4 GS2E2_ 3 GS2E2_ 2 GS2E2_ 1 GS2E2_ 0
i2c-Readback 25
GS2-even 3
7E
GS2E3_ 7
GS2E3_ 6
GS2E3_ 5 GS2E3_ 4 GS2E3_ 3 GS2E3_ 2 GS2E3_ 1 GS2E3_ 0
i2c-Readback 26
GS2-even 4
7F
GS2E4_ 7
GS2E4_ 6
GS2E4_ 5 GS2E4_ 4
GS2E4_3
GS2E4_ 2 GS2E4_ 1 GS2E4_ 0
registers 80 to FF used by X - port, I - port and the scaler
Task independent Global Settings 1
Global Control1
80
CMOD
0
TEB
TEA
ICKS3
ICKS2
ICKS1
ICKS0
reserved
81
0
0
0
0
0
FTIME
V_EAV1
V_EAV0
reserved
82
0
0
0
0
0
0
0
0
X-port I/O delay and
enable control
83
0
0
XPCK1
XPCK0
0
XRQT
XPE1
XPE0
I - port signal
Definitions
84
IDG11
IDG10
IDG01
IDG00
IDV1
IDV0
IDH1
IDH0
I-port signal
polarities
85
ISWP1
ISWP0
ILLV
IG1P
IG0P
IRVP
IRHP
IDQP
I - port FIFO flag
control and
arbitration
86
IMPAK
VITX
IDG12
IDG02
FFL1
FFL0
FEL1
FEL0
I-port I/O delay and
enable control
87
IPCK3
IPCK2
IPCK1
IPCK0
0
0
IPE1
IPE0
power save control
88
CH2EN
CH1EN
SWRST
DPROG
SLM3
0
SLM1
SLM0
reserved
89 to 8E
0
0
0
0
0
0
0
0
scaler status
information
8F
XTRI
ITRI
FFIL
FFOV
PRDON
ERR_OF
FIDSCI
FIDSCO
REGISTER
FUNCTION
SUB
ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Preliminary
NDA required
Confidential - NDA required
page 122
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Task A Definition registers 90 to BF
Basic Settings and Acquisition Window definition
Task Handling
Control
90
CONLH
OFIDC
FSKP2
FSKP1
FSKP0
RPTSK
STRC1
STRC0
X - port formats and
configuration
91
CONLV
HLDFV
SCSRC1 SCSRC0
SCRQE
FSC2
FSC1
FSC0
X - port Input
Reference Signal
Definition
92
XFDV
XFDH
XDV1
XDV0
XCODE
XDH
XDQ
XCKS
I - port formats and
configuration
93
ICODE
INS80
FYSK
FOI1
FOI0
FSI2
FSI1
FSI0
Horizontal input
window start (1)
94
XO7
XO6
XO5
XO4
XO3
XO2
XO1
XO0
(continue)
95
0
0
0
0
XO11
XO10
XO9
XO8
Horizontal input
window length
96
XS7
XS6
XS5
XS4
XS3
XS2
XS1
XS0
(continue)
97
0
0
0
0
XS11
XS10
XS9
XS8
Vertical input
window start (
98
YO7
YO6
YO5
YO4
YO3
YO2
YO1
YO0
(continue)
99
0
0
0
0
YO11
YO10
YO9
YO8
Vertical input
window length
9A
YS7
YS6
YS5
YS4
YS3
YS2
YS1
YS0
(continue)
9B
FMOD
0
0
0
YS11
YS10
YS9
YS8
Horizontal output
window length
9C
XD7
XD6
XD5
XD4
XD3
XD2
XD1
XD0
(continue)
9D
0
0
0
0
XD11
XD10
XD9
XD8
Vertical output
window length
9E
YD7
YD6
YD5
YD4
YD3
YD2
YD1
YD0
(continue)
9F
0
0
0
0
YD11
YD10
YD9
YD8
FIR Filtering and Prescaling
Horiz. prescaling
A0
0
0
XPSC5
XPSC4
XPSC3
XPSC2
XPSC1
XPSC0
Accumulation length
A1
0
0
XACL5
XACL4
XACL3
XACL2
XACL1
XACL0
Prescaler DC gain
and FIR Prefilter
control
A2
PFUV1
PFUV0
PFY1
PFY0
XC2_1
XDCG2
XDCG1
XDCG0
reserved
A3
0
0
0
0
0
0
0
0
Luminance
brightness
A4
BRIG7
BRIG6
BRIG5
BRIG4
BRIG3
BRIG2
BRIG1
BRIG0
Luminance contrast
A5
CONT7
CONT6
CONT5
CONT4
CONT3
CONT2
CONT1
CONT0
Chroma saturation
A6
SATN7
SATN6
SATN5
SATN4
SATN3
SATN2
SATN1
SATN0
reserved
A7
0
0
0
0
0
0
0
0
Horizontal Phase Scaling
Horiz. Scaling
Increment Luma
A8
XSCY7
XSCY6
XSCY5
XSCY4
XSCY3
XSCY2
XSCY1
XSCY0
REGISTER
FUNCTION
SUB
ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Preliminary
NDA required
Confidential - NDA required
page 123
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
(continue)
A9
0
0
0
XSCY12
XSCY11
XSCY10
XSCY9
XSCY8
Horizontal Phase
Offset Luma
AA
XPHY7
XPHY6
XPHY5
XPHY4
XPHY3
XPHY2
XPHY1
XPHY0
reserved
AB
Horiz. Scaling
Increment Chroma
AC
XSCC7
XSCC6
XSCC5
XSCC4
XSCC3
XSCC2
XSCC1
XSCC0
(continue)
AD
0
0
0
XSCC12 XSCC11 XSCC10
XSCC9
XSCC8
Horizontal Phase
Offset Chroma
AE
XPHC7
XPHC6
XPHC5
XPHC4
XPHC3
XPHC2
XPHC1
XPHC0
reserved
AF
0
0
0
0
0
0
0
0
Vertical Scaling
Vertical Scaling
Increment Luma
B0
YSCY7
YSCY6
YSCY5
YSCY4
YSCY3
YSCY2
YSCY1
YSCY0
(B0 continued)
B1
YSCY15
YSCY14
YSCY13
YSCY12
YSCY11
YSCY10
YSCY9
YSCY8
Vertical Scaling
Increment Chroma
B2
YSCC7
YSCC6
YSCC5
YSCC4
YSCC3
YSCC2
YSCC1
YSCC0
(B2 continued)
B3
YSCC15
YSCC14
YSCC13 YSCC12 YSCC11 YSCC10
YSCC9
YSCC8
Vertical Scaling
Mode Control
B4
0
0
0
YMIR
0
0
0
YMODE
reserved
B5 to B7
Vertical Phase
Offset Chroma `00'
B8
YPC07
YPC06
YPC05
YPC04
YPC03
YPC02
YPC01
YPC00
Vertical Phase
Offset Chroma `01'
B9
YPC17
YPC16
YPC15
YPC14
YPC13
YPC12
YPC11
YPC10
Vertical Phase
Offset Chroma `10'
BA
YPC27
YPC26
YPC25
YPC24
YPC23
YPC22
YPC21
YPC20
Vertical Phase
Offset Chroma `11'
BB
YPC37
YPC36
YPC35
YPC34
YPC33
YPC32
YPC31
YPC30
Vertical Phase
Offset Luma `00'
BC
YPY07
YPY06
YPY05
YPY04
YPY03
YPY02
YPY01
YPY00
Vertical Phase
Offset Luma `01'
BD
YPY17
YPY16
YPY15
YPY14
YPY13
YPY12
YPY11
YPY10
Vertical Phase
Offset Luma `10'
BE
YPY27
YPY26
YPY25
YPY24
YPY23
YPY22
YPY21
YPY20
Vertical Phase
Offset Luma `11'
BF
YPY37
YPY36
YPY35
YPY34
YPY33
YPY32
YPY31
YPY30
Task B Definition registers C0 to EF
Basic Settings and Acquisition Window definition
Task Handling
Control
C0
CONLH
OFIDC
FSKP2
FSKP1
FSKP0
RPTSK
STRC1
STRC0
X - port formats and
configuration
C1
CONLV
HLDFV
SCSRC1 SCSRC0
SCRQE
FSC2
FSC1
FSC0
REGISTER
FUNCTION
SUB
ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Preliminary
NDA required
Confidential - NDA required
page 124
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Input Reference
Signal Definition
Control
C2
XFDV
XFDH
XDV1
XDV0
XCODE
XDH
XDQ
XCKS
I - port formats and
configuration
C3
ICODE
INS80
FYSK
FOI1
FOI0
FSI2
FSI1
FSI0
Horizontal input
window start (1)
C4
XO7
XO6
XO5
XO4
XO3
XO2
XO1
XO0
(continue)
C5
0
0
0
0
XO11
XO10
XO9
XO8
Horizontal input
window length
C6
XS7
XS6
XS5
XS4
XS3
XS2
XS1
XS0
(continue)
C7
0
0
0
0
XS11
XS10
XS9
XS8
Vertical input
window start (
C8
YO7
YO6
YO5
YO4
YO3
YO2
YO1
YO0
(continue)
C9
0
0
0
0
YO11
YO10
YO9
YO8
Vertical input
window length
CA
YS7
YS6
YS5
YS4
YS3
YS2
YS1
YS0
(continue)
CB
FMOD
0
0
0
YS11
YS10
YS9
YS8
Horizontal output
window length
CC
XD7
XD6
XD5
XD4
XD3
XD2
XD1
XD0
(continue)
CD
0
0
0
0
XD11
XD10
XD9
XD8
Vertical output
window length
CE
YD7
YD6
YD5
YD4
YD3
YD2
YD1
YD0
(continue)
CF
0
0
0
0
YD11
YD10
YD9
YD8
FIR Filtering and Prescaling
Horiz. prescaling
D0
0
0
XPSC5
XPSC4
XPSC3
XPSC2
XPSC1
XPSC0
Accumulation length
D1
0
0
XACL5
XACL4
XACL3
XACL2
XACL1
XACL0
Prescaler DC gain
and FIR Prefilter
control
D2
PFUV1
PFUV0
PFY1
PFY0
XC2_1
XDCG2
XDCG1
XDCG0
reserved
D3
0
0
0
0
0
0
0
0
Luminance
brightness
D4
BRIG7
BRIG6
BRIG5
BRIG4
BRIG3
BRIG2
BRIG1
BRIG0
Luminance contrast
D5
CONT7
CONT6
CONT5
CONT4
CONT3
CONT2
CONT1
CONT0
Chroma saturation
D6
SATN7
SATN6
SATN5
SATN4
SATN3
SATN2
SATN1
SATN0
reserved
D7
0
0
0
0
0
0
0
0
Horizontal Phase Scaling
Horiz. Scaling
Increment Luma
D8
XSCY7
XSCY6
XSCY5
XSCY4
XSCY3
XSCY2
XSCY1
XSCY0
(continue)
D9
0
0
0
XSCY12
XSCY11
XSCY10
XSCY9
XSCY8
Horizontal Phase
Offset Luma
DA
XPHY7
XPHY6
XPHY5
XPHY4
XPHY3
XPHY2
XPHY1
XPHY0
reserved
DB
0
0
0
0
0
0
0
0
Horiz. Scaling
Increment Chroma
DC
XSCC7
XSCC6
XSCC5
XSCC4
XSCC3
XSCC2
XSCC1
XSCC0
REGISTER
FUNCTION
SUB
ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Preliminary
NDA required
Confidential - NDA required
page 125
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
(continue)
DD
0
0
0
XSCC12 XSCC11 XSCC10
XSCC9
XSCC8
Horizontal Phase
Offset Chroma
DE
XPHC7
XPHC6
XPHC5
XPHC4
XPHC3
XPHC2
XPHC1
XPHC0
reserved
DF
0
0
0
0
0
0
0
0
Vertical Scaling
Vertical Scaling
Increment Luma
E0
YSCY7
YSCY6
YSCY5
YSCY4
YSCY3
YSCY2
YSCY1
YSCY0
(E0 continued)
E1
YSCY15
YSCY14
YSCY13
YSCY12
YSCY11
YSCY10
YSCY9
YSCY8
Vertical Scaling
Increment Chroma
E2
YSCC7
YSCC6
YSCC5
YSCC4
YSCC3
YSCC2
YSCC1
YSCC0
(E2 continued)
E3
YSCC15
YSCC14
YSCC13 YSCC12 YSCC11 YSCC10
YSCC9
YSCC8
Vertical Scaling
Mode Control
E4
0
0
0
YMIR
0
0
0
YMODE
reserved
E5 to E7
0
0
0
0
0
0
0
0
Vertical Phase
Offset Chroma `00'
E8
YPC07
YPC06
YPC05
YPC04
YPC03
YPC02
YPC01
YPC00
Vertical Phase
Offset Chroma `01'
E9
YPC17
YPC16
YPC15
YPC14
YPC13
YPC12
YPC11
YPC10
Vertical Phase
Offset Chroma `10'
EA
YPC27
YPC26
YPC25
YPC24
YPC23
YPC22
YPC21
YPC20
Vertical Phase
Offset Chroma `11'
EB
YPC37
YPC36
YPC35
YPC34
YPC33
YPC32
YPC31
YPC30
Vertical Phase
Offset Luma `00'
EC
YPY07
YPY06
YPY05
YPY04
YPY03
YPY02
YPY01
YPY00
Vertical Phase
Offset Luma `01'
ED
YPY17
YPY16
YPY15
YPY14
YPY13
YPY12
YPY11
YPY10
Vertical Phase
Offset Luma `10'
EE
YPY27
YPY26
YPY25
YPY24
YPY23
YPY22
YPY21
YPY20
Vertical Phase
Offset Luma `11'
EF
YPY37
YPY36
YPY35
YPY34
YPY33
YPY32
YPY31
YPY30
second PLL (PLL2) and Pulsegenerator Programming
LFCO's per line
F0
SPLPL7
SPLPL6
SPLPL5
SPLPL4
SPLPL4
SPLPL2
SPLPL1
SPLPL0
P-/I- Param. Select.,
PLL Mode, PLL H-Src.,
LFCO's per line
F1
SPPI3
SPPI2
SPPI1
SPPI0
SPMOD1 SPMOD0 SPHSEL
SPLPL8
Nominal PLL2 DTO
Increment
F2
SPNINC7
SPNINC6
SPNINC5
SPNINC4
SPNINC3
SPNINC2
SPNINC1
SPNINC0
F3
SPNINC15 SPNINC14 SPNINC13 SPNINC12 SPNINC11 SPNINC10 SPNINC9
SPNINC8
PLL2 Status
F4
0
0
0
0
0
0
0
SPLOCK
Pulsgen. line length
F5
PGLEN7 PGLEN6 PGLEN5 PGLEN4 PGLEN3 PGLEN2 PGLEN1 PGLEN0
Pulse A Position,
Pulsgen Resync.
Pulsgen. H-Src.,
Pulsgen. line length
F6
PGHAPS3
PGHAPS2
PGHAPS1 PGHAPS0
0
PGRES
PGHSEL PGLEN8
Pulse A Position
F7
PGHAPS11 PGHAPS10 PGHAPS9 PGHAPS8 PGHAPS7 PGHAPS6 PGHAPS5 PGHAPS4
REGISTER
FUNCTION
SUB
ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Preliminary
NDA required
Confidential - NDA required
page 126
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Pulse B Position
F8
PGHBPS3
PGHBPS2
PGHBPS1 PGHBPS0
0
0
0
0
Pulse B Position
F9
PGHBPS11 PGHBPS10 PGHBPS9 PGHBPS8 PGHBPS7 PGHBPS6 PGHBPS5 PGHBPS4
Pulse C Position
FA
PGHCPS3
PGHCPS2
PGHCPS1 PGHCPS0
0
0
0
0
Pulse C Position
FB
PGHCPS11 PGHCPS10 PGHCPS9 PGHCPS8 PGHCPS7 PGHCPS6 PGHCPS5 PGHCPS4
reserved
FC
0
0
0
0
0
0
0
0
reserved
FD
0
0
0
0
0
0
0
0
reserved
FE
0
0
0
0
0
0
0
0
S_PLL max. phase
error threshold,
PLL2 no. of lines
threshold
FF
SPTHRL3
SPTHRL2
SPTHRL1
SPTHRL0
SPTHRM3 SPTHRM2 SPTHRM1 SPTHRM0
REGISTER
FUNCTION
SUB
ADDR
D7
D6
D5
D4
D3
D2
D1
D0
Preliminary
NDA required
Confidential - NDA required
page 127
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16 DETAILED DESCRIPTION OF THE CONTROL REGISTERS
16.1
Chip Version / Ident Register
16.1.1
C
HIP
V
ERSION
Table 49 Chip version (SA00), read only register
16.1.2
C
HIP
ID
Table 50 Chip ID (SA00)
FUNCTION
(1)
1.
This register contains the current version identification
number of the chip. Initial version: 0001.
LOGIC LEVELS
ID07
ID06
ID05
ID04
CHIP
VERSION
(CV)
CV3
CV2
CV1
CV0
FUNCTION
(1)
1.
This register can be evaluated by alternating write/read cycles
WRITE (HEX)
READ BACK (HEX)
ID3 TO ID0
CHIP ID
00
1
01
F
02
7
03
1
04
1
05
5
06
D
07
0
08
E
09
VERSION
0A .. OF
0
Preliminary
NDA required
Confidential - NDA required
page 128
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2
Programming Register Decoder
16.2.1
S
UBADDRESS
01 A
NALOG
I
NPUT
C
ONTROL
0, I
NCREMENT
D
ELAY
Table 51 Horizontal Increment delay (SA 01)
Table 52 Analog control 0 (SA01)
FUNCTION
(1)
1.
The programming of the horizontal Increment delay is used
to match internal processing delays to the delay of the
AD-converter. Use recommended position only.
IDEL3
IDEL2
IDEL1
IDEL0
no update
1
1
1
1
min. delay
1
1
1
0
recommended
position
1
0
0
0
max delay
0
0
0
0
FUNCTION
LOGIC LEVELS
Update hysteresis for 9-bit gain, see FIGURE 8 ON PAGE 26
control bits D5 and D4
GUDL 1
GUDL 0
OFF
0
0
1 LSB
0
1
2 LSB
1
0
3 LSB
1
1
White Peak Control off
control bit D6
WPOFF
White peak control active (AD-signal is attenuated, if nominal
luminance output white level is exceeded)
0
White peak control disabled
1
Preliminary
NDA required
Confidential - NDA required
page 129
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.2
S
UBADDRESS
02 A
NALOG
I
NPUT
C
ONTROL
1
Table 53 Analog control 1 (SA 02)
Note: To take full advantage of the YC-modes 6 to 9 the I
2
C-bit BYPS (sub address 09h, bit 7) must be set to "1" (full
luminance bandwidth)
FUNCTION
LOGIC LEVELS
Analog control 1 (Mode select, see Table 54 on page 130)
(1)
1.
In order to reduce power consumption of the device use the registers CH1EN and CH2EN (subaddress 88h, bits 7 and
6) to switch of either of the ADCs not used in CVBS modes.
control bits D3 to D0
MODE3
MODE2
MODE1
MODE0
Mode 0: CVBS (automatic gain) from AI11 (pin 20)
0
0
0
0
Mode 1: CVBS (automatic gain) from AI12 (pin 18)
0
0
0
1
Mode 2: CVBS (automatic gain) from AI21 (pin 16)
0
0
1
0
Mode 3: CVBS (automatic gain) from AI22 (pin 14)
0
0
1
1
Mode 4: CVBS (automatic gain) from AI23 (pin 12)
0
1
0
0
Mode 5: CVBS (automatic gain) from AI24 (pin 10)
0
1
0
1
Mode 6: Y (automatic gain) from AI11 (pin 20) +
C (gain adjusted via GAI2[8:0]) from AI21 (pin 16)
0
1
1
0
Mode 7: Y (automatic gain) from AI12 (pin 18) +
C (gain adjusted via GAI2[8:0]) from AI22 (pin 14)
0
1
1
1
Mode 8: Y (automatic gain) from AI11 (pin 20) +
C (gain channel 2 adapted to Y gain) from AI21 (pin 16)
1
0
0
0
Mode 9: Y (automatic gain) from AI12 (pin 18) +
C (gain channel 2 adapted to Y gain) from AI22 (pin 14)
1
0
0
1
Mode 10 to 15: reserved
1
0
1
1
...
...
...
1
1
1
1
Analog function select FUSE, see Figure 7 on page 25
control bits D7 and D6
FUSE 1
FUSE 0
Amplifier plus anti-alias filter bypassed
0
0
0
1
Amplifier active
1
0
Amplifier plus anti-alias filter active
1
1
Preliminary
NDA required
Confidential - NDA required
page 130
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
MODE 0 CVBS (automatic gain)
MODE 1 CVBS (automatic gain)
MODE 2 CVBS (automatic gain)
MODE 3 CVBS (automatic gain)
MODE 4 CVBS (automatic gain)
MODE 5 CVBS (automatic gain)
MODE 6 Y+C (gain channel 2 adjusted via GAI2) MODE 7 Y+C (gain channel 2 adjusted via GAI2)
Table 54 Effects of MODE[3:0] settings
AI23
AI22
AI12
AI11
CHROMA
LUMA
AD2
AD1
AI21
AI24
AI23
AI22
AI12
AI11
CHROMA
LUMA
AD2
AD1
AI21
AI24
AI22
AI21
AI12
AI11
CHROMA
LUMA
AD2
AD1
AI21
AI24
AI23
AI22
AI12
AI11
CHROMA
LUMA
AD2
AD1
AI21
AI24
AI23
AI22
AI12
AI11
CHROMA
LUMA
AD2
AD1
AI21
AI24
AI23
AI22
AI12
AI11
CHROMA
LUMA
AD2
AD1
AI21
AI24
AI23
AI22
AI12
AI11
CHROMA
LUMA
AD2
AD1
AI21
AI24
AI23
AI22
AI12
AI11
CHROMA
LUMA
AD2
AD1
AI21
AI24
Preliminary
NDA required
Confidential - NDA required
page 131
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Note: To take full advantage of the YC-modes 6 to 9 the control-bit BYPS (sub address 09h, bit 7) should be set to "1"
(full luminance bandwidth)
MODE 8 Y+C (gain channel 2 adapted to Y-gain) MODE 9 Y+C (gain channel 2 adapted to Y-gain)
Table 54 Effects of MODE[3:0] settings
AI23
AI22
AI12
AI11
CHROMA
LUMA
AD2
AD1
AI21
AI24
AI23
AI22
AI12
AI11
CHROMA
LUMA
AD2
AD1
AI21
AI24
Preliminary
NDA required
Confidential - NDA required
page 132
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.3
S
UBADDRESS
03 A
NALOG
I
NPUT
C
ONTROL
2
Table 55 Analog control 2 (AICO2) (SA03)
FUNCTION
LOGIC LEVEL
DATA BIT
Static gain control channel 1 (GAI18) (see SA04)
Sign bit of gain control
see Table 56
D0
Static gain control channel 2 (GAI28) (see SA05)
Sign bit of gain control
see Table 57
D1
Gain control fix (GAFIX)
Automatic gain controlled by MODE[3:0]
0
D2
Gain is user programmable via GAI1 + GAI2
1
Automatic gain control integration (HOLDG)
AGC active
0
D3
AGC integration hold (frozen)
1
Color peak off (CPOFF)
Color peak control active (AD-signal is attenuated, if maximum input
level is exceeded, avoids clipping effects on screen)
0
D4
Color peak off
1
AGC hold during Vertical blanking period (VBSL)
Short vertical blanking (AGC disabled during equalization- and
serration pulses)
0
D5
Long vertical blanking (AGC disabled from start of pre equalization
pulses until start of active video (line 22 for 60 Hz, line 24 for 50 Hz)
1
HL not reference select (HLNRS)
Normal clamping if decoder is in unlocked state
0
D6
Reference select if decoder is in unlocked state
1
Preliminary
NDA required
Confidential - NDA required
page 133
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.4
S
UBADDRESS
04 A
NALOG
I
NPUT
C
ONTROL
3
Table 56 Gain control analog (AIC03); static gain control channel 1 GAI1 (SA 03, SA 04)
16.2.5
S
UBADDRESS
05 A
NALOG
I
NPUT
C
ONTROL
4
Table 57 Gain control analog (AIC04); static gain control channel 2 GAI2 (SA 03, SA 05)
16.2.6
S
UBADDRESS
06 H
ORIZONTAL
S
YNC
S
TART
Table 58 Horizontal sync begin (SA 06)
DECIMAL
VALUE
GAIN
(dB)
SIGN BIT
03H D0
CONTROL BITS 04H D7 TO 04H D0
GAI18
GAI17
GAI16
GAI15
GAI14
GAI13
GAI12
GAI11
GAI10
0....
-
3.0
0
0
0
0
0
0
0
0
0
....144
0
0
1
0
0
1
0
0
0
0
145....
0
0
1
0
0
1
0
0
0
1
....511
+6.0
1
1
1
1
1
1
1
1
1
DECIMAL
VALUE
GAIN
(dB)
SIGN BIT
03H D1
CONTROL BITS 05H D7 to 05H D0
GAI28
GAI27
GAI26
GAI25
GAI24
GAI23
GAI22
GAI21
GAI20
0....
-3.0
0
0
0
0
0
0
0
0
0
....144
0
0
1
0
0
1
0
0
0
0
145....
0
0
1
0
0
1
0
0
0
1
....511
+6.0
1
1
1
1
1
1
1
1
1
DELAY TIME
(STEP SIZE = 8/LLC)
CONTROL BITS D7 to D0
HSB7
HSB6
HSB5
HSB4
HSB3
HSB2
HSB1
HSB0
-128...-109 (50Hz)
-128...-108 (60Hz)
forbidden (outside available central counter range)
-108 (50Hz) ...
-107 (60Hz) ...
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
...108 (50Hz)
...107 (60Hz)
0
0
1
1
1
1
0
0
1
1
1
0
0
1
0
1
109...127 (50Hz)
108...127 (60Hz)
forbidden (outside available central counter range)
Preliminary
NDA required
Confidential - NDA required
page 134
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.7
S
UBADDRESS
07 H
ORIZONTAL
S
YNC
S
TOP
Table 59 Horizontal sync stop (SA 07)
DELAY TIME
(STEP SIZE = 8/LLC)
CONTROL BITS D7 to D0
HSS7
HSS6
HSS5
HSS4
HSS3
HSS2
HSS1
HSS0
-128...-109 (50Hz)
-128...-108 (60Hz)
forbidden (outside available central counter range)
-108 (50Hz) ...
-107 (60Hz) ...
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
...108 (50Hz)
...107 (60Hz)
0
0
1
1
1
1
0
0
1
1
1
0
0
1
0
1
109...127 (50Hz)
108...127 (60Hz)
forbidden (outside available central counter range)
Preliminary
NDA required
Confidential - NDA required
page 135
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.8
S
UBADDRESS
08 S
YNC
C
ONTROL
Table 60 Sync control (SA 08)
FUNCTION
CONTROL BITS
LOGIC LEVELS
DATA BITS
Vertical noise reduction (VNOI)
Normal mode (recommended setting)
VNOI1
0
D1
VNOI0
0
D0
Fast mode (applicable for stable sources only, automatic
field detection [AUFD] must be disabled)
VNOI1
0
D1
VNOI0
1
D0
Free running mode
VNOI1
1
D1
VNOI0
0
D0
Vertical noise reduction bypassed
VNOI1
1
D1
VNOI0
1
D0
Horizontal PLL (HPLL)
PLL closed
HPLL
0
D2
PLL open, horizontal frequency fixed
HPLL
1
Horizontal time constant selection (HTC1, HTC0)
TV mode
(recommended for poor quality TV signals only, do not
use for new applications)
HTC1, HTC0
00
D4,D3
VTR mode (recommended if a deflection control circuit
is directly connected at the output of the decoder)
01
automatic TV/VRC detection (recommended setting)
threshold is programmable via ATVT[1:0], see SA 1B
10
fast locking mode
11
Forced ODD/EVEN toggle FOET
ODD/EVEN-signal toggles only with interlaced source
FOET
0
D5
ODD/EVEN-signal toggles field wise even if source is
non-interlaced
1
Field selection (FSEL, active, if AUFD = 1)
50 Hz, 625 lines
FSEL
0
D6
60 Hz, 525 lines
1
Automatic field detection (AUFD)
Field state directly controlled via FSEL
AUFD
0
D7
Automatic field detection (recommended setting)
1
Preliminary
NDA required
Confidential - NDA required
page 136
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.9
S
UBADDRESS
09 L
UMINANCE CONTROL
Table 61 Luminance control (SA 09)
FUNCTION
BITS
LOGIC LEVELS
DATA BITS
Sharpness Control, Luminance filter characteristic (LUFI), see Figure 17 on page 37
resolution enhancement filter 8.0 dB at 4.1 MHz
LUFI[3:0]
0001
D3 .. D0
resolution enhancement filter 6.8 dB at 4.1 MHz
LUFI[3:0]
0010
resolution enhancement filter 5.1 dB at 4.1 MHz
LUFI[3:0]
0011
resolution enhancement filter 4.1 dB at 4.1 MHz
LUFI[3:0]
0100
resolution enhancement filter 3.0 dB at 4.1 MHz
LUFI[3:0]
0101
resolution enhancement filter 2.3 dB at 4.1 MHz
LUFI[3:0]
0110
resolution enhancement filter 1.6 dB at 4.1 MHz
LUFI[3:0]
0111
PLAIN
LUFI[3:0]
0000
low pass filter 2 dB at 4.1 MHz
LUFI[3:0]
1000
low pass filter 3 dB at 4.1 MHz
LUFI[3:0]
1001
low pass filter 3 dB at 3.3 MHz, 4 dB at 4.1 MHz
LUFI[3:0]
1010
low pass filter 3 dB at 2.6 MHz, 8 dB at 4.1 MHz
LUFI[3:0]
1011
low pass filter 3 dB at 2.4 MHz, 14 dB at 4.1 MHz
LUFI[3:0]
1100
low pass filter 3 dB at 2.2 MHz, notch at 3.4 MHz
LUFI[3:0]
1101
low pass filter 3 dB at 1.9 MHz, notch at 3.0 MHz
LUFI[3:0]
1110
low pass filter 3 dB at 1.7 MHz, notch at 2.5 MHz
LUFI[3:0]
1111
Remodulation bandwidth for luminance (LUBW), see figures 13 to 16
Small remodulation bandwidth
(narrow chroma notch => higher luminance bandwidth)
LUBW
0
D4
Large remodulation bandwidth
(wider chroma notch => smaller luminance bandwidth)
LUBW
1
Processing delay in non combfilter mode (LDEL)
Processing delay is equal to internal pipelining delay
(recommended setting)
LDEL
0
D5
One (NTSC-standards) or two (PAL-standards) video
lines additional processing delay
LDEL
1
Adaptive luminance comb filter (YCOMB)
Disabled (= chrominance trap enabled, if BYPS = 0)
YCOMB
0
D6
Active, if BYPS = 0
YCOMB
1
Chrominance trap / comb filter bypass (BYPS)
Chrominance trap or luminance comb filter active,
default for CVBS mode
BYPS
0
D7
Chrominance trap or luminance comb filter bypassed;
default for S-Video mode
BYPS
1
Preliminary
NDA required
Confidential - NDA required
page 137
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.10 S
UBADDRESS
0A D
ECODER
B
RIGHTNESS
Table 62 Luminance brightness control decoder part DBRI7 to DBRI0 (SA 0A)
16.2.11 S
UBADDRESS
0B D
ECODER
C
ONTRAST
Table 63 Luminance contrast control decoder part DCON7 to DCON0 (SA 0B)
16.2.12 S
UBADDRESS
0C D
ECODER
S
ATURATION
Table 64 Chrominance saturation control decoder part DSAT7 to DSAT0 (SA 0C)
OFFSET
CONTROL BITS D7 to D0
DBRI7
DBRI6
DBRI5
DBRI4
DBRI3
DBRI2
DBRI1
DBRI0
255 (bright)
1
1
1
1
1
1
1
1
128 (ITU level)
1
0
0
0
0
0
0
0
0 (dark)
0
0
0
0
0
0
0
0
GAIN
CONTROL BITS D7 to D0
DCON7
DCON6
DCON5
DCON4
DCON3
DCON2
DCON1
DCON0
1.984 (maximum)
0
1
1
1
1
1
1
1
1.063 (ITU level)
0
1
0
0
0
1
0
0
1.0
0
1
0
0
0
0
0
0
0 (luminance off)
0
0
0
0
0
0
0
0
-
1.0 (inverse luminance)
1
1
0
0
0
0
0
0
-
2.0 (inverse luminance)
1
0
0
0
0
0
0
0
GAIN
CONTROL BITS D7 to D0
DSAT7
DSAT6
DSAT5
DSAT4
DSAT3
DSAT2
DSAT1
DSAT0
1.984 (maximum)
0
1
1
1
1
1
1
1
1.0 (ITU level)
0
1
0
0
0
0
0
0
0 (colour off)
0
0
0
0
0
0
0
0
-
1.0 (inverse chrominance)
1
1
0
0
0
0
0
0
-
2.0 (inverse chrominance)
1
0
0
0
0
0
0
0
Preliminary
NDA required
Confidential - NDA required
page 138
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.13 S
UBADDRESS
0D C
HROMINANCE
H
UE
Table 65 Chrominance hue control HUEC7 to HUEC0 (SA 0D)
HUE PHASE (DEG)
CONTROL BITS D7 to D0
HUEC7
HUEC6
HUEC5
HUEC4
HUEC3
HUEC2
HUEC1
HUEC0
+178.6....
0
1
1
1
1
1
1
1
....0....
0
0
0
0
0
0
0
0
....
-
180.0
1
0
0
0
0
0
0
0
Preliminary
NDA required
Confidential - NDA required
page 139
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.14 S
UBADDRESS
0E C
HROMINANCE
C
ONTROL
1
Table 66 Chrominance control 1 (SA 0E)
FUNCTION
NAME
LOGIC
LEVELS
DATA
BITS
Adaptive chrominance comb filter (CCOMB)
Disabled
CCOMB
0
D0
Active
1
Preliminary
NDA required
Confidential - NDA required
page 140
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Automatic chrominance standard detection control 0 (AUTO0)
NOTE: Automatic chrominance standard detection control 1 (AUTO1) is located at subaddress 14h, D2
The automatic standard detection circuit does not only search and lock to any broadcast standard, but provides also
some default settings dependent on the chosen automatic level. e.g it automatically disables the combfilter or
remodulation functionality if Y/C-mode is selected or a B&W source is present. Also the bandwidths of the internal
filters are adapted to the detected standard.
However, if these setting are not convenient for the customers application, lower auto levels can be chosen, so that
only the standard search and lock is active and all other settings can be programmed independently.
Disabled
AUTO[1:0]
00
SA14:D2,
SA0E: D1
Auto mode active (highest level), filter settings and Sharpness control are preset
to default values
according to the detected standard and mode (recommended position)
The following registers are automatically set dependent on the following
conditions:
01
Mode
DCVF
LCBW
LUBW
YCOMB CCOMB LUFI
CHBW
PAL
comb
0
110
0
p
p
0000
0
PAL
nocomb
0
000
0
p
p
0110
0
PAL Y/C 0
110
0
0
0
0000
1
NTSC
comb
1
110
0
p
p
0000
0
NTSC
nocomb
0
000
0
p
p
0110
0
NTSC
Y/C
1
110
0
0
0
0000
1
SECAM
x
000
1
0
x
1011
0
SECAM
Y/C
x
000
x
0
x
0000
0
B & W
x
xxx
x
0
x
0000
x
p: programming is required and valid
x: setting has no influence
Y/C-mode has to be selected via BYPS = 1
Auto mode active (medium level), filter settings are preset to default values
according to the detected standard and mode like AUTO[1:0] = 01, with the
following differences:
Sharpness control (LUFI[3:0]) is freely programmable
CCOMB is freely programmable
CHBW is freely programmable
10
Auto mode active (lowest level), automatic standard recognition, but no filter
presets
11
FUNCTION
NAME
LOGIC
LEVELS
DATA
BITS
Preliminary
NDA required
Confidential - NDA required
page 141
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Fast colour time constant (FCTC)
Nominal time constant
FCTC
0
D2
Fast time constant for special applications (High quality input source, fast
chroma lock required, automatic standard detection OFF
1
Disable chrominance vertical filter and PAL phase error correction (DCVF)
Chrominance vertical filter, PAL phase error correction on (during active video
lines)
DCVF
0
D3
Chrominance vertical filter, PAL phase error correction permanently off
1
Colour standard selection in non AUTO-mode (CSTD0 to CSTD2); logic levels 110 and 111 are reserved, do
not use
50 Hz / 625 lines
60 Hz / 525 lines
LOGIC
LEVELS
DATA
BITS
PAL BGDHI (4.43Mhz)
NTSC M (3.58MHz)
CSTD[2:0]
000
D6 TO D4
NTSC 4.43 (50 Hz)
PAL 4.43 (60 Hz)
001
Combination-PAL N (3.58MHz)
NTSC 4.43 (60 Hz)
010
NTSC N (3.58MHz)
PAL M (3.58MHz)
011
reserved
NTSC-Japan (3.58MHz)
100
SECAM
reserved
101
reserved
reserved
110
reserved
reserved
111
Colour standard selection (CSTD0 to CSTD2) in AUTO Mode
(Auto mode is selected if either AUTO0 or AUTO1 is set, see above)
50 Hz / 625 lines
60 Hz / 525 lines
LOGIC
LEVELS
DATA
BITS
preferred Standard is PAL BGDHI
(4.43Mhz)
preferred Standard is NTSC M
(3.58MHz)
CSTD[2:0]
000
D6 TO D4
reserved
reserved
001
reserved
reserved
010
reserved
reserved
011
preferred Standard is
PAL BGDHI (4.43Mhz)
preferred Standard is NTSC-Japan
(3.58MHz, no 7.5 IRE-Offset)
100
preferred Standard is SECAM
preferred Standard is NTSC M
(3.58MHz)
101
reserved
reserved
110
reserved
reserved
111
Note: The meaning of "preferred standard" is, that the internal search machine
will always give priority to the selected standard, thus the recognition time for
these standards is kept short.
FUNCTION
NAME
LOGIC
LEVELS
DATA
BITS
Preliminary
NDA required
Confidential - NDA required
page 142
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Clear DTO (CDTO)
Disabled
CDTO
0
D7
Every time CDTO is set, the internal subcarrier DTO phase is reset to 0
and the
RTCO output generates a logic 0 at time slot 68. So an identical subcarrier
phase can be generated by an external device (e.g. an encoder). The DTO-reset
takes also care that the internal remodulation carrier's phase aligned to the
internal demodulation phase.
A DTO-reset must be initiated after reprogramming the color standard CSTD in
non auto mode.
However, if automatic standard searching mode is activated via
AUTO[1:0] <> 00 an internal DTO-reset is generated after change of standard.
That means it is only necessary to generate a DTO reset after connection to an
external encoder.
1
FUNCTION
NAME
LOGIC
LEVELS
DATA
BITS
Preliminary
NDA required
Confidential - NDA required
page 143
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.15 S
UBADDRESS
0F C
HROMINANCE
G
AIN
C
ONTROL
Table 67 Chrominance Gain control (SA 0F)
FUNCTION
LOGIC LEVELS
Chroma Gain Value
(if ACGC is set to 1)
control bits
D6 to D0
CGAIN6
CGAIN5
CGAIN4
CGAIN3
CGAIN2
CGAIN1
CGAIN0
minimum gain (0.5)
0
0
0
0
0
0
0
nominal gain (1.125)
0
1
0
0
1
0
0
maximum gain (7.5)
1
1
1
1
1
1
1
Automatic Chroma Gain Control
ACGC
control bit
D7
ON (recommended setting)
0
programmable gain via CGAIN[6:0],
1
Preliminary
NDA required
Confidential - NDA required
page 144
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.16 S
UBADDRESS
10 C
HROMINANCE
/L
UMINANCE
C
ONTROL
2
Table 68 Chrominance/Luminance control 2 (SA 10)
FUNCTION
LOGIC LEVELS
COMBINED LUMINANCE/CHROMINANCE
BANDWIDTH ADJUSTMENT (SEE FIGURES 11 TO 16)
control bits
D2 to D0
LCBW2
LCBW1
LCBW0
smallest chrominance bandwidth / largest luminance
bandwidth
0
0
0
recommended setting for non combfilter mode
(YCOMB=0,CCOMB=0)
0
0
1
recommended setting for active adaptive combfilter
(YCOMB=1,CCOMB=1)
1
1
0
largest chrominance bandwidth / smallest luminance
bandwidth
1
1
1
Chrominance bandwidth (see figures 11 and 12)
control bit
D3
CHBW
small
0
wide
1
Fine offset adjustment R-Y component
control bits
D5 and D4
OFFV1
OFFv0
0 LSB
0
0
+1/4 LSB
0
1
+1/2 LSB
1
0
+3/4 LSB
1
1
Fine offset adjustment B-Y component
control bits
D7 and D6
OFFU1
OFFU0
0 LSB
0
0
+1/4 LSB
0
1
+1/2 LSB
1
0
+3/4 LSB
1
1
Preliminary
NDA required
Confidential - NDA required
page 145
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.17 S
UBADDRESS
11 M
ODE
/ D
ELAY
C
ONTROL
Table 69 Mode / Delay control SA 11
FUNCTION
LOGIC LEVELS
Luminance delay compensation
(steps in 2/LLC)
control bits
D2 to D0
YDEL2
YDEL1
YDEL0
-
4...
1
0
0
...0...(recommended)
0
0
0
...3
0
1
1
Output Polarity RTS0
control bit
D4
RTP0
RTS0 non inverted
0
RTS0 inverted
1
Fine position of HS-pulse, available on outputs RTSO,
RTS1 and XDH, step size of 2/LLC
control bits
D5 and D4
HDEL1
HDEL0
0
0
0
1
0
1
2
1
0
3
1
1
Output Polarity RTS1
control bit
D6
RTP1
RTS1 non inverted
0
RTS1 inverted
1
Colour on
control bit
D7
COLO
Automatic colour killer enabled (recommended setting)
0
Colour forced on
1
Preliminary
NDA required
Confidential - NDA required
page 146
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.18 S
UBADDRESS
12 RTS0/1 O
UTPUT
C
ONTROL
Table 70 RTS0 output control (SA 12)
Note
1. The polarity of any signal on RTS0 can be inverted via RTP0 (sub address 11 bit 3).
FUNCTION
LOGIC LEVELS
RTS0 OUTPUT CONTROL
(1)
D3 to D0
RTSE03 RTSE02 RTSE01 RTSE00
tristate
0
0
0
0
constant LOW
0
0
0
1
CREF (13.5 MHz toggling pulse, see Figure 24 on page 48)
0
0
1
0
CREF2 (6.75 MHz toggling pulse, see Figure 24 on page 48)
0
0
1
1
HL (horizontal lock indicator), selectable via HLSEL (sub addr. 11h, bit 4):
HLSEL = 0: standard horizontal lock indicator
HLSEL =1: fast horizontal lock indicator (use is not recommended for
sources with unstable timebase e. g. VCR's)
0: unlocked
1: locked
0
1
0
0
VL (Vertical & horizontal lock)
0: unlocked
1: locked
0
1
0
1
DL (Vertical & horizontal lock & color detected)
0: unlocked
1: locked
0
1
1
0
reserved
0
1
1
1
HREF horizontal reference signal: indicates 720 pixels valid data on the
expansion port. The positive slope marks the beginning of a new active
line. HREF is also generated during the vertical blanking interval, see
Figure 24 on page 48
1
0
0
0
HS, programmable width in LLC8 steps via
HSB[7:0] and HSS[7:0] (sub addr. 06h and 07h), fine position adjustment in
LLC2 steps via HDEL[1:0] (sub addr. 11h, bits 5:4), see Figure 24 on
page 48)
1
0
0
1
HQ (HREF gated with VGATE)
1
0
1
0
reserved
1
0
1
1
V123 (Vertical sync, see Figure 22 on page 46 and Figure 23 on page 47)
1
1
0
0
VGATE (programmable via VSTA[8:0], VSTO[8:0] and VGPS, sub
addresses 15h, 16h, and 17h)
1
1
0
1
reserved
1
1
1
0
FID (position programmable via VSTA[8:0], sub addresses 15h and 17h,
see Figure 22 on page 46 and Figure 23 on page 47)
1
1
1
1
Preliminary
NDA required
Confidential - NDA required
page 147
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 71 RTS1 output control (SA 12)
Note
1. The polarity of any signal on RTS1 can be inverted via RTP1 (sub address 11 bit 6).
FUNCTION
LOGIC LEVELS
RTS1 OUTPUT CONTROL
(1)
D7 to D4
RTSE13 RTSE12 RTSE11 RTSE10
tristate
0
0
0
0
constant LOW
0
0
0
1
CREF (13.5 MHz toggling pulse, see Figure 24 on page 48)
0
0
1
0
CREF2 (6.75 MHz toggling pulse, see Figure 24 on page 48)
0
0
1
1
HL (horizontal lock indicator), selectable via HLSEL (sub addr. 11h, bit 4):
HLSEL = 0: standard horizontal lock indicator
HLSEL =1: fast horizontal lock indicator (use is not recommended for
sources with unstable timebase e. g. VCR's)
0: unlocked
1: locked
0
1
0
0
VL (Vertical & horizontal lock)
0: unlocked
1: locked
0
1
0
1
DL (Vertical & horizontal lock & color detected)
0: unlocked
1: locked
0
1
1
0
reserved
0
1
1
1
HREF horizontal reference signal: indicates 720 pixels valid data on the
expansion port. The positive slope marks the beginning of a new active
line. HREF is also generated during the vertical blanking interval, see
Figure 24 on page 48
1
0
0
0
HS, programmable width in LLC8 steps via
HSB[7:0] and HSS[7:0] (sub addr. 06h and 07h), fine position adjustment in
LLC2 steps via HDEL[1:0] (sub addr. 11h, bits 5:4), see Figure 24 on
page 48)
1
0
0
1
HQ (HREF gated with VGATE)
1
0
1
0
reserved
1
0
1
1
V123 (Vertical sync, see Figure 22 on page 46 and Figure 23 on page 47)
1
1
0
0
VGATE (programmable via VSTA[8:0], VSTO[8:0] and VGPS, sub
addresses 15h, 16h, and 17h)
1
1
0
1
reserved
1
1
1
0
FID (position programmable via VSTA[8:0], sub addresses 15h and 17h,
see Figure 22 on page 46 and Figure 23 on page 47)
1
1
1
1
Preliminary
NDA required
Confidential - NDA required
page 148
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.19 S
UBADDRESS
13
AND
1B RT / X-
PORT
O
UTPUT
C
ONTROL
Table 72 RT / X-port output control (SA 13, SA 1B)
FUNCTION
LOGIC LEVELS
XPD[7:0] - port output format
selection, see also chapter 9.4
X-PORT OUTPUT
1BH
D4
13H D2 TO D0
XPD[7:0]
XRH
XRV
XDQ
OFTS3 OFTS2 OFTS1 OFTS0
ITU656 - 8 Bit standard mode
Y, C
B
, C
R
[7:0]
Horizontal
Sync.
Signal
controlled
by
XRHS
Vertical
Sync.
Signal
controlled
by
XRVS[1:0]
HREF
&&
VGATE
0
0
0
0
modified ITU656-8-bit mode:
standard Vflag is replaced by VGATE,
programmable via VSTA,VSTO
0
0
0
1
8-bit multiplexed Y,Cb,Cr-mode,
ITU- Codes and 10/80 blanking values
are disabled
0
0
1
0
reserved
reserved
0
0
1
1
reserved
0
1
0
0
reserved
0
1
0
1
ADC1-bypass-mode (msbs only)
AD1[8:1]
0
1
1
0
ADC2-bypass-mode (msbs only)
AD2[8:1]
0
1
1
1
ITU656-10-bit standard mode
Y, C
B
, C
R
[9:2]
Y, C
B
, C
R
[1]
Y, C
B
, C
R
[0]
1
0
0
0
modified ITU656-10-bit mode:
standard Vflag is replaced by VGATE,
programmable via VSTA,VSTO
1
0
0
1
10-bit multiplexed Y,Cb,Cr-mode,
ITU- Codes and 10/80 blanking values
are disabled
1
0
1
0
reserved
reserved
reserved
reserved
1
0
1
1
reserved
1
1
0
0
reserved
1
1
0
1
ADC1-bypass-mode (9 bits)
AD1[8:1]
AD1[0]
1
1
1
0
ADC2-bypass-mode (9 bits)
AD2[8:1]
AD2[0]
1
1
1
1
Preliminary
NDA required
Confidential - NDA required
page 149
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 73 RT / X-port output control SA 13
16.2.20 S
UBADDRESS
14 A
NALOG
/ ADC / A
UTO
/ C
OMPATIBILITY
C
ONTROL
Table 74 analog / ADC / compatibility control
SA 14
FUNCTION
LOGIC LEVELS
Horizontal lock indicator selection HLSEL
control bits
D3
HLSEL
copy of inverted HLOCK status bit (default)
0
fast horizontal lock indicator (for special applications
only)
1
X - port XRV output selection XRVS
control bits
D5 and D4
XRVS1
XRVS0
V123 (see FIGURE 22 ON PAGE 46 and FIGURE 23
ON PAGE 47
)
0
0
ITU656 related field ID (see FIGURE 22 ON PAGE 46
and FIGURE 23 ON PAGE 47)
0
1
inverted V123
1
0
inverted ITU656 related field ID
1
1
X - port XRH output selection XRHS
control bits
D6
HREF, see Figure 24 on page 48
0
HS (programmable: width in LLC8-steps via HSB[7:0]
and HSS[7:0] fine position in LLC2 steps via
HDEL[1:0]), see Figure 24 on page 48
1
RTCO output enable RTCE
control bits
D7
tristate
0
enabled
1
FUNCTION
LOGIC LEVELS
ADC sample clock phase delay
control bits
D1 AND D0
APCK1
APCK0
application dependent
0
0
0
1
1
0
1
1
Preliminary
NDA required
Confidential - NDA required
page 150
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Automatic chrominance standard detection
control 1 (AUTO1),
see explanation at subaddress 0Eh
control bit
D2
XTOUT output enable (XTOUTE)
control bit
D3
pin 4 (XTOUT) tristated
0
pin 4 (XTOUT) enabled
1
Analog test select (AOSL)
control bits
01H D7 AND 14H D5, D4
AOSL2
01H D7
AOSL1
14H D5
AOSL0
14H D4
AOUT connected to ground (recommended)
0
0
0
AOUT connected to input CH1 video
0
0
1
AOUT connected to input CH2 video
0
1
0
AOUT connected to input BPFOUT (LLC)
0
1
1
AOUT connected to input BPFOUT2
1
0
0
reserved (gnd)
1
0
1
reserved (gnd)
1
1
0
reserved (gnd)
1
1
1
Update time interval for AGC-value (UPTCV)
control bit
D6
Horizontal update (once per line)
0
Vertical update (once per field)
1
Compatibility switch for SAA7199 (CM99)
control bit
D7
off (default)
0
on (to be set only if SAA7199 is used for
re-encoding in conjunction with RTCO active
1
FUNCTION
LOGIC LEVELS
Preliminary
NDA required
Confidential - NDA required
page 151
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.21 S
UBADDRESS
15, 17VGATE S
TART
Table 75 Start of VGATE-pulse (01-transition) and polarity change of FID-pulse, VGPS = 0, see figures 22 and 23
(SA 15, SA 17)
16.2.22 S
UBADDRESS
16, 17 VGATE S
TOP
Table 76 Stop of VGATE-pulse (10-transition), VGPS = 0, see figures 22 and 23 (SA 16, SA 17)
FIELD
Frame line
counting
Decimal
value
17H D0
CONTROL BITS 15H D7 to 15H D0
VSTA8
VSTA7
VSTA6
VSTA5
VSTA4
VSTA3
VSTA2
VSTA1
VSTA0
50 HZ
1ST
1
312
1
0
0
1
1
1
0
0
0
2ND
314
1ST
2
0....
0
0
0
0
0
0
0
0
0
2ND
315
1ST
312
....310
1
0
0
1
1
0
1
1
1
2ND
625
60 HZ
1ST
4
262
1
0
0
0
0
0
1
1
0
2ND
267
1ST
5
0....
0
0
0
0
0
0
0
0
0
2ND
268
1ST
265
....260
1
0
0
0
0
0
1
0
1
2ND
3
FIELD
Frame
line
counting
Decimal
value
17H D0
CONTROL BITS 16H D7 to 16H D0
VSTO8
VSTO7
VSTO6
VSTO5
VSTO4
VSTO3
VSTO2
VSTO1
VSTO0
50 HZ
1ST
1
312
1
0
0
1
1
1
0
0
0
2ND
314
1ST
2
0....
0
0
0
0
0
0
0
0
0
2ND
315
1ST
312
....310
1
0
0
1
1
0
1
1
1
2ND
625
60 HZ
1ST
4
262
1
0
0
0
0
0
1
1
0
2ND
267
1ST
5
0....
0
0
0
0
0
0
0
0
0
2ND
268
1ST
265
....260
1
0
0
0
0
0
1
0
1
2ND
3
Preliminary
NDA required
Confidential - NDA required
page 152
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.23 S
UBADDRESS
17 M
ISC
./VGATE-MSB'
S
Table 77 Misc./VGATE-MSB's (SA 17)
FUNCTION
LOGIC LEVELS
CONTROL BITS
VSTA8, see SA 15
MSB VGATE start
see Table 76
D0
VSTO8, see SA 16
MSB VGATE stop
see Table 76
D1
Alternative VGATE position (VGPS)
VGATE position according to tables and 76
0
D2
VGATE occurs one line earlier during field 2
1
Standard detection search loop latency (LATY)
reserved
000
D5 TO D3
one field
001
...
...
three fields (recommended value)
011
...
...
seven fields
111
LLC (pin 48) output enable (LLC2E)
enabled
0
D6
tristate
1
LLC (pin 46) output enable (LLCE)
enabled
0
D7
tristate
1
Preliminary
NDA required
Confidential - NDA required
page 153
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.24 S
UBADDRESS
18 R
AW DATA
G
AIN
C
ONTROL
Table 78 Raw data gain control RAWG7 to RAWG0 (SA 18)
16.2.25 S
UBADDRESS
19 R
AW DATA
O
FFSET
C
ONTROL
Table 79 Raw data offset control RAWO7 to RAWO0 (SA 19)
GAIN
CONTROL BITS D7 to D0
RAWG7
RAWG6
RAWG5
RAWG4
RAWG3
RAWG2
RAWG1
RAWG0
255 (double ampl.)
0
1
1
1
1
1
1
1
128 (nominal level)
0
1
0
0
0
0
0
0
0 (off)
0
0
0
0
0
0
0
0
OFFSET
CONTROL BITS D7 to D0
RAWO7
RAWO6
RAWO5
RAWO4
RAWO3
RAWO2
RAWO1
RAWO0
- 128 LSB
0
0
0
0
0
0
0
0
0 LSB
1
0
0
0
0
0
0
0
+128 LSB
1
1
1
1
1
1
1
1
Preliminary
NDA required
Confidential - NDA required
page 154
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.26 S
UBADDRESS
1A C
OLOR
K
ILLER
L
EVEL
C
ONTROL
Table 80 SECAM Color Killer Level Control (SA 1A)
Table 81 PAL/NTSC Color Killer Level Control (SA 1A)
16.2.27 S
UBADDRESS
1B M
ISC
. C
HROMA
C
ONTROL
Table 82 Automatic VCR/TV-Detection Threshold (SA 1B)
Table 83 Automatic Color Limiter (SA 1B)
SECAM COLOR KILLER LEVEL
CONTROL BITS D3 TO D0
STHR3
STHR2
STHR1
STHR0
minimum level: color is switched on at low subcarrier levels
0
0
0
0
recommended value
0
1
1
1
maximum
1
1
1
1
PAL/NTSC COLOR KILLER LEVEL
CONTROL BITS D7 TO D4
QTHR3
QTHR2
QTHR1
QTHR0
minimum: color is switched on at low subcarrier levels
0
0
0
0
recommended value
0
1
1
1
maximum
1
1
1
1
AUTOMATIC VCR/TV-DETECTION THRESHOLD
D7,D6
ATVT[1:0]
very sensitive to phase errors => early switching to fast horizontal time constant
00
recommended value
01
less sensitive to phase errors
10
insensitive to phase errors => late switching to fast horizontal time constant
11
AUTOMATIC COLOR LIMITER
D1
ACOL
disabled
0
active: reduces oversaturated color in case of nonstandard burst/picture_content relation
(recommended)
1
Preliminary
NDA required
Confidential - NDA required
page 155
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 84 Fast Sequence Correction (SA 1B)
16.2.28 S
UBADDRESS
1C E
NHANCED
C
OMBFILTER
C
ONTROL
1
Table 85 Horizontal Difference Gain (SA 1C)
Table 86 Vertical Difference Gain (SA 1C)
Table 87 Median Filter Gain (SA 1C)
FAST PAL/SECAM SEQUENCE CORRECTION
D0
FSQC
sequence correction enabled once per field (recommended)
0
to be used, if immediate (linewise) sequence correction is required
1
HORIZONTAL DIFFERENCE GAIN
D7,D6
HODG[1:0]
lowest luminance bandwidth at horizontal transients
00
higher luminance bandwidth at horizontal transients
01
recommended value
10
highest luminance bandwidth at horizontal transients
11
VERTICAL DIFFERENCE GAIN
D5,D4
VEDG[1:0]
highest luminance bandwidth at vertical transients
00
lower luminance bandwidth at vertical transients
01
recommended value
10
lowest luminance bandwidth at vertical transients
11
MEDIAN FILTER GAIN
D3,D2
MEDG[1:0]
highest luminance bandwidth at high color saturation
00
lower luminance bandwidth at high color saturation
01
recommended value
10
lowest luminance bandwidth at high color saturation
11
Preliminary
NDA required
Confidential - NDA required
page 156
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 88 Combfilter Threshold (SA 1C)
16.2.29 S
UBADDRESS
1D E
NHANCED
C
OMBFILTER
C
ONTROL
2
Table 89 Vertical Difference Threshold (SA 1C)
COMB THRESHOLD
D1,D0
CMBT[1:0]
lowest comb strength for signals containing small chrominance content
00
recommended value
01
higher comb strength for signals containing small chrominance content
10
highest comb strength for signals containing small chrominance content
11
VERTICAL DIFFERENCE THRESHOLD
D1,D0
VEDT[1:0]
highest comb strength for signals containing large vertical chrominance differences
00
recommended value
01
lower comb strength for signals containing large vertical chrominance differences
10
lowest comb strength for signals containing large vertical chrominance differences
11
Preliminary
NDA required
Confidential - NDA required
page 157
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.2.30 S
UBADDRESSES
1E, 1F S
TATUS
B
YTES
V
IDEO
D
ECODER
(
READ
-
ONLY REGISTER
)
Table 90 Status byte 1 video decoder (SA 1E)
Table 91 Status byte 2 video decoder (SA 1F)
I
2
C-BUS
CONTROL BITS
FUNCTION
DATA BIT
DCSTD[1:0]
detected color standard:
00: No color [BW]
01: NTSC
10: PAL
11: SECAM
D1, D0
WIPA
white peak loop is activated; active HIGH
D2
GLIMB
gain value for active luminance channel is limited [min (bottom)]; active HIGH
D3
GLIMT
gain value for active luminance channel is limited [max (top)]; active HIGH
D4
SLTCA
slow time constant active in WIPA-mode; active HIGH
D5
HLCK
status bit for locked horizontal frequency; LOW = locked, HIGH = unlocked
D6
NFLD
status bit for field length;
LOW = nonstandard field length, HIGH = standard field length
D7
I
2
C-BUS
CONTROL BITS
FUNCTION
DATA BIT
RDCAP
Ready for Capture (all internal loops locked); active HIGH
D0
COPRO
Copy protected source detected according to Macrovision version up to 7.01
D1
COLSTR
Macrovision encoded Colorstripe burst detected (any type)
D2
TYPE3
Macrovision encoded Colorstripe burst type 3 (4 line version) detected
D3
STTB
status bit for timebase of input signal;
LOW = nonstable timebase (e.g. VCR)
HIGH = stable timebase (e.g. broadcast/DVD-source)
D4
FIDT
identification bit for detected field frequency; LOW = 50 Hz, HIGH = 60 Hz
D5
HLVLN
status bit for horizontal and vertical loop: LOW = both loops locked,
HIGH = unlocked
D6
INTL
status bit for interlace detection, LOW = non interlaced, HIGH = interlaced
D7
Preliminary
NDA required
Confidential - NDA required
page 158
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.3
Programming Register Audio Clock Generation
See equations in chapter 8.6 and examples on Table 28 on page 83, Table 30 on page 85 and Table 31 on page 87
16.3.1
S
UBADDRESSES
30
TO
32 AMCLK C
YCLES PER
F
IELD
Table 92 Audio Master Clock: cycles per field (SA 30, SA 31, SA 32)
16.3.2
S
UBADDRESSES
34
TO
36 AMCLK N
OMINAL
I
NCREMENT
Table 93 Audio Master Clock: nominal increment (SA 34, SA 53, SA 36)
16.3.3
S
UBADDRESS
38 R
ATIO
AMXCLK
TO
ASCLK
Table 94 Clock ratio Audio Master Clock to Serial Clock (bit clock) ASCLK (SA 38)
16.3.4
S
UBADDRESS
39 R
ATIO
ASCLK
TO
ALRCLK
Table 95 Clock ratio Serial Clock ASCLK to ALRCLK (channel select clock) (SA 39)
AUDIO MASTER CLOCK:
CYCLES PER FIELD
CONTROL BITS D7 to D0
SA 30
ACPF7
ACPF6
ACPF5
ACPF4
ACPF3
ACPF2
ACPF1
ACPF0
SA 31
ACPF15
ACPF14
ACPF13
ACPF12
ACPF11
ACPF10
ACPF9
ACPF8
SA 32
ACPF17
ACPF16
AUDIO MASTER CLOCK:
NOMINAL INCREMENT
CONTROL BITS D7 to D0
SA 34
ACNI7
ACNI6
ACNI5
ACNI4
ACNI3
ACNI2
ACNI1
ACNI0
SA 35
ACNI15
ACNI14
ACNI13
ACNI12
ACNI11
ACNI10
ACNI9
ACNI8
SA 36
ACNI21
ACNI20
ACNI19
ACNI18
ACNI17
ACNI16
CLOCK RATIO AUDIO MASTER
CLOCK TO SERIAL CLOCK
CONTROL BITS D5 TO D0
SA 38
SDIV5
SDIV4
SDIV3
SDIV2
SDIV1
SDIV0
Refer to chapter 8.7
CLOCK RATIO SERIAL CLOCK
ASCLK TO ALRCLK
CONTROL BITS D5 TO D0
SA 39
LRDIV5
LRDIV4
LRDIV3
LRDIV2
LRDIV1
LRDIV0
Refer to chapter 8.7
Preliminary
NDA required
Confidential - NDA required
page 159
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.3.5
S
UBADDRESS
3A A
UDIO
C
LOCK
C
ONTROL
Table 96 Audio clock control (SA 3A)
FUNCTION
NAME
LEVELS
BITS
ASCLK phase
ASCLK edges triggered by falling edges of AMCLK
SCPH
0
D0
ASCLK edges triggered by rising edges of AMCLK
1
ALRCLK phase
ALRCLK edges triggered by falling edges of ASCLK
LRPH
0
D1
ALRCLK edges triggered by rising edges of ASCLK
1
Audio Master clock Vertical Reference
Vertical reference pulse is taken from internal decoder
AMVR
0
D2
Vertical reference is taken form XRV-input (expansion port)
1
Audio PLL mode
PLL active, AMCLK is frame-locked to the incoming video signal (Vertical
reference pulse)
APLL
0
D3
PLL open, AMCLK is free running
1
Audio PLL mode (only active if UCGC = 1)
internal Audio master clock is divided by 4
CGCDIV
0
D6
internal Audio master clock is divided by 3
1
Audio clock: CGC Generation mode
Second CGC (CGC2) bypassed (e.g. in case CGC2 is used for scaler
backend clock generation): Audio clock as generated by the Audio PLL is
output on pin AMCLK
UCGC
0
D7
Second CGC (CGC2) in use for Audio clock generation: Enhances the
jitter, performance of the generated audio master clock on pin AMCLK
1
Preliminary
NDA required
Confidential - NDA required
page 160
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.4
Programming Register VBI data slicer
16.4.1
S
UBADDRESS
40 B
ASIC
S
LICER
S
ETTINGS
Table 97 Amplitude searching (SA 40)
Table 98 Framing Code Error (SA 40)
Table 99 Hamming Check (SA 40)
Slicer Set (40h)
D4
Amplitude searching
control bit
HUNT_N
Amplitude searching active [default]
0
Amplitude searching stopped
1
Slicer Set (40h)
D5
Framing Code Error
control bit
FCE
One framing code error allowed
0
No framing code errors allowed
1
Slicer Set (40h)
D6
Hamming Check
control bit
HAM_N
Hamming check for 2 bytes after framing code,
depending on data type [default]
0
No Hamming check
1
Preliminary
NDA required
Confidential - NDA required
page 161
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 100WSS-Check (SA 40)
Slicer Set (40h)
D7
WSS525 CRC code check
(1)
1.
The VBI slicer will only track the amplitude of data that it considers to be
valid; this tracking is important for optimal acquisition performance. If no
valid data is found for several successive frames, then the slicer will enter
amplitude searching (Hunting) mode until valid data is found again.
CHKWSS alters the definition of "valid" data.
Side effect if '1': if WSS525 data is present but containing incorrect CRC
bits, the slicer will enter Hunting mode, and acquisition may intermittently
fail even with an undistorted signal.
Side effect if '0': if the slicer is set to acquire WSS525 from lines containing
noise, or another data type, then false detections of "valid" data are more
likely to occur which will upset the amplitude tracking mechanism. (Note
that Hunting can still occur if the WSS525 start bits are never detected.)
control bit
CHKWSS
All WSS525 packets are considered valid (provided
that the start bit is detected), regardless of CRCERR
0
Only WSS525 packets with CRCERR = 0 are
considered valid
1
Preliminary
NDA required
Confidential - NDA required
page 162
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.4.2
S
UBADDRESS
41
TO
57 L
INE
C
ONTROL
R
EGISTER
Table 101LCR Register 2...24 (SA41 .... SA57)
16.4.3
S
UBADDRESS
58 P
ROGRAMMABLE
F
RAMING
C
ODE
Table 102Framing Code for programmable Data Types (SA58)
LCR Register 2...24 (41h ....57h)
(1)
1.
Line Control Register LCR0 to LCR23 are assigned to one VBI dataline of a VBI region each. Line Control Register LCR24 is
assigned to all other VBI data lines / active video lines.
D7..D4
D3..D0
60HZ / 525 LINES STANDARDS
50HZ / 625 LINES STANDARDS
DT[3:0] field 1 DT[3:0] field 2
do not acquire (active video)
do not acquire (active video)
0000
0000
US Teletext (WST525)
Euro Teletext (WST625)
0001
0001
NABTS
Euro Teletext with progammable
Framing Code
0010
0010
Moji
reserved
0011
0011
US Closed Caption (CC525)
Euro Closed Caption (CC625)
0100
0100
CGMS (WSS525)
Euro Wide Screen Signalling (WSS625)
0101
0101
VITC525
VITC625
0110
0110
Gemstar2x
VPS
0111
0111
Gemstar1x
reserved
1000
1000
reserved
reserved
1001
1001
Open1 (5 MHz)
Open1 (5 MHz)
1010
1010
Open2 (5,7272 MHz)
Open2 (5,7272 MHz)
1011
1011
reserved
reserved
1100
1100
do not acquire (RAW)
do not acquire (RAW)
1101
1101
do not acquire (Test)
do not acquire (Test)
1110
1110
do not acquire (active video)
do not acquire (active video)
1111
1111
Slicer Set (580h)
D7...0
Framing Code for programmable Data Types
according to the DT table
control bits
FC7...0
[default]
40h
Preliminary
NDA required
Confidential - NDA required
page 163
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.4.4
S
UBADDRESS
59 H
ORIZONTAL
O
FFSET
Table 103Horizontal Offset (SA 59, SA 5B)
16.4.5
S
UBADDRESS
5A V
ERTICAL
O
FFSET
Table 104Vertical Offset (SA 5A, SA 5B)
16.4.6
S
UBADDRESS
5B F
IELD
O
FFSET
, MSB'
S
H/V-O
FFSETS
Table 105 Field Offset, MSB's for Vertical and Horizontal Offsets (SA 5B)
Slicer Set (59h, 5Bh)
5Bh,D2...0
59h,D7...0
Horizontal Offset
control bits
control bits
HOFF10...8
HOFF7...0
recommended value
3h
47h
Slicer Set (5Ah, 5Bh)
5Bh,D4
5Ah,D7...0
Vertical Offset
control bit
control bits
VOFF[8]
VOFF[7:0]
Minimum value 0
0
0
Maximum value 312
1
38
value for 50 Hz/625 lines input
0
03
value for 60 Hz/525 lines input and ITU656 line counting
(1)
1.
for 60 Hz offsets; please refer to sect.8.2 and sect.8.4
0
06
value for 60 Hz/525 lines input and consistent field ID
(1)
0
03
Slicer Set (5Bh)
D5
Vertical Trigger Edge
control bit
VEP
VBI slicer triggers on the negative edge of the internal V123 V-sync
(Default)
0
VBI slicer triggers on the positive edge of the internal V123 V-sync
1
Preliminary
NDA required
Confidential - NDA required
page 164
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 106 Field Offset, MSB's for Vertical and Horizontal Offsets (SA 5B)
Slicer Set (5Bh)
D7
Field Offset
control bit
FOFF
no modification of internal field indicator,
(default for 50 Hz/625 lines input sources)
0
Invert field indicator
(default for 60 Hz/525 lines input sources)
1
Preliminary
NDA required
Confidential - NDA required
page 165
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.4.7
S
UBADDRESS
5D: SLDOM C
ODES
Table 107 Sliced data output modes (SA 5D)
Slicer Set (5Dh)
D4
D3
D2
D1
D0
Sliced Data Output Mode
SLDOM4
SLDOM3
SLDOM2
SLDOM1
SLDOM0
Output from VBI slicer through I-port is disabled
(VITX[1] function of SAA7114)
X
0
0
0
0
no recoding
X
X
X
X
0
recode data values 00h and FFh to even parity
values 03h and FCh
X
X
X
X
1
ANC header with constant DID byte,
programmable via SDID (addr. 5Eh)
X
0
0
1
X
ANC header (VIP-DID) for DT 1 - 8, A and B
plus timing codes (empty packages) for lines 1
and after line 23
X
0
1
0
X
ANC header (VIP-DID) for DT 1 - 8, A and B
no timing codes
X
0
1
1
X
SAV-EAV framed output lines,
with D2 as T-Bit of SAV/EAV byte
X
1
T
(1)
1.
corresponds to the T-Bit of SAV/EAV codes
X
X
SAV-EAV framing for the defined VBI standards
of DT 1 - 8, A and B and DT 9
X
1
T
(1)
0
X
SAV-EAV framing for the defined VBI standards
except for those Data Types which are
accessible via I2C readback registers.
Suppressed standards are: CC525/625,
WSS525/625 (CGMS), Gemstar1x/Gemstar2x
X
1
T
(1)
1
X
if regions overlap, output of sliced VBI and
scaled video for a certain line
0
1
T
(1)
X
X
if regions overlap, output of video is suppressed
for SAV-EAV framed sliced VBI lines
1
1
T
(1)
X
X
Preliminary
NDA required
Confidential - NDA required
page 166
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.4.8
S
UBADDRESS
5E SDID
CODES
Table 108 SDID codes (SA 5E)
16.4.9
S
UBADDRESS
5E (
READ
-
ONLY REGISTER
)
Table 109 Slicer Status Bit (SA 5E), read only
Table 110 Slicer Status Bit (SA 5E), read only
Slicer Set (5Eh)
D5
D4
D3
D2
D1
D0
SDID codes
SDID5
SDID4
SDID3
SDID2
SDID1
SDID0
SDID5..0 = 0h [default]
0
0
0
0
0
0
Slicer Status Bit (5Eh) read only
D7
Framing Code Valid
control bit
FC8V
No Framing code (0 error) in the last frame detected
0
Framing code with 0 error detected
1
Slicer Status Bit (5Eh) read only
D6
Framing Code Valid
control bit
FC7V
No Framing code (1 error) in the last frame detected
0
Framing code with 1 error detected
1
Preliminary
NDA required
Confidential - NDA required
page 167
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.4.10 S
UBADDRESS
66
TO
7F I
2
C R
EADBACK OF DECODED
VBI D
ATA
(
READ
-
ONLY REGISTER
)
16.4.10.1 Subaddress 66 to 6A I
2
C Readback of Closed Caption Data (CC525 and CC625) (read-only register)
Table 111 Closed Caption (CC525 and CC625) I
2
C readback (66h, ... , 6Ah) read only
Table 112 Closed Caption (CC525 and CC625) data order in WSS I
2
C readback registers
Register Content
(1)
1.
All decoded VBI data is written into the registers starting with the LSB of each register first until all data is stored
REG.
ADDR.
D7
D6
D5
D4
D3 .. D0
Status Header
66 h
CCH_7
CCH_6
CCH_5
CCH_4
CCH_3 .. CCH_0
odd field
even field
free running field
counter
being
updated
data
erroneous
being
updated
data
erroneous
CC payload data byte 1 of odd field
67 h
CCO1_7 .. CCO1_0
CC payload data byte 2 of odd field
68 h
CCO2_7 .. CCO2_0
CC payload data byte 1 of even field
69 h
CCE1_7 .. CCE1_0
CC payload data byte 2 of even field
6A h
CCE2_7 .. CCE2_0
Register Name
CCO1 / CCE1
CCO2 / CCE2
Register Addr.
6C h
/
6F h
6D h
/
70 h
Register Bit
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
CC525 Bit No.
(1)
1.
CC data bits in order they appear in the VBI data line (beginning with bit 0)
7
6
5
4
3
2
1
0
15
14
13
12
11
10
9
8
CC625 Bit No.
(1)
7
6
5
4
3
2
1
0
15
14
13
12
11
10
9
8
Preliminary
NDA required
Confidential - NDA required
page 168
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.4.10.2 Subaddress 6B to 71 I
2
C Readback of Closed Caption Data (WSS525 and WSS625) (read-only register)
Table 113 Widescreen Signalling (WSS525 and WSS625) I
2
C readback (6Bh, ... , 71h) read only
Table 114 Widescreen Signalling (WSS525 and WSS625) data order in WSS I
2
C readback registers
REGISTER CONTENT
(1)
1.
All decoded VBI data is written into the registers starting with the LSB of each register first until all data is stored
REG.
ADDR.
D7
D6
D5
D4
D3 .. D0
Status Header
6B h
WSSH_7
WSSH_6
WSSH_5
WSSH_4
WSSH_3 ..
WSSH_0
odd field
even field
free running field
counter
being
updated
data
erroneous
being
updated
data
erroneous
WSS payload data byte 1 of odd field
6C h
WSSO1_7 .. WSSO1_0
WSS payload data byte 2 of odd field
6D h
WSSO2_7 .. WSSO2_0
WSS payload data byte 2 of odd field
6E h
WSSO3_7 .. WSSO3_0
WSS payload data byte 1 of even field
6F h
WSSE1_7 .. WSSE1_0
WSS payload data byte 2 of even field
70 h
WSSE2_7 .. WSSE2_0
WSS payload data byte 3 of even field
71 h
WSSE3_7 .. WSSE3_0
Register Name
WSSO1 / WSSE1
WSSO2 / WSSE2
WSSO3 / WSSE3
Register Addr.
6C h
/
6F h
6D h
/
70 h
6E h
/
71 h
Register Bit
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
WSS525 Bit No.
(1)
1.
WSS525 data bits in order they appear in the VBI data line (beginning with bit 1)
8
7
6
5
4
3
2
1
16
15
14
13
12
11
10
9
C
(2)
2.
This bit carries the result of the CRC-check. It is `0' if the received CRC code is identical to the calculated CRC Code, else it
is set to `1'
-
-
-
20
19
18
17
WSS625 Bit No.
(3)
3.
WSS625 data bits in order they appear in the VBI data line (beginning with bit 0)
7
6
5
4
3
2
1
0
-
-
13
12
11
10
9
8
-
-
-
-
-
-
-
-
Preliminary
NDA required
Confidential - NDA required
page 169
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.4.10.3 Subaddress 72 to 76 I
2
C Readback of Gemstar1x Data (read-only register)
Table 115 Gemstar1x I
2
C readback (72h, ... , 76h) read only
Table 116 Gemstar 1x data order in Gemstar 1x I
2
C readback registers
Register Content
(1)
1.
All decoded VBI data is written into the registers starting with the LSB of each register first until all data is stored
REG.
ADDR.
D7
D6
D5
D4
D3 .. D0
Status Header
72 h
GS1H_7
GS1H_6
GS1H_5
GS1H_4
GS1H_3 ..
GS1H_0
odd field
even field
free running field
counter
being
updated
data
erroneous
being
updated
data
erroneous
GS1 payload data byte 1 of odd field
73 h
GS1O1_7 .. GS1O1_0
GS1 payload data byte 2 of odd field
74 h
GS1O2_7 .. GS1O2_0
GS1 payload data byte 1 of even field
75 h
GS1E1_7 .. GS1E1_0
GS1 payload data byte 2 of even field
76 h
GS1E2_7 .. GS1E2_0
Register Name
GS1O1 / GS1E1
GS1O2 / GS1E2
Register Addr.
73 h
/
75 h
74 h
/
76 h
Register Bit
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Gemstar 1x Bit No.
(1)
1.
Gemstar 1x data bits in order they appear in the VBI data line (beginning with bit 0)
7
6
5
4
3
2
1
0
15
14
13
12
11
10
9
8
Preliminary
NDA required
Confidential - NDA required
page 170
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.4.10.4 Subaddress 77 to 7F I
2
C Readback of Gemstar2x Data (read-only register)
Table 117 Gemstar2x I
2
C readback (77 h, ... , 7F h) read only
Table 118 Gemstar 2x data order in Gemstar 2x I
2
C readback registers
Register Content
(1)
1.
All decoded VBI data is written into the registers starting with the LSB of each register first until all data is stored
REG.
ADDR.
D7
D6
D5
D4
D3 .. D0
Status Header
77 h
GS2H_7
GS2H_6
GS2H_5
GS2H_4
GS2H_3 ..
GS2H_0
odd field
even field
free running field
counter
being
updated
data
erroneous
being
updated
data
erroneous
GS2 payload data byte 1 of odd field
78 h
GS2O1_7 .. GS2O1_0
GS2 payload data byte 2 of odd field
79 h
GS2O2_7 .. GS2O2_0
GS2 payload data byte 2 of odd field
7A h
GS2O3_7 .. GS2O3_0
GS2 payload data byte 2 of odd field
7B h
GS2O4_7 .. GS2O4_0
GS2 payload data byte 1 of even field
7C h
GS2E1_7 .. GS2E1_0
GS2 payload data byte 2 of even field
7D h
GS2E2_7 .. GS2E2_0
GS2 payload data byte 3 of even field
7E h
GS2E3_7 .. GS2E3_0
GS2 payload data byte 4 of even field
7F h
GS2E3_7 .. GS2E3_0
Register
Name
GS2O1 / GS2E1
GS2O2 / GS2E2
GS2O1 / GS2E1
GS2O2 / GS2E2
Register Addr.
78 h
/
7C h
79 h
/
7D h
7A h
/
7E h
7B h
/
7F h
Register Bit
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Gemstar 2x
Bit No.
(1)
1.
Gemstar 2x data bits in order they appear in the VBI data line (beginning with bit 0)
7
6
5
4
3
2
1
0
1
5
1
4
1
3
1
2
1
1
1
0
9
8
2
3
2
2
2
1
2
0
1
9
1
8
1
7
1
6
3
1
3
0
2
9
2
8
2
7
2
6
2
5
2
4
Preliminary
NDA required
Confidential - NDA required
page 171
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.5
Programming Register - Interfaces and Scaler Part
16.5.1
S
UBADDRESS
80: G
LOBAL
S
ETTINGS
Table 119 Continuous Mode (continuous field mode) (SA 80)
Table 120 Task Enable Control (SA 80)
Global Set (80H)
D7
Continuous field mode
control bit
CMOD
field processing is done according the trigger conditions and window definitions of an enabled
programming page
0
permanent processing of the enabled task according to TEB (0x80) and TEA (0x80) settings
until SW reset of the scaler. The vertical window definitions are ignored and the selected
V-sync (see V_EAV1,VEAV0) defines the blanking interval
1
GLOBAL SET (80H)
D5
D4
Task Enable Control
control bits
control bits
TEB
TEA
task of register set A is disabled
x
0
task of register set A is enabled
x
1
task of register set B is disabled
0
x
task of register set B is enabled
1
x
Preliminary
NDA required
Confidential - NDA required
page 172
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 121 I-port and scaler backend clock selection (SA 80)
GLOBAL SET (80H)
D3
D2
D1
D0
I - port and scaler backend clock selection
CONTROL BITS
MODE
I-PORT OUTPUT
CLOCK
SCALER
BACKEND CLOCK
ICKS
3
ICKS
2
ICKS
1
ICKS
0
8-bit output mode (byte) at full clock rate:
- full data rate at full clock rate
line locked clock from decoder PLL
0
0
0
0
input clock at XCLK input of the X-Port
0
0
0
1
clock from feature PLL (PLL2)
0
0
1
0
external input clock from ICLK
0
0
1
1
General 16-bit output mode:
- full data rate at full clock rate
Luminance data (Y) at IPD[7:0] output pins
and
decoded chrominance data (CB,CR) at
HPD[7:0] output pins
line locked clock from decoder PLL
0
1
0
0
input clock at XCLK input of the X-Port
0
1
0
1
clock from feature PLL (PLL2)
0
1
1
0
external input clock from ICLK
0
1
1
1
"DMSD2-Legacy" 16-bit output mode
- half data rate at half clock rate
Luminance data (Y) at IPD[7:0] output
pins, decoded chrominance data (CB,CR)
at HPD[7:0] output pins
"CREF" function is provided on in IDQ.
As an alternative IDQ can also be used as
clock (adjustable delay via IPCK[3:2])
line locked clock
from decoder PLL
line locked clock / 2
from decoder PLL
1
0
0
0
input clock at XCLK
input of the X-Port
input clock at XCLK
input of the X-Port
divided by 2
1
0
0
1
clock from feature
PLL (PLL2)
clock from feature
PLL (PLL2) divided
by 2
1
0
1
0
external input clock
from ICLK
external input clock
from ICLK divided by
2
1
0
1
1
"Zoomed Video" 16-bit output mode:
- half data rate at half clock rate
(Luminance data (Y) at IPD[7:0] output
pins, decoded chrominance data (CB,CR)
at HPD[7:0] output pins)
IDQ obsolete
line locked clock / 2 from decoder PLL
1
1
0
0
input clock at XCLK input of the X-Port
divided by 2
1
1
0
1
clock from feature PLL (PLL2) divided by 2
1
1
1
0
reserved
1
1
1
1
Preliminary
NDA required
Confidential - NDA required
page 173
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 122 Vertical sync and Field ID source selection (SA 81)
Table 123 Characteristic of the retimed V and F signals (SA 81)
16.5.2
S
UBADDRESS
83
TO
87: G
LOBAL
I
NTERFACE
C
ONFIGURATIONS
Table 124 X-port output clock phase control (SA 83)
GLOBAL SET (81H)
D1
D0
Vertical sync and Field ID source selection for the generation of V- and F-Bit in
SAV / EAV codes and the V-sync and FID function on pins IGPV and IGP0/1
control bits
control bits
V_EAV1
V_EAV0
V-blanking signal from scaler input (VBLNK_CCIR from decoder or XRV from X-port)
with corresponding Field ID (EVEN_CCIR or detected from X-port)
0
0
programmable V-gate signal VGATE_L from decoder (see VSTA,VSTO reg. 0x15 and
0x16 of decoder part) or XRV from X-port with corresponding Field ID (but detected
ID from X-port shifted by one line)
0
1
LCR table controlled V-gate and Field ID from the text data path
1
0
CONLV controlled region and page dependent V-gate from scaler data path, Field ID
is snatched to scalers V-trigger (see V123 timing)
1
1
GLOBAL SET (81H)
D2
change of 1/2 line characteristic of the retimed V and F signals
(see IGPV and IGP0/1 functions, signals VS_i and FID_i )
control bits
FTIME
FID `0' -> V-edge after End Of Line (EOL), FID change 0->1 after Start Of Line (SOL)
FID `1' -> V-edge after SOL, FID change 1->0 after EOL
0
upper V and FID timing characteristics change from EOL to SOL and .vv.
1
GLOBAL SET (83H)
D5
D4
X-port output clock phase control
control bits
control bits
XPCK1
XPCK0
XCLK inverted input/output phase
0
0
Recommended setting, if XCLK-pin is used as
input
0
1
ICLK inverted and phase shifted by about 3 nsec
1
0
Recommended setting, if XCLK-pin is used as
output
1
1
Preliminary
NDA required
Confidential - NDA required
page 174
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 125 X-port I/O enable control (SA 83)
Table 126 I-port output signal definitions IGPH / IGPV (SA 84)
GLOBAL SET (83H)
D2
D1
D0
X-port I/O enable control, controls pins XPD[7:0],
XDQ, XRH, XRV and XCLK
control bits
control bits
control bits
XRQT
XPE1
XPE0
X - port output is disabled by software
x
0
0
X - port output is enabled by software
x
0
1
X - port output is enabled by pin XTRI at "0"
x
1
0
X - port output is enabled by pin XTRI at "1"
x
1
1
XRDY output signal is A/B task flag from event handler
(A = "1")
0
x
x
XRDY output signal is ready signal from scaler path
(XRDY = "1" means scaler is ready to receive data)
1
x
x
GLOBAL SET (84H)
D3
D2
D1
D0
I - port output signal definitions IGPH / IGPV
control
bits
control
bits
control
bits
control
bits
IDV1
IDV0
IDH1
IDH0
IGPH is a h -gate signal, framing the scaler output
x
x
0
0
IGPH is an extended h-gate (framing h-gate during
scaler output and scaler input H-reference outside the
scaler window)
x
x
0
1
IGPH is a horizontal trigger pulse on the rising edge of
h-gate
x
x
1
0
IGPH is a horizontal trigger pulse on the rising edge
of extended h-gate
x
x
1
1
IGPV is a v - gate signal as defined by V_EAV[81[1:0]]
0
0
x
x
IGPV is a V-sync like signal, as defined by V_EAV, with
emulated 1/2 line characteristic (VS_i)
0
1
x
x
IGPV is a vertical trigger pulse on the rising edge of the
v-gate
1
0
x
IGPV is a vertical trigger pulse on the rising edge of the
V-sync like signal
1
1
x
x
Preliminary
NDA required
Confidential - NDA required
page 175
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 127 I-port signal definitions IGP0 (SA 84)
Table 128 I-port signal definitions IGP1 (SA 84)
GLOBAL SET (84H AND 86H)
86H D4
84H D5
84H D4
I - port signal definitions IGP0
control
bits
control
bits
control
bits
IDG02
IDG01
IDG00
IGP0 is output field ID, as defined by V_EAV[81[1:0]]
0
0
0
IGP0 is a field ID, as defined by V_EAV and
FTIME[81[2]], with emulated 1/2 line characteristic
(FID_i)
0
0
1
IGP0 is sliced data flag, framing the sliced VBI data at
the I-port
0
1
0
IGP0 is A/B task flag, as defined by CONLH [90[7]]
0
1
1
IGP0 is the output FIFO almost filled flag
1
0
0
IGP0 is the output FIFO almost full flag, level to be
programmed in addr. 86h
1
0
1
IGP0 is the output FIFO almost empty flag, level to be
programmed in addr. 86h
1
1
0
IGP0 is set to "0" (default polarity)
1
1
1
GLOBAL SET (84H AND 86H)
86H D5
84H D7
84H D6
I - port signal definitions IGP1
control
bits
control
bits
control
bits
IDG12
IDG11
IDG10
IGP1 is output field ID, as defined by V_EAV[81[1:0]]
0
0
0
IGP1 is a field ID, as defined by V_EAV and
FTIME[81[2]], with emulated 1/2 line characteristic
(FID_i)
0
0
1
IGP1 is sliced data flag, framing the sliced VBI data at
the I-port
0
1
0
IGP1 is A/B task flag, as defined by CONLH [90[7]]
0
1
1
IGP1 is the output FIFO almost filled flag
1
0
0
IGP1 is the output FIFO almost full flag, level to be
programmed in addr. 86h
1
0
1
IGP1 is the output FIFO almost empty flag, level to be
programmed in addr. 86h
1
1
0
IGP1 is set to "0" (default polarity)
1
1
1
Preliminary
NDA required
Confidential - NDA required
page 176
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 129 I-port reference signal polarities (SA 85)
GLOBAL SET (85H)
D4
D3
D2
D1
D0
I - port reference signal polarities
control
bits
control
bits
control
bits
control
bits
control
bits
IGP1P
IGP0P
IRVP
IRHP
IDQP
IDQ at default polarity (`1' active)
x
x
x
x
0
IDQ is inverted
x
x
x
x
1
IGPH at default polarity (`1' active)
x
x
x
0
x
IGPH is inverted
x
x
x
1
x
IGPV at default polarity (`1' active)
x
x
0
x
x
IGPV is inverted
x
x
1
x
x
IGP0 at default polarity
x
0
x
x
x
IGP0 is inverted
x
1
x
x
x
IGP1 at default polarity
0
x
x
x
x
IGP1 is inverted
1
x
x
x
x
Preliminary
NDA required
Confidential - NDA required
page 177
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 130 I-port signal definitions (SA 85)
Table 131 I-port signal definitions (SA 86)
GLOBAL SET (85H)
D7
D6
D5
I - port signal definitions IPD[7:0] (HPD[7:0])
control bits
control bits
control bits
ISWP1
ISWP0
ILLV
video data limited to range 1 to 254
x
x
0
video data limited to range 8 to 247
x
x
1
D-word byte swap, influences serial output timing
D0 D1 D2 D3 => FF 00 00 SAV CB0 Y0 CR0 Y1
0
0
x
D1 D0 D3 D2 => 00 FF SAV 00 Y0 CB0 Y1 CR0
0
1
x
D2 D3 D0 D1 => 00 SAV FF 00 CR0 Y1 CB0 Y0
1
0
x
D3 D2 D1 D0 => SAV 00 00 FF Y1 CR0 Y0 CB0
1
1
x
GLOBAL SET (86H)
D3
D2
D1
D0
I - port signal definitions
control
bits
control
bits
control
bits
control
bits
FFL1
FFL0
FEL1
FEL0
FAE fifo flag almost empty level
< 16 D-words
x
x
0
0
< 8 D-words
x
x
0
1
< 4 D-words
x
x
1
0
= 0 D-words
x
x
1
1
FAF fifo flag almost full level
>= 16 D-words
0
0
x
x
>= 24 D-words
0
1
x
x
>= 28 D-words
1
0
x
x
= 32 D-words
1
1
x
x
Preliminary
NDA required
Confidential - NDA required
page 178
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 132 I-port Packing mode (continuous pixel mode) (SA 86)
Table 133 I-port signal definitions,FFD1,0 (SA 86)
Global Set (86H)
D7
I-Port Packing mode
control bit
IMPAK
data packing controlled by ITRDY pin
0
data packing is done internally, by HREF synchronous delayed trigger pulses.
The trigger delay can be defined per active data type (data of page A, page B
and data of text path C).
Trigger signals are generated by the Pulse Generator (see reg. F6h to FBh
parameters PGHAPS, PGHBPS, PGHCPS)
1
GLOBAL SET (86H)
D6
I - port signal definitions,
FFD1,0 related to subaddr. "84"
control bits
VITX
I-port video data output is inhibited
0
I-port video data are transferred
1
Note: text data transfer is now controlled by new SLDOM control byte (reg. 0x5D)
Preliminary
NDA required
Confidential - NDA required
page 179
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 134 I-port output clock and gated clock phase control (SA 87)
Table 135 I-port I/O control (SA 87)
GLOBAL SET (87H)
D7
D6
D5
D4
I-port input/output clock and gated clock phase
control (IDQ, ICLK)
control
bits
control
bits
control
bits
control
bits
IPCK3
IPCK2
IPCK1
IPCK0
ICLK inverted input/output phase
x
x
0
0
Recommended setting, if ICLK-pin is used as input
x
x
0
1
ICLK inverted and phase shifted by about 3 nsec
x
x
1
0
Recommended setting, if ICLK-pin is used as
output
x
x
1
1
Note: IPCK[3:2] only effects the gated clock or qualifier on pin IDQ in DMSD-legacy mode (see also addr.
80h, ICKS[3:0])
tbf
0
0
x
x
tbf
0
1
x
x
tbf
1
0
x
x
tbf
1
1
x
x
GLOBAL SET (87H)
D1
D0
I-port I/O control (IPD[7:0], IDQ, IGPH, IGPV, IGP0,
IGP1)
control bits
control bits
IPE1
IPE0
I - port output is disabled by software (including the
H-port HPD[7:0] if used as 16-bit extension for the
I-port)
0
0
I - port output is enabled by software
0
1
I - port output is enabled by pin ITRI at "0"
1
0
I - port output is enabled by pin ITRI at "1"
1
1
Preliminary
NDA required
Confidential - NDA required
page 180
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.5.3
S
UBADDRESS
88: S
LEEP AND
P
OWER SAVE CONTROL
Table 136 Power save control (SA 86)
Table 137 ADC-port output control/ startup control (SA 88)
GLOBAL SET (88H)
D3
D1
D0
power save control
control
bits
control
bits
control
bits
SLM3
SLM1
SLM0
decoder and VBI slicer are in operational mode
x
x
0
decoder and VBI slicer are in power down
Note: scaler only operates, if scaler input and ICLK source is
the X-port (refer to addr. 80h and 91/C1h)
x
x
1
scaler is in operational mode
x
0
x
scaler is in power down
Note: scaler in power down stops I-port output!!
x
1
x
audio clock generation active
0
x
x
audio clock generation in power down and output disabled
1
x
x
GLOBAL SET (88H)
D7
D6
D5
D4
ADC-port output control/ startup control
control bits control bits control bits control bits
CH2EN
CH1EN
SWRST
DPROG
DPROG ='0' after reset
DPROG = '1', can be used to assign that the Device has
been PROGrammed.This bit can be monitored in the scalers
status byte, bit PRDON. If DPROG was set to `1' and
PRDON status bit shows a `0' a power or startup fail has
occurred
x
x
x
0
x
x
x
1
scaler path is reset to it's `idle' state, software reset
x
x
0
x
scaler is switched back to operation
x
x
1
x
AD1x analog channel is in power-down mode
x
0
x
x
AD1x analog channel is active
x
1
x
x
AD2x analog channel is in power-down mode
0
x
x
x
AD2x analog channel is active
1
x
x
x
Preliminary
NDA required
Confidential - NDA required
page 181
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.5.4
S
UBADDRESS
8F (
READ
-
ONLY REGISTER
):
STATUS INFORMATION SCALER PART
Table 138 Status information scaler bits (SA 8F)
16.5.5
S
UBADDRESS
90:
EVENT HANDLER CONTROL
Table 139 Event handler control (SA 90; SA C0)
I
2
C-BUS
STATUS BITS
NOTE: STATUS INFO IS UNSYNCHRONIZED AND SHOWS THE ACTUAL
STATUS AT THE TIME OF IIC-READ
FUNCTION
DATA BIT
FIDSCO
status of the field sequence ID at the scalers output, scaler processing dependent
D0
FIDSCI
status of the field sequence ID at the scalers input
D1
ERR_OF
error flag of scalers output formatter, normally set, if the output processing needs to
be interrupted, due to input/output data rate conflicts, e.g. if output data rate is much
too low and all internal FIFO capacity used
D2
PRDON
copy of bit DPROG, can be used to detect power up and start up fails
D3
FFOV
status of the internal `FIFO overflow' flag
D4
FFIL
status of the internal `FIFO almost filled' flag
D5
ITRI
status on input pin ITRI, if not used for tri-state control, usable as hardware flag for
software use
D6
XTRI
status on input pin XTRI, if not used for tri-state control, usable as hardware flag for
software use
D7
REGISTER SET A (90H) AND B (C0H)
D2
D1
D0
event handler control
control bits
control bits
control bits
RPTSK
STRC1
STRC0
event handler triggers immediately after finishing a task
x
0
0
event handler triggers with next V sync
x
0
1
event handler triggers with field ID = "0"
x
1
0
event handler triggers with field ID = "1"
x
1
1
if active task is finished, handling is taken over by the
next task
0
x
x
active task is repeated once, before handling is taken
over by the next task
1
x
x
Preliminary
NDA required
Confidential - NDA required
page 182
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 140 Event handler control (SA 90; SA C0)
Table 141 Event handler control (SA 90; SA C0)
16.5.6
S
UBADDRESS
91
TO
93:
SCALER INPUT AND
I-
PORT OUTPUT CONFIGURATION
Table 142 Scaler Input Format and ConfigurationFormat Control (SA 91; SA C1)
REGISTER SET A (90H) AND B (C0H)
D5
D4
D3
event handler control
control bits
control bits
control bits
FSKP2
FSKP1
FSKP0
active task is carried out directly
0
0
0
1 field is skipped before active task is carried out
0
0
1
.. fields are skipped before active task is carried out
..
..
..
6 fields are skipped before active task is carried out
1
1
0
7 fields are skipped before active task is carried out
1
1
1
REGISTER SET A (90H) AND B (C0H)
D7
D6
event handler control
control bits
control bits
CONLH
OFIDC
output field ID is field ID from scaler input
x
0
output field ID is task status flag, which changes every
time an selected task is activated (not synchronized to
input field ID)
x
1
scaler SAV/EAV byte bit D7 and task flag = `1', default
0
x
scaler SAV/EAV byte bit D7 and task flag = `0'
1
x
REGISTER SET A (91H) AND B (C1H)
D2
D1
D0
Scaler Input Format and Configuration
Format Control
control
bits
control
bits
control
bits
FSC2
FSC1
FSC0
input is YUV 4:2:2 like sampling scheme
x
x
0
input is YUV 4:1:1 like sampling scheme
x
x
1
FSC[2:1] only to be used, if X-port input source don't provide chroma information for every
input line (Note: X-port input stream must contain "dummy" chroma bytes)
chroma is provided every line, default
0
0
x
chroma is provided every 2nd line
0
1
x
chroma is provided every 3rd line
1
0
x
chroma is provided every 4th line
1
1
x
Preliminary
NDA required
Confidential - NDA required
page 183
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 143 Scaler Input Format and ConfigurationSource Selection (SA 91; SA C1)
Table 144 X-port input Reference signal definitions (SA 92; SA C2)
REGISTER SET A (91H) AND B (C1H)
D7
D6
D5
D4
D3
Scaler Input Format and Configuration
Source Selection
control
bits
control
bits
control
bits
control
bits
control
bits
CONLV
HLDFV
SCSRC1
SCSRC0
SCRQE
only if XRQT subaddr. "83" = `1': scaler input source
reacts on 7115 request
x
x
x
x
0
scaler input source is a continuous data stream, which
can not be interrupted
(must be `1', if 7115 decoder part is source of scaler or
XRQT subaddr."83" = `0')
x
x
x
x
1
scaler input source is data from decoder, data type is
provided according to table Table 6 on page 43
x
x
0
0
x
scaler input source is YUV data from
X-port
x
x
0
1
x
scaler input source is raw digital CVBS from selected
analog channel, for backward compatibility only, further
use is not recommended
x
x
1
0
x
scaler input source is raw digital CVBS (or 16 bit Y +
UV, if no 16 bit output are active) from X-port
x
x
1
1
x
SAV/EAV code bits D6 and D5 (F and V) may change
between SAV and EAV
x
0
x
x
x
SAV/EAV code bits D6 and D5 (F and Vbit) are
synchronized to scalers output line start
x
1
x
x
x
SAV/EAV code bit D5 (V-bit) and V-gate on pin IGPV as
generated by the internal processing, see Fig.38
0
x
x
x
x
SAV/EAV code bit D5 (V-bit) and V-gate are inverted
1
x
x
x
x
REGISTER SET A(92H) AND B (C2H)
D3
D2
D1
D0
X - port input Reference signal definitions
control
bits
control
bits
control
bits
control
bits
XCODE
XDH
XDQ
XCKS
XCLK input clock and XDQ input qualifier are needed
x
x
x
0
data rate is defined by XCLK only, no XDQ signal used
x
x
x
1
data are qualified at XDQ input at "1"
x
x
0
x
data are qualified at XDQ input at "0"
x
x
1
x
rising edge of XRH input is horizontal reference
x
0
x
x
falling edge of XRH input is horizontal reference
x
1
x
x
reference signals are taken from XRH and XRV
0
x
x
x
reference signals are decoded from EAV and SAV
1
x
x
x
Preliminary
NDA required
Confidential - NDA required
page 184
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 145 Scaler Input Reference signal definitions (SA 92; SA C2)
Table 146 I-port output formats and configuration (SA 93; SA C3)
REGISTER SET A(92H) AND B (C2H)
D7
D6
D5
D4
Scaler Input Reference signal definitions
control
bits
control
bits
control
bits
control
bits
XFDV
XFDH
XDV1
XDV0
rising edge of XRV input and decoder V123 is vertical
reference
x
x
x
0
falling edge of XRV input and decoder V123 is vertical
reference
x
x
x
1
XRV is a V- sync or V-gate signal
x
x
0
x
XRV is a frame sync, V - pulses are generated
internally on both edges of FS input
x
x
1
x
X-port field ID is state of XRH at reference edge on
XRV (defined by XFDV)
x
0
x
x
field ID (decoder and X-port field ID) is inverted
x
1
x
x
reference edge for field detection is falling edge of XRV
0
x
x
x
reference edge for field detection is rising edge of XRV
1
x
x
x
REGISTER SET A(93H) AND B (C3H)
D4
D3
D2
D1
D0
I - port output formats and
configuration
control
bits
control
bits
control
bits
control
bits
control
bits
FOI1
FOI0
FSI2
FSI1
FSI0
4:2:2 D word formatting
x
x
0
0
0
4:1:1 D word formatting
x
x
0
0
1
4:2:0, only every 2nd line Y + UV output,
in between Y only output
x
x
0
1
0
4:1:0, only every 4th line Y + UV output,
in between Y only output
x
x
0
1
1
Y only
x
x
1
0
0
not defined
x
x
1
0
1
not defined
x
x
1
1
0
not defined
x
x
1
1
1
number of leading Y only lines, before
1rst Y + UV line is output:
00 = no leading Y only line
..
11= 3 leading Y only lines
0
0
x
x
x
0
1
x
x
x
1
0
x
x
x
1
1
x
x
x
Preliminary
NDA required
Confidential - NDA required
page 185
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 147 I-port output formats and configuration (SA 93; SA C3)
16.5.7
S
UBADDRESS
94
TO
9B: S
CALER
I
NPUT
A
CQUISITION
W
INDOW
D
EFINITION
Table 148 Horizontal input acquisition window definition offset (SA 94, SA95; SA C4, SAC5)
Table 149 Horizontal input acquisition window definition input window length (SA 96, SA97; SA C6, SAC7)
REGISTER SET A (93H) AND B (C3H)
D7
D6
D5
I - port output formats and
configuration
control
bits
control
bits
control
bits
ICODE
INS80
FYSK
all lines will be output
x
x
0
skip the number of leading Y only lines, as defined by FOI1,0
x
x
1
remaining blanking intervals and cycles with invalid data are filled with 0x00
x
0
x
remaining blanking intervals are filled with 0x80 for chroma and 0x10 for luma
bytes and data are hold during cycles with invalid data
x
1
x
no ITU656 like SAV,EAV codes are available
0
x
x
ITU656 like SAV,EAV codes are inserted in the output data stream, framed by a
qualifier
1
x
x
REGISTER SET A (94H ....95H) AND B (C4H ... C5H)
95H / C5H
D3 .. D0
94H / C4H
D7..D4
94H / C4H
D3 .. D0
horizontal input acquisition window definition
offset in X (horizontal) direction
reference for counting are luminance samples
XO11..8
XO7..4
XO3..0
a minimum of `2' should be kept, due to a line counting
mismatch
0
0 0 0
0 0
0
0
0 0 1 0
odd offsets are changing the UV sequence in the
output stream to VU sequence
0
0 0 0
0
0 0 0
0
0 1 1
maximum possible pixel offset = 4095
1
1 1 1
1
1 1 1
1
1 1 1
REGISTER SET A (96H ....97H) AND B (C6H ... C7H)
97H / C7H
D3 .. D0
96H / C6H
D7..D4
96H / C6H
D3 .. D0
horizontal input acquisition window definition
input window length in X (horizontal) direction
reference for counting are luminance samples
XS11..8
XS7..4
XS3..0
no output
0
0 0 0
0 0
0
0
0 0 0 0
odd lengths are allowed, but will be rounded up to even
lengths
0
0 0 0
0
0 0 0
0
0 0 1
...
...
...
...
maximum possible no. of input pixels = 4095
1
1 1 1
1
1 1 1
1
1 1 1
Preliminary
NDA required
Confidential - NDA required
page 186
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 150 Vertical input acquisition window definition offset (SA 98, SA99; SA C8, SA C9)
Table 151 Vertical input acquisition window definition (SA 9A, SA 9B; SA CA, SA CB)
Table 152 Field processing mode (SA 9A; SACB)
REGISTER SET A (98H ....99H) AND B (C8H ... C9H)
99H / C9H
D3 .. D0
98H / C8H
D7..D4
98H / C8H
D3 .. D0
vertical input acquisition window definition
offset in Y (vertical) direction
YO11..8
YO7..4
YO3..0
Note:
for trigger condition (addr. 90, STRC[1:0])!= `00'
YO + YS > (number of input lines/field -2), will result in
field dropping
0
0 0 0
0 0
0
0
0 0 0 0
0
0 0 0
0
0 0 0
0
0 0 1
maximum line offset = 4095
offsets > (number of input lines/field -2) will result in
field dropping
1
1 1 1
1
1 1 1
1
1 1 1
REGISTER SET A (9AH ....9BH) AND B (CAH ...
CBH)
9BH / CBH
D3 ..D0
9AH / CAH
D7..D4
9AH / CAH
D3 ..D0
vertical input acquisition window definition
input window length in Y (vertical) direction
YS11..8
YS7..4
YS3..0
Note:
for trigger condition (addr. 90, STRC[1:0])!= `00'
YO + YS > (number of input lines/field -2), will result in
field dropping
0
0 0 0
0 0
0
0
0 0 0 0
0
0 0 0
0
0 0 0
0
0 0 1
...
...
...
maximum possible number of input lines = 4095
lengths > (number of input lines/field -2) will result in
field dropping
1
1 1 1
1
1 1 1
1
1 1 1
Register Set A (9Bh) and B (CBh)
D7
Field mode (continuous task mode)
control bit
FMOD
vertical processing is defined by offset and length parameters, if a V trigger
occurs before YS input lines are processed field dropping may occur
0
vertical processing is defined by start and end line parameters
(YO = start line, YS = end line), if a V trigger occurs before end line is reached,
the vertical window is cut, if the start line is not reached at V trigger the
processing is started, if the trigger occurs inside the defined region
1
Preliminary
NDA required
Confidential - NDA required
page 187
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.5.8
S
UBADDRESS
9C
TO
9F: S
CALER
O
UTPUT
W
INDOW
D
EFINITION
Table 153 Horizontal output acquisition window definition (SA 9C, SA 9D; SA CC, SA CD)
Table 154 Vertical output acquisition window definition (SA 9E, SA 9F; SA CE, SA CF)
REGISTER SET A (9CH ....9DH) AND B (CCH ...
CDH)
9DH / CDH
D3 ..D0
9CH / CCH
H D7..D4
9CH / CCH
D3 ..D0
horizontal output acquisition window definition
number of desired output pixel in X (horizontal)
direction
reference for counting are luminance samples
XD11..8
XD7..4
XD3..0
no output
0
0 0 0
0 0
0
0
0 0 0 0
odd lengths are allowed, but will be filled up to even
lengths
0
0 0 0
0
0 0 0
0
0 0 1
...
...
...
...
maximum possible number of input pixels= 4095
if the desired output length is greater, than the number
of scaled output pixels, the last scaled pixel is repeated
1
1 1 1
1
1 1 1
1
1 1 1
REGISTER SET A (9EH ....9FH) AND B (CEH ... CFH)
9FH / CFH
D3 ..D0
9EH / CEH
D7..D4
9EH / CEH
D3 ..D0
vertical output acquisition window
definition
number of desired output lines in Y
(vertical)direction
YD11..8
YD7..4
YD3..0
no output
0
0 0 0
0 0
0
0
0 0 0 0
1 pixel
0
0 0 0
0
0 0 0
0
0 0 1
...
...
...
...
maximum possible number of output lines = 4095
if the desired output length is greater, than the number
of scaled output lines, the processing is cut
1
1 1 1
1
1 1 1
1
1 1 1
Preliminary
NDA required
Confidential - NDA required
page 188
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.5.9
S
UBADDRESS
A0
TO
A2: P
RESCALING AND
FIR
FILTERING
Table 155 Horizontal integer prescaling ratio XPSC (SA A0; SA D0)
Table 156 Horizontal prescaler accumulation Sequence Length XACL (SA A1; SA D1)
REGISTER SET A (A0H) AND B (D0H)
D5
D4
D3
D2
D1
D0
Horizontal integer prescaling ratio XPSC
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
XPSC5
XPSC4
XPSC3
XPSC2
XPSC1
XPSC0
!! not allowed !!
0
0
0
0
0
0
down scale = 1
0
0
0
0
0
1
down scale = 1/2
0
0
0
0
1
0
..
..
..
..
..
..
down scale = 1/63
1
1
1
1
1
1
REGISTER SET A (A1H) AND B (D1H)
D5
D4
D3
D2
D1
D0
Horizontal prescaler accumulation Sequence
Length XACL
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
XACL5
XACL4
XACL3
XACL2
XACL1
XACL0
accu length = 1
0
0
0
0
0
0
accu length = 2
0
0
0
0
0
1
..
..
..
..
..
..
accu length = 64
1
1
1
1
1
1
Preliminary
NDA required
Confidential - NDA required
page 189
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 157 Prescaler DC gain and FIR prefilter Control (SA A2; SA D2)
Table 158 Prescaler DC gain and FIR prefilter Control (SA A2; SA D2)
REGISTER SET A (A2H) AND B (D2H)
D3
D2
D1
D0
Prescaler DC gain and FIR prefilter Control
control
bits
control
bits
control
bits
control
bits
XC2_1
XDCG2
XDCG1
XDCG0
prescaler output is renormalized by gain factor = 1
x
0
0
0
gain factor = 1/2
x
0
0
1
gain factor = 1/4
x
0
1
0
gain factor = 1/8
x
0
1
1
gain factor = 1/16
x
1
0
0
gain factor = 1/32
x
1
0
1
gain factor = 1/64
x
1
1
0
gain factor = 1/128
x
1
1
1
weighting of all accumulated samples is factor `1'
e.g. XACL = 4 => sequence 1+ 1+ 1+ 1+ 1
0
x
x
x
weighting of samples inside sequence is factor `2'
e.g. XACL = 4 => sequence 1+ 2+ 2+ 2+ 1
1
x
x
x
REGISTER SET A (A2H) AND B (D2H)
D7
D6
D5
D4
Prescaler DC gain and FIR prefilter Control
control
bits
control
bits
control
bits
control
bits
PFUV1
PFUV0
PFY1
PFY0
luminance FIR filter bypassed
x
x
0
0
H_y(z) = 1/4 * (1 2 1)
x
x
0
1
H_y(z) = 1/8 * (-1 1 1.75 4.5 1.75 1 -1)
x
x
1
0
H_y(z) = 1/8 * (1 2 2 2 1)
x
x
1
1
chrominance FIR filter bypassed
0
0
x
x
H_uv(z) = 1/4 * (1 2 1)
0
1
x
x
H_uv(z) = 1/32 * (3 8 10 8 3)
1
0
x
x
H_uv(z) = 1/8 * (1 2 2 2 1)
1
1
x
x
Preliminary
NDA required
Confidential - NDA required
page 190
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.5.10 S
UBADDRESS
A4
TO
A6: B
RIGHTNESS
, C
ONTRAST AND
S
ATURATION
C
ONTROL
Table 159 Luminance Brightness Setting (SA A4; SA D4)
Table 160 Luminance Contrast Setting (SA A5; SA D5)
Table 161 Chrominance Saturation Setting (SA A6; SA D6)
REGISTER SET A (A4H)
AND B (D4H)
D7
D6
D5
D4
D3
D2
D1
D0
Luminance Brightness
Setting
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
BRIG7
BRIG6
BRIG5
BRIG4
BRIG3
BRIG2
BRIG1
BRIG0
0
0
0
0
0
0
0
0
nominal value = 128
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
REGISTER SET A (A5H)
AND B (D5H)
D7
D6
D5
D4
D3
D2
D1
D0
Luminance Contrast
Setting
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
CONT7
CONT6
CONT5
CONT4
CONT3
CONT2
CONT1
CONT0
gain = 0
0
0
0
0
0
0
0
0
gain = 1/64
0
0
0
0
0
0
0
1
nominal gain = 64
0
1
0
0
0
0
0
0
gain = 127/64
0
1
1
1
1
1
1
1
REGISTER SET A (A6H)
AND B (D6H)
D7
D6
D5
D4
D3
D2
D1
D0
Chrominance Saturation
Setting
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
SATN7
SATN6
SATN5
SATN4
SATN3
SATN2
SATN1
SATN0
gain = 0
0
0
0
0
0
0
0
0
gain = 1/64
0
0
0
0
0
0
0
1
nominal gain = 64
0
1
0
0
0
0
0
0
gain = 127/64
0
1
1
1
1
1
1
1
Preliminary
NDA required
Confidential - NDA required
page 191
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.5.11 S
UBADDRESS
A8
TO
AE: H
ORIZONTAL
P
HASE
S
CALING
Table 162 Horizontal Luminance Scaling Increment (SA A8, SA A9; SA D8, SA D9)
Table 163 Horizontal Luminance Phase Offset (SA AA; SA DA)
Table 164 Horizontal Chrominance Scaling Increment (SA AC, SA AD; SA DC, SA DD)
REGISTER SET A (A8H ....A9H)
AND B (D8H ... D9H)
A9H / D9H
D7..D4
A9H / D9H
D3 ..D0
A8H / D8H
D7..D4
A8H / D8H
D3 ..D0
Horizontal Luminance Scaling
Increment
XSCY15..12
XSCY11..8
XSCY7..4
XSCY3..0
scale = 1024/1 (theoretical) zoom
0
0 0
0
0
0 0 0
0 0
0
0
0 0 0 0
scale = 1024/294, lower limit defined
by data path structure
0
0 0
0
0
0 0 1
0
0 1 0
0
1 1 0
scale = 1024/1023 zoom
0
0 0
0
0
0 1 1
1
1 1 1
1
1 1 1
scale = 1, equals 1024
0
0 0
0
0
1 0 0
0
0 0 0
0
0 0 0
scale = 1024/1025 down scale
0
0 0
0
0
1 0 0
0
0 0 0
0
0 0 1
scale = 1024/8191 down scale
0
0 0
1
1
1 1 1
1
1 1 1
1
1 1 1
REGISTER SET A (AAH)
AND B (DAH)
D7
D6
D5
D4
D3
D2
D1
D0
Horizontal Luminance
Phase Offset
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
XPHY7
XPHY6
XPHY5
XPHY4
XPHY3
XPHY2
XPHY1
XPHY0
offset = 0
0
0
0
0
0
0
0
0
offset = 1/32 pixel
0
0
0
0
0
0
0
1
offset = 32/32 = 1 pixel
0
0
1
0
0
0
0
0
offset = 255/32 pixel
1
1
1
1
1
1
1
1
REGISTER SET A (ACH ....ADH)
AND B (DCH ... DDH)
ADH / DDH
D7..D4
ADH / DDH
D3 ..D0
ACH / DCH
D7..D4
ACH / DCH
D3 ..D0
Horizontal Chrominance Scaling
Increment
XSCC15..12
XSCC11..8
XSCC7..4
XSCC3..0
Note:
this value must be set to the
luminance value XSCY / 2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 0
0
0
0 0 0
0
0 0 0
0
0 0 1
0
0 0
1
1
1 1 1
1
1 1 1
1
1 1 1
Preliminary
NDA required
Confidential - NDA required
page 192
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 165 Horizontal Chrominance Phase Offset (SA AE; SA DE)
16.5.12 S
UBADDRESS
B0
TO
BF: V
ERTICAL
S
CALING
C
ONTROL
Table 166 Vertical Luminance Scaling Increment (SA B0, SA B1; SA E0, SA E1)
Table 167 Vertical Chrominance Scaling Increment (SA B2, SA B3; SA E2, SA E3)
REGISTER SET A (AEH)
AND B (DEH)
D7
D6
D5
D4
D3
D2
D1
D0
Horizontal Chrominance
Phase Offset
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
XPHC7
XPHC6
XPHC5
XPHC4
XPHC3
XPHC2
XPHC1
XPHC0
Note:
this values must be set to
XPHY/2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
REGISTER SET A (B0H ....B1H)
AND B (E0H ... E1H)
B1H / E1H
D7..D4
B1H / E1H
D3 ..D0
B0H / E0H
D7..D4
B0H / E0H
D3 ..D0
Vertical Luminance Scaling
Increment
YSCY15..12
YSCY11..8
YSCY7..4
YSCY3..0
scale = 1024/1 (theoretical) zoom
0
0 0
0
0
0 0 0
0
0 0 0
0
0 0 1
scale = 1024/1023 zoom
0
0 0
0
0
0 1 1
1
1 1 1
1
1 1 1
scale = 1, equals 1024
0
0 0
0
0
1 0 0
0
0 0 0
0
0 0 0
scale = 1024/1025 down scale
0
0 0
0
0
1 0 0
0
0 0 0
0
0 0 1
scale = 1/63.999 down scale
1
1 1
1
1
1 1 1
1
1 1 1
1
1 1 1
REGISTER SET A (B2H ....B3H)
AND B (E2H ... E3H)
B3H / E3H
D7..D4
B3H / E3H
D3 ..D0
B2H / E2H
D7..D4
B2H / E2H
D3 ..D0
Vertical Chrominance Scaling
Increment
YSCC15..12
YSCC11..8
YSCC7..4
YSCC3..0
Note:
this value must be set to the
luminance value YSCY
0
0 0
0
0
0 0 0
0
0 0 0
0
0 0 1
1
1 1
1
1
1 1 1
1
1 1 1
1
1 1 1
Preliminary
NDA required
Confidential - NDA required
page 193
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 168 Vertical Scaling Mode Control (SA B4; SA E4)
Table 169 Vertical Phase Offsets Chroma / Luma (SA B8, SA BC; SA E8, SA EC)
REGISTER SET A (B4H) AND B (E4H)
D4
D0
Vertical Scaling Mode Control
control bits
control bits
YMIR
YMODE
vertical scaling performs linear interpolation between
lines
x
0
vertical scaling performs higher order accumulating
interpolation, better alias suppression
x
1
no mirroring
0
x
lines are mirrored
1
x
REGISTER SET
A (B8H) AND B (E8H)
REGISTER SET
A (BCH) AND B (ECH)
D7
D6
D5
D4
D3
D2
D1
D0
Vertical Phase Offsets
Chroma / Luma
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
control
bits
YPC07
YPY07
YPC06
YPY06
YPC05
YPY05
YPC04
YPY04
YPC03
YPY03
YPC02
YPY02
YPC01
YPY01
YPC00
YPY00
offset = 0
0
0
0
0
0
0
0
0
offset of 32/32 = 1 line
0
0
1
0
0
0
0
0
offset of 255/32 lines
1
1
1
1
1
1
1
1
Preliminary
NDA required
Confidential - NDA required
page 194
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
16.6
Programming Register - second PLL (PLL2) and Pulse Generator
16.6.1
S
UBADDRESS
F0
TO
F5
AND
FF:
SECOND
PLL (PLL2) P
ROGRAMMING
P
ARAMETERS
Table 170 Number of LFCO cycles (= number of clock cycles divided by 4) per line (SA F0, SA F1)
Table 171 Selecting the source of horizontal reference signal for the second PLL (PLL2) (SA F1)
SECOND PLL REGISTER SET (F0H, F1H)
F1 h, D0
F0 h, D7...0
SPLPL8
SPLPL7 .. SPLPL0
Number of LFCO cycles per line
(= number of target clock cycles per line divided by 4)
Target Clock Frequency = 29,5 MHz
(625 lines per frame)
1D8 h
Target Clock Frequency = 24,5454 MHz
(525 lines per frame)
186 h
Target Clock Frequency = 27 MHz
(625 lines per frame)
1B0 h
Target Clock Frequency = 27 MHz
(525 lines per frame)
1AD h
Calculation Formula:
SPLPL[8:0] = (number of target clock cycles per line) /
4
Second PLL Register Set (F1 h)
D1
second PLL (PLL2) horizontal reference signal
source
SPHSEL
The combfilter decoder is selected as horiz. sync.
source.
0
The XRH signal of the X-Port (input mode) is selected
as horiz. sync. source.
1
Preliminary
NDA required
Confidential - NDA required
page 195
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 172 Selecting the operation mode of the second PLL (PLL2) (SA F1)
Table 173 Loopfilter mode of the second PLL (PLL2) (SA F1)
Second PLL Register Set (F1 h)
D3
D2
second PLL (PLL2) operation mode
SPMOD1
SPMOD1
Synthesize Clock:
The generated (CGC2) frequency depends on the nominal increment (SPNINC) only.
The contribution of the loop filter is disabled. The I and P proportion of the loop filter is
set to zero.
0 0
PLL-closed (normal operation mode):
This is the normal operation mode of the second PLL (PLL2): the nominal increment
plus the content of loop filter define the output (CGC2) frequency.
0 1
PLL-hold:
The PLL keeps the last frequency before entering this mode. The content of the loop
filter will be frozen.
1 0
PLL-Re-Sync (pll_mode = 11)
The phase detector is constantly re-synchronized to the horizontal reference signal.
The remaining phase error is fed into the loop filter.
1 1
Second PLL Register Set (F1 h)
D7 .. D4
second PLL (PLL2) Loop Filter mode (P- / I-Parameter selection)
SPPI3 .. SPPI 0
Default adaptive mode (recommended)
0000
Fast mode
0001
reserved
0002
. . .
1101
Medium mode
1110
Slow mode
1111
Preliminary
NDA required
Confidential - NDA required
page 196
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 174 Nominal DTO increment (SA F2, SA F3)
Table 175 Lock Status of the second PLL (PLL2) (SA F4)
SECOND PLL REGISTER SET (F2 H,
F3 H)
CRYSTAL
CLOCK
FREQUENCY
F3 h, D7 .. D0
F2 h, D7.. 0
SPNINC15 .. SPNINC8
SPNINC7 .. SPNINC0
Nominal Increment for the DTO of
the second PLL (PLL2)
Target Clock Frequency = 29,5 MHz
32.11 MHz
3ACC h
24.576 MHz
4CD2 h
Target Clock Frequency = 24,545 MHz
32.11 MHz
30EC h
24.576 MHz
3FEB h
Target Clock Frequency = 27 MHz
32.11 MHz
35D0 h
24.576 MHz
4650 h
Calculation Formula for the nominal
increment depending on the
Target Clock Frequency
XTALFREQ
integer of
( (Target Clock Frequency) / ( 4 * XTALFREQ ) * 2^16) )
Second PLL Register Set (F4 H)
D0
Lock Status of the second PLL (PLL2)
SPLOCK
second PLL (PLL2) un-locked
0
second PLL (PLL2) locked
1
Preliminary
NDA required
Confidential - NDA required
page 197
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 176 Maximum Phase Error Threshold for lock detection of the second PLL (PLL2) (SA FF)
Second PLL Register Set (FF h)
D3 .. D0
Maximum Phase Error Threshold for lock detection
of the second PLL (PLL2)
SPTHRM3 .. SPTHRM0
Maximum Phase Error >= 0 %
0000
Maximum Phase Error >= 6.25 %
0001
Maximum Phase Error >= 12.5 %
0010
Maximum Phase Error >= 18.75 %
0011
Maximum Phase Error >= 25 %
0100
Maximum Phase Error >= 31.5 %
0101
Maximum Phase Error >= 37.5 %
0110
Maximum Phase Error >= 44 %
0111
Maximum Phase Error >= 50 %
1000
Maximum Phase Error >= 56 %
1001
Maximum Phase Error >= 63 %
1010
Maximum Phase Error >= 69 %
1011
Maximum Phase Error >= 75 %
1100
Maximum Phase Error >= 81 %
1101
Maximum Phase Error >= 88 %
1110
Maximum Phase Error >= 94 %
1111
Preliminary
NDA required
Confidential - NDA required
page 198
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 177 Number of Lines Threshold for lock detection of the second PLL (PLL2) (SA FF)
16.6.2
S
UBADDRESS
F6
TO
FB: P
ULSE
G
ENERATOR
P
ROGRAMMING
Table 178 Number of LFCO cycles (= number of clock cycles divided by 4) per line (SA F5, SA F6)
Second PLL Register Set (FF h)
D7 .. D4
Minimum Number of Lines while SPTHRM[3:0] must be smaller than
specified before for lock detection of the second PLL (PLL2) will be indicated
SPTHRL3 .. SPTHRL0
7 lines
0000
15 lines
0001
23 lines
0010
31 lines
0011
39 lines
0100
47 lines
0101
55 lines
0110
63 lines
0111
71 lines
1000
79 lines
1001
87 lines
1010
95 lines
1011
103 lines
1100
111 lines
1101
119 lines
1110
127 lines
1111
PULSE GENERATOR REGISTER SET (F5H, F6H)
F6 h, D0
F5 h, D7...0
PGLEN8
PGLEN7 .. PGLEN0
This setting must be equal to the number of LFCO cycles
per line since it defines the output line length at the I-port
when driven by the Pulse Generator
Target Clock Frequency = 29,5 MHz
(625 lines per frame)
1D8 h
Target Clock Frequency = 24,5454 MHz
(525 lines per frame)
186 h
Target Clock Frequency = 27 MHz
(625 lines per frame)
1B0 h
Target Clock Frequency = 27 MHz
(525 lines per frame)
1AD h
Calculation Formula:
PGLEN[8:0] = (number of target clock cycles per line) / 4
Preliminary
NDA required
Confidential - NDA required
page 199
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 179 Selecting the source of horizontal reference signal for the PULSE Generator (SA F6)
Table 180 Resetting (Resynchronizing) the PULSE Generator to a horizontal synchronisation event. (SA F6)
Table 181 Pulse C trigger position for Task A (SA F6, SA F7)
PULSE Generator Register Set (F6 H)
D1
PULSE Generator horizontal reference signal
source for re-synchronisation
PGHSEL
The combfilter decoder is selected as horiz. sync.
source.
0
The XRH signal of the X-Port (input mode) is selected
as horiz. sync. source.
1
PULSE Generator Register Set (F6 H)
D2
PULSE Generator horizontal reference signal source for re-synchronisation
PGRES
The Pulse generator is in free running mode.
0
Software reset/resync for the Pulse Generator. The internal counter and thus all
generated signals (Pulse A trigger, Pulse B trigger and Pulse C trigger) will be
resyncronized to the incoming horiz. sync. source (defined by PGHSEL) as long as
pulse_gen_res is programmed to '1'
1
PULSE Generator Register Set for Start of line for
scaler Register Set A (F6h ... F7h)
F6H
D7 ..D4
F7H
D7..D4
F7H
D3 ..D0
Pulse C trigger position for Task A data relative to the
pulse generator counter measured in clock cycles.
PGHAPS 11...8
PGHAPS 7...4
PGHAPS 3...0
lowest value of pulse A
0
0
0
0
0 0
0
0
0 0 0 0
...
...
...
...
Recommended value for ITU style receiver operating with
SAV codes aligned
60E hex (1550 decimal)
Recommended value for ITU style receiver operating with
EAV codes aligned
60E hex (1550 decimal)
...
...
...
...
latest position of pulse A
Note:
If PGHAPS is greater than PGLEN * 4 then the pulse A will
not be generated!
1
1
1
1
1
1
1
1
1
1
1
1
Preliminary
NDA required
Confidential - NDA required
page 200
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 182 Pulse B trigger position for Task B (SA F8, SA F9)
Table 183Pulse C trigger position for sliced VBI data (SA FA, SA FB)
PULSE Generator Register Set for Start of line for
scaler Register Set B (F8h ... F9h)
F8H
D7 ..D04
F9H
D7..D4
F9H
D3 ..D0
Pulse B trigger position for Task B data relative to the
pule generator counter measured in clock cycles.
PGHBPS 11...8
PGHBPS 7...4
PGHBPS 3...0
lowest value of pulse B
0
0
0
0
0 0
0
0
0 0 0 0
...
...
...
...
Recommended value for ITU style receiver operating with
SAV codes aligned
PGHBPS = PGHAPS
60E hex (1550 decimal)
Recommended value for ITU style receiver operating with
EAV codes aligned
PGHBPS = PGHAPS
60E hex (1550 decimal)
...
...
...
...
latest position of pulse B
Note:
If PGHBPS is greater than PGLEN * 4 then the pulse B will
not be generated!
1
1
1
1
1
1
1
1
1
1
1
1
PULSE Generator Register Set for end of line definition
(FAh ... FBh)
FAH
D7 ..D04
FBH
D7..D4
FBH
D3 ..D0
Pulse C trigger position for sliced VBI data relative to
the pule generator counter measured in clock cycles.
PGHCPS 11...8
PGHCPS 7...4
PGHCPS 3...0
lowest value of pulse C
0
0
0
0
0 0
0
0
0 0 0 0
...
...
...
...
Recommended value for ITU style receiver operating with
SAV codes aligned
PGHCPS = PGHBPS = PGHAPS
60E hex (1550 decimal)
Recommended value for ITU style receiver operating with
EAV codes aligned
PGHCPS = (PGHAPS - 48 + (XD * 2)) mod (PGLEN * 4)
...
...
...
...
latest position of pulse C
Note:
If PGHCPS is greater than PGLEN * 4 then the pulse C will
not be generated!
1
1
1
1
1
1
1
1
1
1
1
1
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 201
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
17 PROGRAMMING START SET-UP
17.1
Decoder part
The given values force the following behaviour of the SAA7115 video decoder part:
Analog input conditions: NTSC M, PAL B, D, G, H, I or SECAM signal in CVBS format on input AI11(column 1) or Y/C-format on inputs AI11, AI21
(column 2)
Analog anti-alias filter and AGC active
Automatic field detection enabled
Automatic TV/VCR detection enabled
Automatic color standard detection enabled (column 1 and 2: Auto mode 3: predefined filters, sharpness control disabled)
Standard ITU 656 output format enabled on expansion (X) port, see also subaddress 83h (X-port control)
Contrast, brightness and saturation control in accordance with ITU standards
Adaptive comb filter for luminance and chrominance activated
Pins LLC, LLC2, XTOUT, RTS0, RTS1 and RTCO are set to 3-state
I-port (scaled video-output) and audio clock generation are disabled (lower power consumption), see corresponding sections to activate their
functionality.
Columns 3 to 5 are examples for typical settings in non auto mode.
Table 184 Decoder part start set-up values for auto mode and the three main standards
SUB
ADDR.
(HEX)
REGISTER
FUNCTION
CONTROL NAMES
(1)
REMARKS
VALUES (HEX)
(1)
FULL
AUTO
MODE
(CVBS)
(2)
FULL
AUTO
MODE
(Y/C)
(3)
NTSC M
(CVBS)
(4)
PAL B,
D, G,
H AND I
(CVBS)
(5)
SECAM
(CVBS)
00
chip version
ID7 to ID0
read only
01
increment delay
AOSL2, WPOFF, GUDL1,
GUDL0 and
IDEL3 to IDEL0
white peak control activated
08
08
08
08
08
02
analog input control 1
FUSE1, FUSE0, X,X, and
MODE3 to MODE0
CVBS signal expected at
input AI11 (CVBS-modes)
Y signal expected at input
AI11, C signal expected at
input AI21 (Y/C-mode)
C0
C8
C0
C0
C0
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 202
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
03
analog input control 2
X, HLNRS, VBSL,
CPOFF, HOLDG, GAFIX,
GAI28 and GAI18
AGC active with long vertical
blanking, color peak control
active
20
20
20
20
20
04
analog input control 3
GAI17 to GAI10
no influence
90
90
90
90
90
05
analog input control 4
GAI27 to GAI20
no influence
90
90
90
90
90
06
horizontal sync start
HSB7 to HSB0
just an example
EB
EB
EB
EB
EB
07
horizontal sync stop
HSS7 to HSS0
just an example
E0
E0
E0
E0
E0
08
sync control
AUFD, FSEL, FOET,
HTC1, HTC0, HPLL,
VNOI1 and VNOI0
automatic field detection
active, automatic time
constant setting active,
vertical noise reduction
active
B0
B0
B0
B0
B0
09
luminance control
BYPS, YCOMB, LDEL,
LUBW and
LUFI3 to LUFI0
LUBW and LUFI controls
are automatically adjusted
via AUTO[1:0] = 01 (= auto
mode 3), therefore these
settings take only effect at
lower auto levels!
40
80
40
40
1B
0A
luminance brightness
control
DBRI7 to DBRI0
default brightness
80
80
80
80
80
0B
luminance contrast
control
DCON7 to DCON0
default contrast
44
44
44
44
44
0C
chrominance saturation
control
DSAT7 to DSAT0
default saturation
40
40
40
40
40
0D
chrominance hue control
HUEC7 to HUEC0
default hue
00
00
00
00
00
SUB
ADDR.
(HEX)
REGISTER
FUNCTION
CONTROL NAMES
(1)
REMARKS
VALUES (HEX)
(1)
FULL
AUTO
MODE
(CVBS)
(2)
FULL
AUTO
MODE
(Y/C)
(3)
NTSC M
(CVBS)
(4)
PAL B,
D, G,
H AND I
(CVBS)
(5)
SECAM
(CVBS)
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 203
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
0E
chrominance control 1
CDTO, CSTD2 to CSTD0,
DCVF, FCTC, AUTO0 and
CCOMB
DCVF control is
automatically adjusted via
AUTO[1:0] = 01or 10 (= auto
modes 2 and 3), therefore
this setting takes only effect
in auto modes 0 or 1
(AUTO[1:0] = 00 or 11)
07
07
8D
85
D4
0F
chrominance gain control
ACGC and
CGAIN6 to CGAIN0
automatic color gain control
active via ACGC = 0, CGAIN
setting has no effect
2A
2A
2A
2A
2A
10
chrominance control 2
OFFU1, OFFU0, OFFV1,
OFFV0, CHBW and
LCBW2 to LCBW0
auto level 3 active in column
1 and 2, CHBW and LCBW
settings have no effect
06
06
06
06
00
11
mode/delay control
COLO, RTP1, HDEL1,
HDEL0, RTP0 and
YDEL2 to YDEL0
automatic color killer active
00
00
00
00
00
12
RT signal control
RTSE13 to RTSE10 and
RTSE03 to RTSE00
RTS0 and RTS1 are
tristated
00
00
00
00
00
13
RT/X-port output control
RTCE, XRHS, XRVS1,
XRVS0, HLSEL and
OFTS2 to OFTS0
RTCO is tristated, Xport
output format is set to
ITU656-mode
00
00
00
00
00
14
analog/ADC/compatibility
control
CM99, UPTCV, AOSL1,
AOSL0, XTOUTE,
AUTO1,
APCK1 and APCK0
analog output is disabled,
crystal clock output is
disabled, default adc sample
phase selected
01
01
01
01
01
15
VGATE start, FID change
VSTA7 to VSTA0
just an example
11
11
11
11
11
16
VGATE stop
VSTO7 to VSTO0
just an example
FE
FE
FE
FE
FE
17
miscellaneous, VGATE
configuration and MSBs
LLCE, LLC2E,
LATY2 to LATY0, VGPS,
VSTO8 and VSTA8
LLC and LLC2-outputs
tristated, standard search
latency is set to 3 fields
(default)
D8
D8
D8
D8
D8
SUB
ADDR.
(HEX)
REGISTER
FUNCTION
CONTROL NAMES
(1)
REMARKS
VALUES (HEX)
(1)
FULL
AUTO
MODE
(CVBS)
(2)
FULL
AUTO
MODE
(Y/C)
(3)
NTSC M
(CVBS)
(4)
PAL B,
D, G,
H AND I
(CVBS)
(5)
SECAM
(CVBS)
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 204
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
18
raw data gain control
RAWG7 to RAWG0
default raw data gain
40
40
40
40
40
19
raw data offset control
RAWO7 to RAWO0
default raw data offset
80
80
80
80
80
1A
QUAM/SECAM color
killer levels
QTHR3 to QTHR0,
STHR3 to STHR0
default color killer thresholds
77
77
77
77
77
1B
TV/VCR-detection
sensitivity, xport output
format (MSB), automatic
color limiter, fast
sequence correction
control
ATVT1 to ATVT0, X,
OFTS3, x, ACOL, FSQC
default TV/VCR-switch
sensitivity, xport output
format 8 bit, automatic color
limiter active, noise
insensitive PAL/SECAM
sequence correction
42
42
42
42
42
1C
enhanced combfilter
control 1
HODG1 to HODG0,
VEDG1 to VEDG0,
MEDG1 to MEDG0,
CMBT1 to CMBT0,
VEDT1 to VEDT0
default combfilter
parameters
A9
A9
A9
A9
A9
1D
enhanced combfilter
control 2
X, X, X, X, X, X, VEDT1 to
VEDT0
default combfilter
parameters
01
01
01
01
01
1E
status byte 1 video
decoder
NFLD, HLCK, SLTCA,
GLIMT, GLIMB, WIPA,
DCSTD1 and DCSTD0
read only
1F
status byte 2 video
decoder
INTL, HLVLN, FIDT,
STTB, TYPE3, COLSTR,
COPRO and RDCAP
read only
SUB
ADDR.
(HEX)
REGISTER
FUNCTION
CONTROL NAMES
(1)
REMARKS
VALUES (HEX)
(1)
FULL
AUTO
MODE
(CVBS)
(2)
FULL
AUTO
MODE
(Y/C)
(3)
NTSC M
(CVBS)
(4)
PAL B,
D, G,
H AND I
(CVBS)
(5)
SECAM
(CVBS)
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 205
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
Note
1. All "X" values must be set to logic 0.
41 to
57
Line Control registers
(located in the data slicer
section)
LCR02[7:0] to LCR24[7:0] request processed video
data type for all lines at xport
00
00
00
00
00
83
Xport IO Control registers
(located in the scaler
global section)
XPCK1 to XPCK0, XRQT,
XPE1 to XPE0
enable xport output with
correct timing
31
31
31
31
31
88
Power save control
registers (located in the
scaler global section)
XPCK1 to XPCK0, XRQT,
XPE1 to XPE0
enable only the required
ADC's and the video
decoder, switch scaler and
audio clock generation into
sleep mode.
4A
CA
4A
4A
4A
SUB
ADDR.
(HEX)
REGISTER
FUNCTION
CONTROL NAMES
(1)
REMARKS
VALUES (HEX)
(1)
FULL
AUTO
MODE
(CVBS)
(2)
FULL
AUTO
MODE
(Y/C)
(3)
NTSC M
(CVBS)
(4)
PAL B,
D, G,
H AND I
(CVBS)
(5)
SECAM
(CVBS)
Preliminary
NDA required
Confidential - NDA required
page 206
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
17.2
Audio clock generation part
The given values force the following behaviour of the SAA7115 audio clock generation part:
Used crystal is 24.576 MHz
Expected field frequency is 59.94 Hz (e.g. NTSC M standard)
Generated audio master clock frequency at pin AMCLK is 256
44.1 kHz = 11.2896 MHz
AMCLK is frame-locked to the incoming video signal
AMCLK is directly generated by the audio clock PLL, no CGC2 is used
AMCLK is externally connected to AMXCLK [short-cut between pins 37 and 41]
ASCLK (bit clock) = 32
44.1 kHz = 1.4112 MHz
ALRCLK (word select) is 44.1 kHz.
Table 185 Audio clock part set-up values
Note
1. All "X" values must be set to logic 0.
2. See also chapter 8.7: "Audio clock generation (subaddresses 30H to 3FH)" for more examples.
SUB
ADDRESS
(HEX)
REGISTER FUNCTION
BIT NAME
(1)
START VALUES
7 6 5 4 3 2 1 0 HEX
30
audio master clock cycles per
field; bits 7 to 0
ACPF7 to ACPF0
1 0 1 1 1 1 0 0
BC
31
audio master clock cycles per
field; bits 15 to 8
ACPF15 to ACPF8
1 1 0 1 1 1 1 1
DF
32
audio master clock cycles per
field; bits 17 and 16
X, X, X, X, X, X, ACPF17 and ACPF16 0 0 0 0 0 0 1 0
02
33
reserved
X, X, X, X, X, X, X, X
0 0 0 0 0 0 0 0
00
34
audio master clock nominal
increment; bits 7 to 0
ACNI7 to ACNI0
1 1 0 0 1 1 0 1
CD
35
audio master clock nominal
increment; bits 15 to 8
ACNI15 to ACNI8
1 1 0 0 1 1 0 0
CC
36
audio master clock nominal
increment; bits 21 to 16
X, X, ACNI21 to ACNI16
0 0 1 1 1 0 1 0
3A
37
reserved
X, X, X, X, X, X, X, X
0 0 0 0 0 0 0 0
00
38
clock ratio AMXCLK to ASCLK
X, X, SDIV5 to SDIV0
0 0 0 0 0 0 1 1
03
39
clock ratio ASCLK to ALRCLK
X, X, LRDIV5 to LRDIV0
0 0 0 1 0 0 0 0
10
3A
audio clock generator basic
set-up
UCGC, CGCDIV, X, X, APLL, AMVR,
LRPH, SCPH
0 0 0 0 0 0 0 0
00
3B to 3F
reserved
X, X, X, X, X, X, X, X
0 0 0 0 0 0 0 0
00
Preliminary
NDA required
Confidential - NDA required
page 207
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
17.3
Data slicer and data type control part
The given values force the following behaviour of the SAA7115 VBI-data slicer part:
Closed captioning data are expected at line 21 of field 1 (60 Hz/525 line system)
All other lines are processed as active video
Sliced data are framed by ITU 656 like SAV/EAV sequence, no re-coding of data bytes.
Sliced data packages for all defined vbi standards, see Table 107: "Sliced data output modes (SA 5D)"
example for ITU656 correct line counting, field ID of VBI slicer is swapped (see 8.2 and 8.4)
Table 186 Data slicer start set-up values
Notes
1. All X values must be set to logic 0.
2. Changes for 50 Hz/625 line systems: subaddress 5AH = 03H and subaddress 5BH = 03H.
SUB
ADDRESS
(HEX)
REGISTER FUNCTION
BIT NAME
(1)
START VALUES
7 6 5 4 3 2 1 0 HEX
40
slicer control 1
CHKWSS, HAM_N, FCE, HUNT_N, X,
X, X, X
0 1 0 0 0 0 0 0
40
41 to 53
line control register 2 to 20
LCRn_7 to LCRn_0 (n = 2 to 20)
0 0 0 0 0 0 0 0
00
54
line control register 21
LCR21_7 to LCR21_0
0 1 0 0 0 0 0 0
4F
55 to 57
line control register 22 to 24
LCRn_7 to LCRn_0 (n = 22 to 24)
0 0 0 0 0 0 0 0
00
58
programmable framing code
FC7 to FC0
0 0 0 0 0 0 0 0
00
59
horizontal offset for slicer
HOFF7 to HOFF0
0 1 0 0 0 1 1 1
47
5A
vertical offset for slicer
VOFF7 to VOFF0
0 0 0 0 0 1 1 0 06
(2)
5B
field offset and MSBs for
horizontal and vertical offset
FOFF, X, VEP, VOFF8, X,
HOFF10 to HOFF8
1 0 0 0 0 0 1 1 83
(2)
5C
reserved
X, X, X, X, X, X, X, X
0 0 0 0 0 0 0 0
00
5D
sliced data output mode
X, X, X, SLDOM4 to SLDOM0
0 0 0 0 1 1 0 0
0C
5E
sliced data identification code
X, X, SDID5 to SDID0
0 0 0 0 0 0 0 0
00
5F
reserved
X, X, X, X, X, X, X, X
0 0 0 0 0 0 0 0
00
60
slicer status byte 0
-
, FC8V, FC7V, VPSV, PPV, CCV,
-
,
-
read-only register
61
slicer status byte 1
-
,
-
, F21_N, LN8 to LN4
read-only register
62
slicer status byte 2
LN3 to LN0, DT3 to DT0
read-only register
Preliminary
NDA required
Confidential - NDA required
page 208
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
17.4
Scaler and interfaces
Table 187 shows some examples for the scaler programming with:
prsc = prescale ratio
fisc = fine scale ratio
vsc = vertical scale ratio.
The ratio is defined as:
In the following settings the VBI-data slicer is inactive. To activate the VBI-data slicer, SLDOM 5DH[4:0] has to be set to
> `00H'.
To compensate the running-in of the vertical scaler, the vertical input window lengths are extended by 2 to 290 lines,
respectively 242 lines for XS, but the scaler increment calculations are done with 288, respectively 240 lines.
Trigger condition
For trigger condition STRC[1:0]90H[1:0] not equal `00'.
If the value of (YO + YS) is greater equal 262 (NTSC), respectively 312 (PAL) the output field rate is reduced to 30 Hz,
respectively 25 Hz.
Horizontal and vertical offsets (XO and YO) have to be used to adjust the displayed video in the display window. As
this adjustment is application dependent, the listed values are only dummy values.
Maximum zoom factor
The maximum zoom factor is dependent on the back-end data rate and therefore back-end clock and data format
dependent (8 or 16-bit output). The maximum horizontal zoom is limited to about 3.5, due to internal data path
restrictions.
number of input pixel
number of output pixel
-----------------------------------------------------------
Preliminary
NDA required
Confidential - NDA required
page 209
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
17.4.1
E
XAMPLES
Table 187 Example configurations
EXAMPLE
NUMBER
SCALER SOURCE AND REFERENCE EVENTS
INPUT
WINDOW
OUTPUT
WINDOW
SCALE
RATIOS
1
analog input to 8-bit I-port output, with SAV/EAV codes and
`8010' blanking, 8-bit serial byte stream decoder output at
X-port; acquisition trigger at rising edge vertical and rising
edge horizontal reference signal; `1' active H and V-gates on
IGPH and IGPV, IGP0 = field ID, IGP1 = sliced VBI data flag,
IMPAK = `1' = the pulse generator need to be programmed
(addr. 0xF5 to 0xFB)
IDQ qualifier logic 1 active
720
240 720
240 prsc = 1;
fisc = 1;
vsc = 1
2
window definitions and scale ratio according SQP NTSC-M
analog input to 8-bit I-port output, with SAV/EAV codes and
`8010' blanking, 8-bit serial byte stream decoder output at
X-port; acquisition trigger at rising edge vertical and rising
edge horizontal reference signal; `1' active H and V-gates on
IGPH and IGPV, IGP0 = field ID, IGP1 = sliced VBI data flag,
IMPAK = `1' = the pulse generator need to be programmed
(addr. 0xF5 to 0xFB)
PLL2 clock used (ICKS[1:0] = 2),
refer to section 17.5 , Example 2
IDQ qualifier logic 1 active
704
240 640
240 prsc = 1;
fisc = 1.1;
vsc = 1
3
window definitions and scale ratio according SQP PAL-BG
analog input to 16-bit output, without SAV/EAV codes, Y on
I-port, C
B
-C
R
on H-port and decoder output at X-port;
acquisition trigger at rising edge vertical and rising edge
horizontal reference signal; `1' active H-gate and V-sync on
IGPH and IGPV, IGP0= field ID, IGP1 = filled flag,
IMPAK = `1' = the pulse generator need to be programmed
(addr. 0xF5 to 0xFB)
PLL2 clock used (ICKS[1:0] = 2)
refer to sect.17.5 , Example 3
IDQ = CREF like qualifier at (PLL2 clock )/2 data rate
704
288 768
288 prsc = 1;
fisc = 0.91667;
vsc = 1
4
X-port input 8 bit with SAV/EAV codes, no reference signals on
XRH and XRV, XCLK as gated clock; field detection and
acquisition trigger on different events; acquisition triggers at
falling edge vertical and rising edge horizontal; I-port output
8 bit with SAV/EAV codes like example number 1
720
240 352
288 prsc = 2;
fisc = 1.022;
vsc = 0.8333
5
X-port and H-port for 16-bit Y-CB-CR 4 : 2 : 2 input (if no 16-bit
output selected); XRH and XRV as references; field detection
and acquisition trigger at falling edge vertical and rising edge
horizontal; I-port output 8 bit with SAV/EAV codes, but Y only
output
720
288 200
80
prsc = 2;
fisc = 1.8;
vsc = 3.6
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 210
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
Table 188 Scaler and interface configuration example
I
2
C-BUS
ADDRESS
(HEX)
MAIN FUNCTIONALITY
EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4 EXAMPLE 5
HEX
DEC
HEX
DEC
HEX
DEC
HEX
DEC
HEX
DEC
Global settings
80
task enable, IDQ and back-end clock
definition
90
-
92
-
9A
-
10
-
10
-
81
V-blanking and FID source selection
00
-
00
-
00
-
00
-
00
-
83
XCLK output phase and X-port output enable
31
-
31
-
31
-
10
-
10
-
84
IGPH, IGPV, IGP0 and IGP1 output definition
80
-
80
-
04
-
A0
-
A0
-
85
signal polarity control and I-port byte
swapping
00
-
00
-
00
-
10
-
10
-
86
FIFO flag thresholds, video enable and data
packing, if IMPAK = `1', the pulse generator
needs to be programmed (addr. 0xF5 to
0xFB)
C5
-
C5
-
EA
-
45
-
45
-
87
ICLK and IDQ output phase and I-port enable
31
-
31
-
31
-
31
-
31
-
88
power save control and software reset
F0
-
F0
-
F0
-
F0
-
F0
-
Task A: scaler input configuration and output format settings
90
task handling
00
-
00
-
00
-
00
-
00
-
91
scaler input source and format definition
08
-
08
-
08
-
18
-
38
-
92
reference signal definition at scaler input
00
-
00
-
00
-
19
-
11
-
93
I-port output formats and configuration
C0
-
C0
-
00
-
C0
-
84
-
Input and output window definition
94
horizontal input offset (XO)
04
4
10
16
10
16
04
4
04
4
95
00
-
00
-
00
-
00
-
00
-
96
horizontal input (source) window length (XS)
D0
720
C0
704
C0
704
D0
720
D0
720
97
02
-
02
-
02
-
02
-
02
-
98
vertical input offset (YO)
07
263
07
263
39
313
0A
10
0A
10
99
01
-
01
-
01
-
00
-
00
-
9A
vertical input (source) window length (YS)
06
262
06
262
38
312
F2
242
22
290
9B
01
-
01
-
01
-
00
-
01
-
FMOD bit D7
1
1
1
1
1
1
0
0
0
0
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamb
urg
Datasheet
SAA7115
V
ersion:
0.67
Confidential - ND
A required
page 211
Filename:
SAA7115_Datasheet.fm
Last edited b
y
H. Lambers
Preliminary
NDA required
9C
horizontal output (destination) window length
(XD)
D0
720
80
640
00
768
60
352
C8
200
9D
02
-
02
-
03
-
01
-
00
-
9E
vertical output (destination) window length
(YD)
07
263
07
263
39
313
20
288
50
80
9F
01
-
01
-
01
-
01
-
00
-
Prefiltering and prescaling
A0
integer prescale (value `00' not allowed)
01
-
01
-
01
-
02
-
02
-
A1
accumulation length for prescaler
00
-
00
-
00
-
02
-
03
-
A2
FIR prefilter and prescaler DC normalization
00
-
00
-
00
-
AA
-
F2
-
A4
scaler brightness control
80
128
80
128
80
128
80
128
80
128
A5
scaler contrast control
40
64
40
64
40
64
40
64
11
17
A6
scaler saturation control
40
64
40
64
40
64
40
64
11
17
Horizontal phase scaling
A8
horizontal scaling increment for luminance
00
1024
66
1126
AA
938
18
1048
34
1844
A9
04
-
04
-
03
-
04
-
07
-
AA
horizontal phase offset luminance
00
-
00
-
00
-
00
-
00
-
AC
horizontal scaling increment for chrominance
00
512
33
563
D5
469
0C
524
9A
922
AD
02
-
02
-
01
-
02
-
03
-
AE
horizontal phase offset chrominance
00
-
00
-
00
-
00
-
00
-
Vertical scaling
B0
vertical scaling increment for luminance
00
1024
00
1024
00
1024
55
853
66
3686
B1
04
-
04
-
04
-
03
-
0E
-
B2
vertical scaling increment for chrominance
00
1024
00
1024
00
1024
55
853
66
3686
B3
04
-
04
-
04
-
03
-
0E
-
B4
vertical scaling mode control
00
-
00
-
00
-
00
-
01
-
B8 to BF
vertical phase offsets luminance and
chrominance (need to be used for interlace
correct scaled output)
start with B8 to BF at 00H, if there are no problems with the interlaced
scaled output optimize according to Section 8.3.3.2
start with B8 to BF at 00H, if there are no problems with the interlaced
scaled output optimize according to Section 8.3.3.2
I
2
C-BUS
ADDRESS
(HEX)
MAIN FUNCTIONALITY
EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4 EXAMPLE 5
HEX
DEC
HEX
DEC
HEX
DEC
HEX
DEC
HEX
DEC
Preliminary
NDA required
Confidential - NDA required
page 212
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
17.5
PLL2 and pulse generator control part
The given values force the following behaviour of the SAA7115 PLL2 clock and pulse generation part, where the pulse
generation values are for 8 bit I-port output with ITU like code sequences:
Example 1:
PLL2 - synthesis of line locked square pixel clock of 24.545454 MHz from 24.576 MHz crystal
pulse generator - pulse generation for 1560 clock cycles per line and video (640 pixel=1288 bytes) from page A
and raw data (1448 bytes) from page B, no deep buffering, delay only used for EAV alignment,
VBI stream as timing master
a corresponding scaler programming (only for page A) can be found in sect. 17.4 , Example 2
Example 2:
PLL2 - synthesis of line locked square pixel clock of 29.5 MHz from 32.11 MHz crystal
pulse generator - pulse generation for 1888 clock cycles per line and video A (768 pixel=1544 bytes) + sliced VBI,
EAV aligned, medium pixel buffering, PGHCPS somewhere in the allowed range
a corresponding scaler programming can be found in sect. 17.4 , Example 3
PLL2 in normal operation (SPMOD[1:0] = `01') for all examples
for 32.11 Mhz crystal (external strapping resistor required)
Preliminary
NDA required
Confidential - NDA required
page 213
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
Table 189 PLL2 and pulse generator start set-up values
Notes
1. All X values must be set to logic 0.
2. max. values for pulse positions are 4 x PGLEN[8:0], e.g. PGLEN = 429, PGHxPS max = 1716.
3. the position counter starts with count `1', for the value of `0' no trigger pulses are generated
SUB
ADDRESS
(HEX)
REGISTER FUNCTION
BIT NAME
(1)
EXAMPLE 1 EXAMPLE 2
HEX
DEC
HEX
DEC
F0
LFCO's per line (LSB's)
SPLPL7 to SPLPL0
86
390
D8
472
F1
PI-parameter selection, PLL
mode, PLL-Hsync-selection,
LFCO's per line (MSB)
SPPI3 to SPPI0, SPMOD1,
SPMOD0, SPHSEL,
SPLPL8
05
05
F2
Nominal PLL2 DTO increment
(LSB's)
SPNINC7 to SPNINC0
EB
16363
CC
15052
F3
Nominal PLL2 DTO increment
(MSB's)
SPNINC15 to SPNINC8
3F
3A
F4
PLL2 lock status
-
,
-
,
-, -, -, -, -,
SPLOCK
F5
Pulse generator line length
(LSB's)
PGLEN7 to PGLEN0
86
390
D8
472
F6
Pulse A position (LSB's),
Pulsegen resync and Hsync
selection, Pulse generator line
length (MSB)
PGHAPS3 to PGHAPS0, X,
PGRES, PGHSEL,
PGLEN8
01
C1
F7
Pulse A position (MSB's)
PGHAPS11 to PGHAPS4
13
304
2B
700
F8
Pulse B position (LSB's)
PGHBPS3 to
PGHBPS0,X,X,X,X
00
144
00
0
F9
Pulse B position (MSB's)
PGHBPS11 to PGHBPS4
09
00
FA
Pulse C position (LSB's)
PGHCPS3 to
PGHCPS0,X,X,X,X
00
1536
C0
300
FB
Pulse C position (MSB's)
PGHCPS11 to PGHCPS4
60
12
FC to FE
reserved
X, X, X, X, X, X, X, X
00
0
00
0
FF
PLL locking thresholds
SPTHRL3 to SPTHR0,
SPTHRM3 to SPTHRM0
88
136
88
136
Preliminary
NDA required
Confidential - NDA required
page 214
Filename:
SAA7115_Datasheet.fm
Last edited by H. Lambers
Philips Semiconductors
CVIP2
Date:
10/23/01
CS-PD Hamburg
Datasheet
SAA7115
Version:
0.67
18 PACKAGE OUTLINE
UNIT
A
max.
A
1
A
2
A
3
b
p
c
E
(1)
e
H
E
L
L
p
Z
y
w
v
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
EIAJ
mm
1.6
0.15
0.05
1.45
1.35
0.25
0.27
0.17
0.20
0.09
14.1
13.9
0.5
16.25
15.75
1.15
0.85
7
0
o
o
0.08
0.08
0.2
1.0
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.75
0.45
SOT407-1
136E20
MS-026
00-01-19
00-02-01
D
(1)
(1)
(1)
14.1
13.9
H
D
16.25
15.75
E
Z
1.15
0.85
D
b
p
e
E
A
1
A
L
p
detail X
L
(A )
3
B
25
c
D
H
b
p
E
H
A
2
v
M
B
D
ZD
A
Z E
e
v
M
A
X
1
100
76
75
51
50
26
y
pin 1 index
w
M
w
M
0
5
10 mm
scale
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm
SOT407-1