ChipFind - документация

Электронный компонент: SAA7205H

Скачать:  PDF   ZIP

Document Outline

DATA SHEET
Preliminary specification
File under Integrated Circuits, IC02
1997 Jan 21
INTEGRATED CIRCUITS
SAA7205H
MPEG-2 systems demultiplexer
1997 Jan 21
2
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
CONTENTS
1
FEATURES
2
GENERAL DESCRIPTION
3
QUICK REFERENCE DATA
4
ORDERING INFORMATION
5
BLOCK DIAGRAM
6
PINNING
7
FUNCTIONAL DESCRIPTION
7.1
Functional overview
7.1.1
MPEG-2 syntax parser
7.1.2
Error handling
7.1.3
Teletext filter
7.1.4
Generic data filter
7.1.5
High speed data filter
7.1.6
Video data filter
7.1.7
Audio data filter
7.1.8
Program clock reference processor
7.1.9
Time stamp processors
7.1.10
FIFO buffers
7.1.11
Microcontroller interface
7.1.11.1
Short filters
7.1.11.2
Long filters
7.1.11.3
Subtitling filter
7.2
MPEG-2 systems parsing
7.3
Error handling
7.4
Interfacing to the external descrambler
7.5
High speed data interfacing
7.6
Interfacing to Philips SAA7201 video decoder
7.7
Interfacing to a third party video decoder
7.8
Interfacing to SAA2500 and third party audio
decoders
7.9
Interfacing to combined audio/video decoders
7.10
Interfacing to SAA9042 and SAA5270 teletext
decoders and SAA7183 EURO-DENC
7.11
Program clock reference processing
7.12
Time stamp processing (PTS/DTS)
7.13
Output buffering for audio and video
7.14
Microcontroller interfacing
7.14.1
Short filter module
7.14.2
Long filter module
7.14.3
Subtitling filter
8
PROGRAMMING THE DEMULTIPLEXER
9
LIMITING VALUES
10
HANDLING
11
DC CHARACTERISTICS
12
AC CHARACTERISTICS
13
APPENDIX
14
PACKAGE OUTLINE
15
SOLDERING
15.1
Introduction
15.2
Reflow soldering
15.3
Wave soldering
15.4
Repairing soldered joints
16
DEFINITIONS
17
LIFE SUPPORT APPLICATIONS
1997 Jan 21
3
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
1
FEATURES
Input data fully compliant with the Transport Stream
(TS) definition of the MPEG-2 systems specification
(International Standard; November 1994)
Input data signals: Forward Error Correction (FEC) or
descrambler interface
modem data input bus (8-bit wide)
PKTDAT7 to PKTDAT0
valid input data indicator (PKTDATV)
erroneous packet indicator (PKTBAD/PKTBAD)
first packet byte indicator (PKTSYNC)
byte strobe signal [for the asynchronous mode only
(PKTBCLK)]
The interface can be configured to either of two modes:
asynchronous mode; PKTBCLK < 9 MHz, for
connection to a modem (e.g. FEC)
synchronous mode; PKTBCLK is not used for
connection to an external descrambler operating at
9 MHz. The descrambler chip clock (9 MHz; 33%
duty cycle) is generated and output to the
demultiplexer.
The descrambler chip clock [DCLK (9 MHz, 33% duty
cycle)] is generated and output by the demultiplexer
External memory; standard 32K
8-bit static RAM.
Required typical access time
50 ns, write pulse width
(t
WP
)
35 ns.
Effective bit rate: f
bit
72 MHz
Control Interface; 8-bit multiplexed data/address
(MDAT7 to MDAT0), memory mapped I/O (P90CE201
microcontroller parallel bus compatible), in combination
with two microcontroller interrupt signals (IRQ and NMI).
In addition, a number of address input pins
(MA9 to MA2) allow direct access to a selected set of
demultiplexer registers.
Output ports:
Video; two alternative applications;
third party video decoder compatible (master or slave
horizontal or vertical sync generation)
Philips SAA7201 compatible (via general purpose
output)
Audio; third party audio decoder, or Philips SAA2500
compatible
Audio/video; third party combined A/V decoder
compatible, (programmable)
Teletext; a Teletext Clock/Teletext Data (TTC/TTD)
based serial interface to selected teletext decoders
(e.g. SAA9042). Alternatively, this interface can be
programmed to provide data for Vertical Blanking
Interval (VBI) insertion of teletext data. The interface
therefore includes a teletext data request input (TTR).
In this mode, the interface is compatible with the
SAA7183 (EURO-DENC) TXT interface.
HS Data; high-speed data output, outputting entire
transport packets, packet payloads, PES packet
payloads, or sections (programmable) at byte clock
frequency (9 MHz). In the test mode it is capable of
outputting copies of either video, audio or other data
streams (programmable).
HS pins are combined with the general purpose
interface. The general purpose interface is bidirectional,
and can therefore, be used as an alternative transport
stream input.
Descrambler; 8-bit wide data input interface, combined
with the modem input bus. A descrambler device may
output a descrambled transport stream at 9 MByte/s.
A 9 MHz descrambler clock is generated and output by
the demultiplexer.
Microcontroller support; only for control, no specific
demultiplexing tasks are performed by the
microcontroller. However, parsing and processing of
Program Specific Information (PSI), and Service
Information (SI) is left to the microcontroller.
Error handling; stream dependent error handling
algorithms, invoked either if the PKTBAD/PKTBAD input
signal is set, or if the transport_error_indicator bit
(MPEG-2 syntax) is set or if the parser detects an
MPEG-2 syntax error. Different handling algorithms are
applied for the various output ports.
1997 Jan 21
4
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
2
GENERAL DESCRIPTION
This document specifies the MPEG-2 systems demultiplexer IC, SAA7205H, for use in MPEG-2 based digital TV
receivers, possibly incorporating conditional access. Such receivers are to be implemented in, for instance, a Digital
Video Broadcasting (DVB) set-top box, or Integrated Receiver Decoder (IRD). An example of a
demultiplexer/descrambler system configuration, containing a channel decoder module, source decoders, a system
microcontroller and a conditional access system is shown in Fig.1. The main function of the demultiplexer is to separate
relevant data from an incoming MPEG-2 systems compliant data stream and pass it to both the individual source
decoders and to the system microcontroller. To support descrambling, the demultiplexer interfaces with the descrambler
part of a conditional access system (optional). The demultiplexer therefore generates a 9 MHz descrambler chip clock.
3
QUICK REFERENCE DATA
4
ORDERING INFORMATION
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
V
DDD
digital supply voltage
4.5
5.0
5.5
V
V
DDD(core)
digital supply voltage for core
3.0
3.3
3.6
V
P
tot
total power consumption
-
-
380
mW
f
CLK
clock frequency
f
byte
9 MHz
-
-
27
MHz
T
amb
operating ambient temperature
0
-
70
C
TYPE
NUMBER
PACKAGE
NAME
DESCRIPTION
VERSION
SAA7205H
QFP128
plastic quad flat package; 128 leads (lead length 1.6 mm);
body 28
28
3.4 mm; high stand-off height
SOT320-2
Fig.1 Demultiplexer system configuration.
handbook, full pagewidth
MGG374
CONDITIONAL
ACCESS
SYSTEM
DEMODULATOR PLUS
FORWARD ERROR
CORRECTOR
(AND DESCRAMBLER)
MICROCONTROLLER
SAA7205H
9 MHz DCLK
32K x 8
SRAM
AUDIO
SOURCE
DECODER
VIDEO
SOURCE
DECODER
TELETEXT
DECODER
1997 Jan 21
5
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
5
BLOCK DIAGRAM
handbook, full pagewidth
MGG373
TRANSPOR
T
STREAM
AND
AF P
ARSER
118
109 to 112
114 to 117
107
108
106
ERR
OR
HANDLING
119
24 to 31
37
38
39
21
20
22
17
18
19
TXT
FIL
TER
H/S D
A
T
A
FIL
TER
GENERIC
D
ATA
FIL
TER
VIDEO
D
ATA
FIL
TER
A
UDIO
D
ATA
FIL
TER
PRESENT
A
TION/
DECODING
TIME ST
AMP
PR
OCESSOR
PRESENT
A
TION/
DECODING
TIME ST
AMP
PR
OCESSOR
PR
OGRAM CLOCK
REFERENCE
PR
OCESSOR
B
UFFER
CONTR
OL
B
UFFER
CONTR
OL
TEST CONTR
OL BLOCK
FOR
BOUND
AR
Y SCAN
TEST
AND
SCAN TEST
35
121
122
123
124
125
103
SHOR
T FIL
TER
MODULE
LONG FIL
TER
MODULE
SUBTITLING/
PRIV
A
TE FIL
TER
MICR
OCONTR
OLLER INTERF
A
C
E
RAM INTERF
A
C
E
32, 36, 48, 67,
105, 113, 126
9, 34, 41,
58, 96, 120
23, 76
16, 85
40
47
42
43
45
46
128
127
104
44
33
10
11
15
14
13
12
1
to
8
77
to
84
100
99
98
97
88
to
95
87
86
101
102
54
74
49
to
53
55
to
57
69
73
68
70
75
71,
72
65,
66
59
to
64
V
SSD(core)
V
DDD(core)
V
DDD1 to
V
DDD6
V
SSD1 to
V
SSD7
TTR
GPO7 to GPO0
DCLK
PKTBCLK
PKTD
A
T7 to PKTD
A
T
4
PKTD
A
T3 to PKTD
A
T
0
PKTD
A
T
V
PKTBAD/PKTBAD
PKTSYNC
TTD
TTC
HSE
HSV
HSSYNC
GPV
GPST
GPSYNC
CCLKI
TC0/TDI
TDO
TMS
TC1/TCLK
TRST
POR
V
O7
to
VO
0
MD
A
T0
to
MD
A
T
7
CSDEM
CSVID
R/W
MA10
MA2
to
MA9
MA1
MA0
IRQ
NMI
OERAM
WERAM
RAMIO3
to
RAMIO7
RAMIO2
to
RAMIO0
RAMA14
RAMA13
RAMA12
RAMA11
RAMA10
RAMA9,
RAMA8
RAMA6,
RAMA7
RAMA0
to
RAMA5
EVEN/ODD
VIN
VSYNC
HSYNC
CbREF
CLK13.5
VREQ
CLKP
VSEL
COMSYNC
PWMO
A
UDECLK
AU
E
AU
D
A
T
R
AU
D
A
T
V
A
U
D
A
TCLK
AU
D
A
T
SAA7205H
Fig.2 Block diagram.
1997 Jan 21
6
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
6
PINNING
SYMBOL
PIN
I/O
DESCRIPTION
VO7
1
I/O
data output bit 7 to video decoder (shared with microcontroller data)
VO6
2
I/O
data output bit 6 to video decoder (shared with microcontroller data)
VO5
3
I/O
data output bit 5 to video decoder (shared with microcontroller data)
VO4
4
I/O
data output bit 4 to video decoder (shared with microcontroller data)
VO3
5
I/O
data output bit 3 to video decoder (shared with microcontroller data)
VO2
6
I/O
data output bit 2 to video decoder (shared with microcontroller data)
VO1
7
I/O
data output bit 1 to video decoder (shared with microcontroller data)
VO0
8
I/O
data output bit 0 to video decoder (shared with microcontroller data)
V
DDD1
9
supply
digital supply voltage 1 (+5 V)
AUDECLK
10
O
audio decoder clock output [equals CCLKI/M (programmable)]
AUE
11
O
audio data error indicator output (active LOW)
AUDAT
12
O
data output to audio decoder (elementary stream)
AUDATCLK
13
O
audio data clock output (frequency range 32 to 448 kHz; 9 Mbit/s)
AUDATV
14
O
audio data valid indicator output
AUDATR
15
I
audio data request input (active LOW)
V
SSD1(core)
16
GND
digital ground 1 for core
GPV
17
I/O
valid data byte indicator input/output
GPST
18
I/O
byte strobe signal input/output (equals 9 MHz gated byte clock)
GPSYNC
19
I/O
packet sync byte indicator input/output
HSE
20
I/O
indicates erroneous HS data input/output
HSV
21
O
valid high speed data indicator
HSSYNC
22
O
indicates the first output byte of either a packet or payload
V
DDD1(core)
23
supply
digital supply voltage 1 for core (+3.3 V)
GPO7
24
I/O
high speed byte output bit 7 for transport packets/general purpose byte output
(e.g. for SAA7201)/alternative transport stream input
GPO6
25
I/O
high speed byte output bit 6 for transport packets/general purpose byte output
(e.g. for SAA7201)/alternative transport stream input
GPO5
26
I/O
high speed byte output bit 5 for transport packets/general purpose byte output
(e.g. for SAA7201)/alternative transport stream input
GPO4
27
I/O
high speed byte output bit 4 for transport packets/general purpose byte output
(e.g. for SAA7201)/alternative transport stream input
GPO3
28
I/O
high speed byte output bit 3 for transport packets/general purpose byte output
(e.g. for SAA7201)/alternative transport stream input
GPO2
29
I/O
high speed byte output bit 2 for transport packets/general purpose byte output
(e.g. for SAA7201)/alternative transport stream input
GPO1
30
I/O
high speed byte output bit 1 for transport packets/general purpose byte output
(e.g. for SAA7201)/alternative transport stream input
GPO0
31
I/O
high speed byte output bit 0 for transport packets/general purpose byte output
(e.g. for SAA7201)/alternative transport stream input
V
SSD1
32
GND
digital ground 1
PWMO
33
O
pulse width modulated VCO control signal output (local STC)
1997 Jan 21
7
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
V
DDD2
34
supply
digital supply voltage 2 (+5 V)
CCLKI
35
I
27 MHz demultiplexer chip clock Input
V
SSD2
36
GND
digital ground 2
TTR
37
I
teletext data request input (for VBI insertion of TXT)
TTD
38
O
serial teletext data output (6.75 or 6.9375 Mbit/s)
TTC
39
O
TXT clock (6.75 MHz = CCLKI/4)
EVEN/ODD
40
O
field parity output, internally generated, locked to COMSYNC
V
DDD3
41
supply
digital supply voltage 3 (+5 V)
VSYNC
42
O
vertical sync output, locked to CCLKI and optionally VIN
HSYNC
43
O
horizontal sync output, internally generated
COMSYNC
44
O
(CCIR601) composite sync (50 and 60 Hz)
CbREF
45
O
indicating U samples in UY and VY video decoder output
CLK13.5
46
O
equals CCLKI/2
VIN
47
I
receiver local vertical sync input, locked to CCLKI (optional)
V
SSD3
48
GND
digital ground 3
RAMIO3
49
I/O
external SRAM input/output bus bit 3
RAMIO4
50
I/O
external SRAM input/output bus bit 4
RAMIO5
51
I/O
external SRAM input/output bus bit 5
RAMIO6
52
I/O
external SRAM input/output bus bit 6
RAMIO7
53
I/O
external SRAM input/output bus bit 7
OERAM
54
O
output enable for external 32K
8 SRAM (active LOW)
RAMIO2
55
I/O
external SRAM input/output bus bit 2
RAMIO1
56
I/O
external SRAM input/output bus bit 1
RAMIO0
57
I/O
external SRAM input/output bus bit 0
V
DDD4
58
supply
digital supply voltage 4 (+5 V)
RAMA0
59
O
external SRAM address bus output bit 0
RAMA1
60
O
external SRAM address bus output bit 1
RAMA2
61
O
external SRAM address bus output bit 2
RAMA3
62
O
external SRAM address bus output bit 3
RAMA4
63
O
external SRAM address bus output bit 4
RAMA5
64
O
external SRAM address bus output bit 5
RAMA6
65
O
external SRAM address bus output bit 6
RAMA7
66
O
external SRAM address bus output bit 7
V
SSD4
67
GND
digital ground 4
RAMA12
68
O
external SRAM address bus output bit 12
RAMA14
69
O
external SRAM address bus output bit 14
RAMA11
70
O
external SRAM address bus output bit 11
RAMA9
71
O
external SRAM address bus output bit 9
RAMA8
72
O
external SRAM address bus output bit 8
RAMA13
73
O
external SRAM address bus output bit 13
WERAM
74
O
write enable output for external SRAM (active LOW)
SYMBOL
PIN
I/O
DESCRIPTION
1997 Jan 21
8
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
RAMA10
75
O
external SRAM address bus output bit 10
V
DDD2(core)
76
supply
digital supply voltage 2 for core (+3.3 V)
MDAT0
77
I/O
microcontroller bidirectional data bus bit 0
MDAT1
78
I/O
microcontroller bidirectional data bus bit 1
MDAT2
79
I/O
microcontroller bidirectional data bus bit 2
MDAT3
80
I/O
microcontroller bidirectional data bus bit 3
MDAT4
81
I/O
microcontroller bidirectional data bus bit 4
MDAT5
82
I/O
microcontroller bidirectional data bus bit 5
MDAT6
83
I/O
microcontroller bidirectional data bus bit 6
MDAT7
84
I/O
microcontroller bidirectional data bus bit 7
V
SSD2(core)
85
GND
digital ground 2 for core
MA0
86
I
microcontroller MSByte/LSByte indicator input bit 0
MA1
87
I
microcontroller address/data indicator input bit 1
MA2
88
I
microcontroller address input bit 2 for direct access to selected registers
MA3
89
I
microcontroller address input bit 3 for direct access to selected registers
MA4
90
I
microcontroller address input bit 4 for direct access to selected registers
MA5
91
I
microcontroller address input bit 5 for direct access to selected registers
MA6
92
I
microcontroller address input bit 6 for direct access to selected registers
MA7
93
I
microcontroller address input bit 7 for direct access to selected registers
MA8
94
I
microcontroller address input bit 8 for direct access to selected registers
MA9
95
I
microcontroller address input bit 9 for direct access to selected registers
V
DDD5
96
supply
digital supply voltage 5 (+5 V)
MA10
97
I
microcontroller direct addressing/indirect addressing indicator input bit 10
R/W
98
I
read/write input selection
CSVID
99
I
(audio)/video decoder chip select input (active LOW)
CSDEM
100
I
demultiplexer chip select input (active LOW)
IRQ
101
O
interrupt request output for microcontroller (active LOW, open-drain)
NMI
102
O
non-maskable interrupt output for VOUT bus access handling (open-drain)
POR
103
I
power-on reset input
VSEL
104
I
video input select signal (bus control by microcontroller)
V
SSD5
105
GND
digital ground 5
PKTSYNC
106
I
indicates the first input byte (sync) of a transport packet
PKTDATV
107
I
valid input data indicator
PKTBAD/
PKTBAD
108
I
packet error indicator input (programmable polarity)
PKTDAT7
109
I
8-bit wide modem data input bit 7
PKTDAT6
110
I
8-bit wide modem data input bit 6
PKTDAT5
111
I
8-bit wide modem data input bit 5
PKTDAT4
112
I
8-bit wide modem data input bit 4
V
SSD6
113
GND
digital ground 6
PKTDAT3
114
I
8-bit wide modem data input bit 3
SYMBOL
PIN
I/O
DESCRIPTION
1997 Jan 21
9
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
PKTDAT2
115
I
8-bit wide modem data input bit 2
PKTDAT1
116
I
8-bit wide modem data input bit 1
PKTDAT0
117
I
8-bit wide modem data input bit 0
PKTBCLK
118
I
byte strobe input signal (< 9 MHz)
DCLK
119
O
9 MHz descrambler chip clock output (33% duty cycle)
V
DDD6
120
supply
digital supply voltage 6 (+5 V)
TC0/TDI
121
I
scan test data input/boundary scan test data input
TDO
122
O
boundary scan test data output
TMS
123
I
boundary scan test input mode select
TC1/TCLK
124
I
scan test clock input/ boundary scan test clock input
TRST
125
I
boundary scan test reset input (LOW in normal operation)
V
SSD7
126
GND
digital ground 7
CLKP
127
O
gated clock output signal indicating valid data (9 MHz = CCLKI/3; active LOW)
VREQ
128
I
video data request input (active LOW)
SYMBOL
PIN
I/O
DESCRIPTION
1997 Jan 21
10
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.3 Pin configuration.
handbook, full pagewidth
MGG372
SAA7205H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
33
34
35
36
37
38
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
128
127
126
125
124
123
90
89
88
87
86
85
84
83
82
81
96
95
94
93
92
91
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
VO7
VO6
VO5
VO4
VO3
VO2
VO1
VO0
VDDD1
AUDECLK
AUDAT
AUDATCLK
AUDATV
AUDATR
VSSD1(core)
GPV
GPST
GPSYNC
HSE
HSV
HSSYNC
VDDD1(core)
GPO7
GPO6
GPO5
GPO4
GPO3
GPO2
GPO1
GPO0
VSSD1
VDDD5
MA9
MA8
MA7
MA6
MA5
MA4
MA3
MA2
MA1
MA0
VSSD2(core)
MDAT7
MDAT6
MDAT5
MDAT4
MDAT3
MDAT2
MDAT1
MDAT0
VDDD2(core)
RAMA10
WERAM
RAMA13
RAMA8
RAMA9
RAMA11
RAMA14
RAMA12
VSSD4
RAMA7
RAMA6
PWMO
V
DDD2
CCLKI
V
SSD2
TTR
TTD
TTC
EVEN/ODD
V
DDD3
VSYNC
HSYNC
COMSYNC
CbREF
CLK13.5
VIN
V
SSD3
RAMIO3
RAMIO4
RAMIO5
RAMIO6
RAMIO7
OERAM
RAMIO2
RAMIO1
RAMIO0
V
DDD4
RAMA0
RAMA1
RAMA2
RAMA3
RAMA4
RAMA5
VREQ
CLKP
V
SSD7
TRST
TC1/TCLK
TMS
TDO
TC0/TDI
V
DDD6
DCLK
PKTBCLK
PKTD
A
T
0
PKTD
A
T
1
PKTD
A
T
2
PKTD
A
T
3
V
SSD6
PKTD
A
T
4
PKTD
A
T
5
PKTD
A
T
6
PKTD
A
T
7
PKTBAD/PKTBAD
PKTD
A
T
V
PKTSYNC
V
SSD5
VSEL
POR
NMI
IRQ
CSDEM
CSVID
R/W
MA10
AUE
1997 Jan 21
11
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
7
FUNCTIONAL DESCRIPTION
7.1
Functional overview
A schematic diagram of the internal structure of the
MPEG-2 demultiplexer is shown in Fig.2. The diagram
illustrates the main functional entities in the demultiplexer.
7.1.1
MPEG-2
SYNTAX PARSER
The MPEG-2 syntax parser, parsing transport streams
which comply with the MPEG-2 systems specification
(International Standard, November 1994).
7.1.2
E
RROR HANDLING
Error handling is invoked whenever an error is detected.
Error handling is started on the basis of either the
PKTBAD/PKTBAD input signal (driven by the FEC
decoder), or the transport_error_indicator in the transport
packet header, or discovery of a syntax error by the parser.
7.1.3
T
ELETEXT FILTER
A teletext (TXT) filter, generating a teletext clock
(TTC = 6.75 MHz, derived from the chip clock,
CCLKI = 27 MHz) and providing a serial TXT data stream
(TTD) locked to both TTC and the horizontal video sync
(HSYNC) generated by the demultiplexer. In accordance
with the DVB specification, TXT data is transported in
MPEG-2 PES packets. The incoming transport stream is
filtered on the basis of a Programmable Packet
Identification (PID) and elementary stream data is stored
in a 2 kbyte FIFO buffer. Data is read from the TXT buffer
at 6.75 Mbit/s.
The TXT filter can, alternatively, be programmed to a
mode in which it provides TXT bits at 6.9375 MHz, on the
basis of an external request (TTR). This mode is applied
for vertical blanking interval insertion of TXT data. It is
compatible with the TXT input of the EURO-DENC
(SAA7183).
7.1.4
G
ENERIC DATA FILTER
A generic data filter is connected to the generic interface.
This filter in fact does not filter, but passes the entire
transport stream in byte format. A byte strobe signal
(GPST), indicating consecutive valid bytes, a valid signal
(GPV) and a header sync byte indicator (GPSYNC) are
generated.
Alternatively the general purpose interface can be
configured to function as transport stream input
(GP_Direction = 1; address 0x0700; see Table 13).
7.1.5
H
IGH SPEED DATA FILTER
A high speed data filter (HS), retrieves the entire transport
packets, packet payloads, PES payloads or sections from
the input stream on the basis of a programmable filter.
Data is output at the byte clock frequency
(DCLK = 9 MHz = CCLKI/3, 33% duty cycle). Selected
parts of a data stream are indicated by the HSV signal.
The first byte of a data entity is indicated by HSSYNC. The
HS filter shares its data output pins with the generic data
filter.
It should be noted that in the event that the HS filter is
programmed to the section mode, the GP bus only outputs
selected sections and not an entire transport stream.
7.1.6
V
IDEO DATA FILTER
A video data filter, with a decoder specific interface. This
filter selects either Packetized Elementary Stream (PES)
data, or Elementary Stream (ES) data (programmable) on
the basis of a programmable PID, and passes it to the
video FIFO. Presentation Time Stamps and Decoding
Time Stamps (PTS and DTS) are obtained from the PES
stream and can be read by the microcontroller (optional).
Video PES or ES data is output at 9 MHz, via a
bidirectional 8-bit wide bus which is time-shared with the
microcontroller. Access to the output bus is controlled by
the microcontroller using the VSEL signal.
The demultiplexer therefore, halts output video data
whenever VSEL = 0 and creates a bidirectional
communication link between the microcontroller and the
video decoder.
7.1.7
A
UDIO DATA FILTER
An audio data filter with a decoder specific interface. This
filter selects PES or ES data (programmable) on the basis
of a programmable PID and passes it to the audio FIFO.
Time-stamps are retrieved from audio PES headers and
can be read by the microcontroller (optional).
The audio filter can be switched to a mode in which the
microcontroller controls audio and video synchronization
(software sync). In this mode the filter outputs audio data
at 9 Mbit/s. The filter is also capable of handling
synchronization independently from the microcontroller.
In this situation the audio elementary stream output is
(hardware) synchronized to the System Time Clock (STC)
automatically. In the hardware synchronization mode, the
audio elementary stream data is output via a bit serial data
link at a bit rate between 32 to 448 kbit/s. The actual bit
rate depends on the type of audio frame that is handled
(as specified in the MPEG-2 audio specification).
1997 Jan 21
12
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
It should be noted that audio and video data can be
optionally combined on the output bus to interface to
combined audio/video decoders. In this mode the video
bus is controlled by the VSEL signal, an audio request
signal (AUDATR) and a video request signal (VREQ;
optional). Video and audio bytes are output at 9 MBytes
and are interleaved with a programmable audio/video
ratio.
7.1.8
P
ROGRAM CLOCK REFERENCE PROCESSOR
The PCR processor is capable of regenerating a local
system time clock. This block contains a digital clock
recovery loop. Two local clock counters generate an
absolute timing value (cycle time approximately 24 hours),
which is used to verify the phase relationship between the
local system time clock and the transmitter reference clock
(Program Clock Reference, or PCR). Two STC counters
are implemented to allow for correct handling of PCR
discontinuations.
7.1.9
T
IME STAMP PROCESSORS
These two PTS/DTS processors are capable of
synchronizing attached source decoders. The PTS/DTS
processors retrieve time stamps from the incoming
transport stream. They also compare emulated time
stamps (PTS/DTS) with the local absolute time value
generated by the PCR processor. In the event of equality
a microcontroller interrupt is generated.
The microcontroller can respond to this pulse by
instructing the attached source decoders to start decoding,
or to start presentation. For audio, the PTS values are
stored in the audio FIFO to be used for synchronization of
the FIFO output stream (called lip-sync).
7.1.10
FIFO
BUFFERS
There are two FIFO buffers for audio and video (6 kBytes
and 768 Bytes respectively), including buffer control, to
interface between different clock systems. These FIFOs
are filled at byte clock (CCLKI/3) frequency and emptied
on the acquisition clocks of the respective source
decoders [9 MByte/s for video and combined audio/video,
and a frequency in the range 32 to 448 kbit/s (hardware
sync), or 9 Mbit/s (software sync) for audio].
7.1.11
M
ICROCONTROLLER INTERFACE
The microcontroller interface provides protocol handling
for the memory mapped I/O control bus (Philips
P90CE201 compatible). This module also contains an
interrupt request handler and data filters for retrieval of
Program Specific Information (PSI), service information
(SI), Electronic Program Guides (EPG) (private sections),
subtitling (private sections) and low speed (LS) data
(private).
7.1.11.1
Short filters
The short filters select data on the basis of PIDs and a
combination of MPEG-2 section addressing fields.
Selected data is stored in twelve 1 kByte (constrained
random access) buffers. These buffers are located in the
external SRAM memory and can be read by the
microcontroller. The short filters are capable of monitoring
12 section streams simultaneously.
7.1.11.2
Long filters
The long filters also select data on the basis of PIDs and a
combination of MPEG-2 section addressing fields.
Selected data is stored in four 4 kByte (constrained
random access) buffers. These buffers are located in the
external SRAM memory and can be read by the
microcontroller. The long filters are capable of monitoring
4 section streams simultaneously.
7.1.11.3
Subtitling filter
The subtitling filter is capable of retrieving transport packet
payloads or PES payloads from the input stream, on the
basis of a programmable filter. It is also capable of
retrieving adaptation field and PES header private data.
Data is stored in a 4 kByte FIFO which is located in the
external SRAM memory and can be read by the
microcontroller.
Table 1
Filter types
FILTER TYPE
NUMBER OF FILTERS
BUFFER SIZE
REMARKS
Short (sections)
12
12
1 kByte
-
Long (sections)
4
4
4 kByte
-
Subtitling
1
1
4 kByte
PES and PES payload (ES), adaption field
private data, PES header private data
1997 Jan 21
13
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
7.2
MPEG-2 systems parsing
The demultiplexer receives data from a Forward Error
Correction (FEC) decoder (see Fig.4) or a descrambler
(see Fig.5) in a digital TV receiver in the following input
data format:
A number of data bits via PKTDAT7 to PKTDAT0
(8-bit wide input bus)
A valid input data indicator signal (PKTDATV) which is
HIGH for consecutive valid bytes and output by either a
FEC decoder or a descrambler. The demultiplexer input
is allowed to have a `bursty' nature.
A transport packet error indicator (PKTBAD/PKTBAD)
which is HIGH for the duration of each 188 byte
transport packet in which the FEC decoder found more
errors than it could correct. The polarity (active HIGH or
LOW) of the error indicator is programmable
(bit Bad_polarity, address 0x0100; see Table 13).
A packet sync signal (PKTSYNC) which goes HIGH at
the start of the first byte of a transport packet. Only the
rising edge of PKTSYNC is used for synchronization,
the exact HIGH time of the signal is therefore irrelevant.
A byte strobe signal [PKTBCLK (< 9 MHz)] which
indicates consecutive data bytes in the input stream, in
the non-9 MHz mode only (bit 9 MHz_interface = 0,
address 0x0100;see Table 13). PKTBCLK is used as an
enable signal and transport stream input bytes are
sampled on its rising edges of the clock pulse. If the
input interface is programmed to the 9 MHz mode
(9 MHz interface = 1), the PKTBCLK signal is ignored.
A descrambler clock signal [DCLK (9 MHz, 30% duty
cycle)] which is the data output clock for the
descrambler. If rising edges of this clock signal are used
to input data to the demultiplexer the 9 MHz mode must
be used (bit 9 MHz_interface = 1, address 0x0100;
see Table 13).
The parser module in the demultiplexer parses MPEG-2
systems compliant transport streams. MPEG-2 systems
specifies a hierarchical two level multiplex (see Fig.6).
The top hierarchical level is the transport stream,
consisting of relatively short (188 byte) transport packets.
Each transport packet consists of a 4 byte transport
header, an optional adaptation field and a payload.
The transport header contains a 13-bit packet
identification field. The adaptation field may contain
Program Clock Reference (PCR) data and transport
private data, among others. Both the transport header and
the optional adaptation fields are parsed by the parser
module within the demultiplexer. The individual states of
the MPEG-2 parser in the demultiplexer are listed in
Table 14.
The hierarchical multiplex level below the MPEG-2
transport stream and the packetized elementary stream, is
partly parsed by the demultiplexer, for instance in the
audio and video filters. A packetized elementary stream
consists of an elementary stream (e.g. MPEG-2 audio, or
video data) which is divided into subsequent variable
section lengths. To each section a PES header is added,
thus creating PES packets. A PES header may contain
time stamp information (PTS or DTS), scrambling control,
copy information and PES private data.
In the demultiplexer, parsing is performed for all incoming
transport packets. The parser is synchronized to a rising
edge on the PKTSYNC input. A microcontroller can
compose a set of PIDs by programming the appropriate
registers in the various filters within the demultiplexer. If a
packet is part of an audio or video transport stream, some
of the information fields in the transport and PES packet
headers are automatically retrieved. The microcontroller
can read the obtained information. Table 2 lists data that
can be accessed by the microcontroller, for both video
(address 0x0509; see Table 13) and audio streams
(address 0x0609; see Table 13).
MPEG-2 multiplex fields which are related to program
specific information (PSI), service information (SI), private
data and conditional access data (called sections) are
parsed partly in the section data filters. Program
association tables, program map tables and conditional
access tables can be retrieved from the stream and stored
in buffers in an external 32K
8 SRAM. The same can be
performed (optional) for transport_private_data,
PES_private_data, and private sections in the subtitling
and section data filters. A microcontroller may access data
in the section data and subtitling buffers for further
processing in software.
1997 Jan 21
14
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Table 2
Microcontroller accessible MPEG-2 systems information
POSITION
NUMBER OF BITS
FIELD NAME
FUNCTION
Transport packet
header
2
transport_scrambling_control
(bits: ts_scr_ctrl1 and 0)
indicates whether the associated bit
stream is scrambled or not
PES header
2
PES_scrambling_control
(bits: pes_scr_ctrl1 and 0)
indicates whether the associated
PES payload is scrambled or not
1
copyright (bit: cp_info1)
anticopy management
1
original_or_copy (bit: cp_info0)
anticopy management
1
additional_copy_info_flag
(bit: ad_cp_flag)
anticopy management
7
additional_copy_info
(bits: ad_cp_info7 to 0)
anticopy management
Fig.4 Signal constellation FEC decoder - demultiplexer interfacing.
handbook, full pagewidth
DEMULTIPLEXER
FORWARD
ERROR
CORRECTOR
PKTBCLK
PKTDAT7
to
PKTDAT0
PKTSYNC
PKTDATV
PKTBAD/PKTBAD
PKTBAD/PKTBAD
8
PKTDAT7 to PKTDAT0
PKTBCLK
PKTDATV
PKTBAD/PKTBAD
PKTSYNC
message
invalid data
message
invalid data
error-free transport packet (programmable polarity)
erroneous transport packet
MGG375
CCLKI
1997 Jan 21
15
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.5 Signal constellation descrambler - demultiplexer interfacing.
handbook, full pagewidth
DEMULTIPLEXER
DESCRAMBLER
DCLK
PKTDAT7
to
PKTDAT0
PKTSYNC
PKTDATV
8 PKTDAT7 to PKTDAT0
PKTDATV
PKTSYNC
message
invalid data
message
invalid data
MGG376
CCLKI
DCLK
Fig.6 MPEG-2 two level hierarchical demultiplexing.
handbook, full pagewidth
transport
stream
packetized
elementary
stream
elementary
stream
= transport_header
= pes_header
= stuffing
MGG318
1997 Jan 21
16
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
7.3
Error handling
The error handling module responds to four situations in
which errors are present in the incoming stream:
An erroneous packet is signalled to the demultiplexer,
by means of the PKTBAD/PKTBAD input signal.
The FEC decoder drives this signal LOW (or HIGH)
should it discovers that the number of errors in a packet
exceeds its correction capability. The polarity of the
PKTBAD/PKTBAD input signal is programmable
(bit Bad_pol, address 0x0100; see Table 13).
The transport_error_indicator bit in the transport packet
header is set (equals logic 1), indicating that an error
occurred prior to, or during transmission
A continuity counter discontinuity is detected
The parser detects a syntax error in a packet, or is out
of sync.
In the first two cases, the transport_error_indicator bit in
the transport packet header is set. In all cases error
handling depends on the data stream the packet belongs
to, as indicated in Table 3. Most of the functions in this
table are executed in the data filters, not in the error
handling module. Error handling is therefore implemented
as a distributed function.
If the parser detects a syntax error or is out of sync, the
error handling module discards all incoming data, and an
interrupt is set (bit prs_sync_lost, address 0x0000,
see Table 13).
The error handling module keeps track of an average error
count. The module counts every occurrence of both
PKTBAD = 0 (or PKTBAD = 1) and
"transport_error_indicator = 1. The 16-bit error count value
can be read by the microcontroller, which can also reset
the counter every once in a while by writing all zeroes
(00..00) to the register (word cnt15 to cnt0], address
0x0200; see Table 13). The microcontroller can thus
determine an average packet error rate.
Table 3
Error handling algorithms
DATA STREAM
OPTION
ERROR HANDLING
Video
third party decoder
erroneous transport packets are discarded, no error flag is set, but a
sequence_error_code (0x000001B4) is inserted, whenever a
continuity_counter discontinuity is discovered
SAA7201
handling is altogether done in the SAA7201 source decoder
Audio
-
discard erroneous packets
TXT
-
discard erroneous packets
Subtitling
-
PES packet data are passed to the microcontroller. The error handling
decision is left to the microcontroller.
High speed
data
-
programmable error handling (see Section "High speed data interfacing")
Section data
-
CRC calculation is performed in the filters. If an error is detected, an error flag
(bit err_stat, address 0x0305 to 0x0314, see Table 13) is set. The error
handling decision is left to the microcontroller.
1997 Jan 21
17
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
7.4
Interfacing to the external descrambler
An optional external descrambler can be incorporated in a digital TV receiver in the configuration indicated in Fig.7.
In such a configuration the demultiplexer generates a 9 MHz, 33% duty cycle descrambler clock (DCLK) signal
(see Fig.5). A descrambler could use this clock signal for data processing and outputting data. In such a configuration
the demultiplexer input interface is set to 9 MHz mode (bit 9 MHz_interface = 1, address 0x0100, see Table 13).
Fig.7 Digital TV receiver configuration including a descrambler.
handbook, full pagewidth
MGG767
SYSTEM
MICROCONTROLLER
VIDEO
DECODER
AUDIO
DECODER
TELETEXT
AND
H/S DATA
APPLICATIONS
DEMODULATOR
AND
FORWARD ERROR
CORRECTOR
MPEG2
DEMULTIPLEXER
SAA7205H
OPTIONAL
DESCRAMBLER
DCLK (9 MHz)
1997 Jan 21
18
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
7.5
High speed data interfacing
The High Speed (HS) data filter module retrieves entire
transport packets, packet payloads, PES payloads, or
sections from the input stream, on the basis of a
programmable filter. The packets may contain data for
specific high speed data applications. In test mode
however, by reprogramming the filter
(word HS_pid12 to HS_pid0, address 0x0700;
see Table 13), data of other filters can be output. This
enables the user to monitor data streams directed to audio,
video, section data, and other filters. The HS data filter
features a programmable error handling mechanism. If the
`HS_err_rmv' (address 0x0701;see Table 13) bit is set,
erroneous output packets are removed from the stream.
If `HS_dupl_rmv' (address 0x0701, see Table 13) is set,
the same is true for duplicate packets. Both removal
options can also be disabled.
In the single PID mode, the HS filter can be programmed
to operate in one of four filter modes (bits HS_mode,
address 0x0700, see Table 13), as indicated in Table 4.
In multiple PID mode, only entire transport packets can be
output, for packets matching the PID specification.
Selected stream data is output (unbuffered) via the
GPO7 to GPO0 bus, at byte clock (DCLK) frequency
(rate = 9 MByte/s). Data is output in the format indicated in
Fig.8. The DCLK signal is a continuous byte clock.
The HSV signal is set for matching data only, otherwise it
is kept low. The HSSYNC signal indicates the position of
the first byte of the selected data, as indicated in Table 4.
Erroneous data is signalled by means of the HSE signal,
which is high for the duration of the erroneous packet.
In section mode HS data is selected on the basis of
table_id, and two section header bytes following the
section_length indicator (see Fig.26). For this purpose,
programmable filter masks are provided (address
0x0702 to 0x0704, see Table 13). If section mode is
selected, the general purpose output GPO7 to GPO0 does
not carry the full transport stream. Only selected sections
are output
Table 4
HS programmable filtering modes
OPERATING
MODE
PID MASK
(ADDRESS 0X0701;
see Table 13
FILTERING
OPTION
FUNCTION
HSSYNC
Single PID
mode
`11..11', indicating all PID
bits are relevant,
therefore only one
particular PID matches
total TS packet
outputs entire transport packets.
(HS_mode = 00,
address 0x0700, see Table 13)
first byte of transport
packet
TS packet
payload
outputs transport packet
payloads for a selected PID.
(HS_mode = 01)
first byte of transport
packet payload, only
if payload_unit_
start_indicator is set
Single PID
mode
(continued)
`11..11', indicating all PID
bits are relevant,
therefore only one
particular PID matches
PES packet
payload
output PES packet payloads for a
selected PID. (HS_mode = 10)
first byte of PES
packet payload
section
outputs entire sections, based on
PID, and table_id + 2 bytes
selection (addresses 0x0702 to
0x0704, see Table 13).
(HS_mode = 11 and
HS_sect_flt_en = 1)
first byte of section
header
Multiple PID
mode
`..0..1..', indicating one or
more PID bits are don't
care, so multiple PIDs
may match
total TS packet
output packet payloads only.
(HS_mode = 00)
first byte of transport
packet
1997 Jan 21
19
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.8 High speed data output format.
handbook, full pagewidth
MGG769
GPO7 to GPO0
HSV
1 byte
1 byte
PID matched data
non-matching PID
tCLKOH
tCLKOL
1 byte
1 byte
DCLK
DMUX
HSE
HSSYNC
8
7.6
Interfacing to Philips SAA7201 video decoder
The Generic Data Filter (GDF) is connected to the General
Purpose interface, which shares its output bus
GPO7 to GPO0 with the high speed data interface.
This output can be used to interface with the Philips
SAA7201 video decoder. The GDF does not filter at all, it
merely passes the entire transport stream to the output in
byte format. The filter generates a GPST signal, which is a
gated byte clock, defined by a fixed high time (t
CLKOH
) and
a minimum low time (t
CLKOL
) (see Fig.9). In addition to the
strobe signal, the filter generates a GPV signal which can
be used in combination with the continuous DCLK to select
valid bytes, should a continuous clock be needed.
The filter furthermore generates a packet sync byte
indicator (GPSYNC).
It should be noted that the HS filter is programmed to
section mode (see Table 4), the general purpose output is
not available.
The general purpose interface is bidirectional and can
therefore serve as an alternative transport stream input to
the demultiplexer. The mode of the general purpose
interface is set by configuring the `GP_direction' bit
(input = 1, output = 0, address 0x0700, see Table 13).
The GP pins have the following meaning when configured
to operate as inputs:
GPO7 to GPO0 = PKTDAT7 to PKTDAT0
GPST = PKTBCLK
GPSYNC = PKTSYNC
GPV = PKTDATV
HSE = PKTBAD.
1997 Jan 21
20
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.9 Signal constellation for general purpose interface (SAA7201 compatible).
handbook, full pagewidth
MGG770
GPO7 to GPO0
byte 187
sync byte (0)
consecutive transport packet bytes
byte 1
tCLKOH
tCLKOL
bytes 2 to 187
GPST
GPSYNC
GPV
7.7
Interfacing to a third party video decoder
Communication to a third party video decoder involves
merging both video packetized elementary stream (PES)
or elementary stream (ES) data and control data on the
same 8-bit bidirectional bus VO7 to VO0 (see Fig.10).
PES or ES (bit: `video_pes_esn', address 0x050A, see
Table 13) data is filtered by the video data filter and is
passed to a 768 Byte video FIFO buffer (see Section
"Output buffering for audio and video"), in which it is stored
at byte clock frequency (9 MHz). The video PES or ES
stream is read from the FIFO at video data acquisition
clock frequency CLKP (equals 9 MHz = CCLKI/3, 67%
duty cycle, see Fig.10). However, CLKP is a gated clock
signal, which is frozen to logic 1 in case of control
exchange between the microcontroller and the video
decoder (
VSEL = 0), or FIFO underflow (see Fig.10).
A bidirectional bus multiplexer (`Merger') is therefore
located at the output of the video FIFO. The timing
associated with the video output interface is illustrated in
Fig.11.
The third party video interface outputs clock and
synchronization references. The set of references consists
of a 13.5 MHz clock (CLK13.5, programmable phase, bit:
`clk_13p5_pol', address 0x050A, see Table 13), a CbREF
signal,
"CCIR 601" compliant H, V, composite syncs, and
a field parity (EVEN/ODD) signal (both 50 Hz and 60 Hz,
bit: `ccir_50_60n', address 0x050A, see Table 13).
The CbREF signal is locked to CCLKI and indicates
U samples in the UY/VY video decoder output.
To compensate for the delay in the decoding path, the
phase of CbREF (active LOW) is programmable as
illustrated in Fig.13 [bits: cb_ref_phase (1 to 0)], address
0x050A, see Table 13). The clock period immediately
following a COMSYNC falling edge in normal lines (equals
HSYNC falling edge) corresponds to counter position 0,
the clock period preceding the falling edge corresponds to
position 1727 (50 Hz), or 1715 (60 Hz),
1997 Jan 21
21
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
The set of references can be generated either in master
(internal), or in slave (external) mode. Both options are
compared in Fig.12. If bit `v_in_pol' (address 0x050A,
see Table 13) is programmed to logic 1, the sync
generator synchronizes to a rising edge on VIN, or it locks
to a falling edge. The sync circuitry automatically operates
in slave mode, if an appropriate edge occurs on VIN.
The position in the
CCIR 601 field at a VIN triggering edge
is determined by the programmable registers `horiz_offset'
and `verti_offset' (addresses 0x050F and 0x0510,
see Table 13). The phase relationships between the
COMSYNC and the HSYNC and VSYNV are
programmable (words: `h_sync_fall', `h_sync_rise',
`v_sync_fall', `v_sync_rise', addresses 0x050B to 0x050E,
see Table 13). For details on the sync signal constellation
see Fig.13. It should be noted that the sync generator is
not reset by `Pwr_On_Rst'.
In the slave mode, the demultiplexer offers a possibility to
lock the 27 MHz system clock to the incoming vertical sync
pulses (VIN). The demultiplexer stores the position of the
horizontal and vertical sync counters as soon as a
triggering edge occurs on VIN (`vin_hpos', `vin_vpos',
addresses 0x0408 and 0x0409, see Table 13).
The triggering edge furthermore resets the H and V
counters. The microcontroller can retrieve the position
data and calculate the difference between the detected
position and the required position (horiz_offset,
verti_offset). From this the microcontroller is able to derive
VCO control values (see Section "Program clock reference
processing"). The 27 MHz system clock can thus be
locked to external display sync sources.
Fig.10 Merger of video elementary stream and video control data within the demultiplexer.
handbook, full pagewidth
MGG772
DMUX
MUX
MUX
VIDEO
(THIRD
PARTY)
video FIFO
output
VO7 to VO0
video/control
control
MDAT7
to
MDAT0
FIFO
TS
CSDEM
VSEL
MICROCONTROLLER
CLKP
CSVID
address
tCLKOL
tCLKOH
VO7 to VO0
VSEL = 1
CLKP
VSEL
VSEL
1
1
DATA
VO
1997 Jan 21
22
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Table 5
VSEL = 0; see Fig.10
R/W
CSVID = 0
CSVID = 1
R/W = 0
DMUX drives VO7 to VO0
DMUX does not drive MDAT7 to MDAT0
R/W = 1
DMUX does not drive VO7 to VO0
DMUX drives MDAT7 to MDAT0
DMUX does not drive MDAT7 to MDAT0
Fig.11 Video output interface timing diagram (read and write cycle).
t
1
= 2
111 = 222 ns.
t
2
= demultiplexer throughput delay = 24 ns.
t
3
> 0 ns
t
4
> 5 ns.
t
5
< 17 ns.
handbook, full pagewidth
MGG773
VSEL
R/W
Address
CSVID
to video
from video
to video
from video
video data
video data
t1
t2
t5
t3
t4
t2
t1
MDAT7
to MDAT0
VO7 to VO0
90
s
360
s
1997 Jan 21
23
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.12 Reference timing alternatives.
handbook, halfpage
MGG774
PWMO
EVEN/ODD
VSYNC
COMSYNC
HSYNC
CbREF
Internal timing
reference
External timing
reference
CLK13.5
DMUX
CCLKI
PWMO
EVEN/ODD
VSYNC
COMSYNC
HSYNC
CbREF
CLK13.5
DMUX
VIN
CCLKI
1997 Jan 21
24
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
ndbook, full pagewidth
MGG775
COMSYNC
(half line count)
EVEN/ODD
VSYNC
(= field_sync!)
COMSYNC
HSYNC
(pixel count)
CCLKI
CLK 13.5
('clk_13p5_pol' = '0')
CbREF
cb_ref_phase
626 half lines
VSYNC fall
623 624 0 1 2 3 4
VSYNC rise
HSYNC fall
HSYNC rise
624 half lines
0 1 2 3 4 5 6 7 . . . .
. . . .1726 1727 0 1 2 3 4 5 6 7 . . . . .
"01"
"10"
"1
1"
"00"
2468
1
0
1
2
1
4
1
6
1
8
2
0
2
2
2
4
1
0
3579
1
1
1
3
1
5
1
7
1
9
2
1
2
3
2
5
Fig.13 Reference timing (CCIR
601; 50
Hz).
1997 Jan 21
25
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
7.8
Interfacing to SAA2500 and third party audio
decoders
The audio interface performs system support for Philips
SAA2500 or third party audio decoders. The pin
assignment for the interface and a description of the
respective functions is given in Table 6. Audio PES or
elementary stream data are filtered by the audio data filter
and passed to a 6 kByte FIFO buffer in which they are
stored at the byte clock frequency (9 MHz). Audio
elementary stream data is read from the FIFO at the
AUDATCLK frequency. The frequency of this clock is
adapted to the audio bit rate index (32 to 448 kbit/s), which
is derived from audio frame header information. However,
to compensate for decoder delays, the output process is
conditioned to synchronize to presentation time stamps
(PTS).
The AUDECLK output is derived from the 27 MHz
demultiplexer chip clock through division by a real
number M, which is generated by programming I0 and I1
(words: `audio_incr0', `audio_incr1', addresses 0x060B
and 0x060C, see Table 13). The AUDECLK can be used
as an audio decoder chip clock and is generated by the
circuitry illustrated in Fig.14. The decoder clock is
generated with a maximum edge jitter of 37/2 = 18.5 ns.
Therefore, if this clock is used for audio digital-to-analog
conversion, for high quality audio it may have to be
dejittered using an external PLL or an LC filter.
Since most audio decoders accept only elementary audio
data, the demultiplexer takes care of the following basic
tasks in the audio path:
Parsing of audio transport packets with the proper PID
Suppression of transport packet header data
Detection of PES packet boundaries to find PES packet
length and PTS time stamps
Suppression of PES headers and stuffing bytes (bit
`audio_pes', address 0x060A, see Table 13), optional
Detection of audio frame boundaries to find audio frame
length and audio bit rate, optional
Delay compensation and expansion of audio data to the
correct time and bit rate (bit `uc_sw_sync', address
0x060A, see Table 13), optional.
A block diagram of the audio interface circuitry is illustrated
in Fig.15.
One basic function of the audio data filter is to optionally
determine the audio frame length and find the frame
boundaries. The audio frame length depends on the basic
audio sampling frequency, the coded bit rate, the MPEG
layer used and in case of 44.1 kHz sampling frequency,
the padding bit. The frame length ranges between
32 and 1728 bytes. All frame length related data are
coded in the audio frame header directly after the sync
word. Since the 12-bit sync word is not unique and could
be emulated in the audio stream, a recursive detection
algorithm consisting of the following steps is implemented:
1. Detect first occurrence of sync word
2. Evaluate header and determine frame length
3. If frame length is non valid go to step 1
4. Check whether a sync word exists at frame length
distance in the stream
5. If no valid sync word is detected at this position go to
step 1
6. If sync word is valid go to step 2.
All relevant header parameters are stored in dedicated
registers. Their value is used for internal control but can
also be accessed by the external microcontroller (words:
`audio_frame_length', `audio_frame_info', addresses
0x0611 and 0x0612, see Table 13).
The delay of the audio data from input to output of the
FIFO is basically determined by PTS time stamps. In order
to avoid difficult PTS management these time stamps are
stored in the FIFO between consecutive audio frames
(see Fig.15). If a PTS exists for one specific audio frame
the 23 least significant bits of the 33-bit time stamp are
stored together with a PTS_valid flag in three byte
positions preceding the associated audio frame. If no PTS
is available, three bytes are also inserted preceding the
audio frame, but in this case the PTS_valid flag indicates
that the remaining 23 bits may not be interpreted as a valid
PTS (see Fig.15).
The input process to the audio FIFO operates in stand
alone, but can be restarted by the microcontroller
(bit `
c_frc_restart', address 0x060A, see Table 13).
During restart, the write address counter is reset to 0 and
kept at this position until the first audio frame with a valid
PTS is available from the stream. The storage of PTS plus
elementary audio data is then started. The storage
process continues as long as the detected audio frame
length remains the same. If a change in frame length
occurs, or if a sync word is missing, the write counter is
reset to 0 automatically and data storage is halted until a
valid audio frame with associated PTS is retrieved from the
stream. This kind of discontinuity handling is performed
unconditionally and is signalled to the external
microcontroller (interrupt: `irpt_audio_restart', address
0x0000, see Table 13).
1997 Jan 21
26
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
The FIFO output process can operate in stand alone, but
it can also be controlled by the microcontroller. During
start-up the read address counter is reset to 0. After the
FIFO input process is started the first PTS is retrieved from
the first three byte positions in the FIFO. To this PTS value
a programmable offset is applied [resulting in: PTS* = PTS
- `audio_pts_offset', addresses 0x060D to 0x060E (two's
complement), see Table 13] to compensate for the delay
of the audio decoder. The FIFO output process is
subsequently put on hold as long as the System Time
Clock (STC) counter has not reached the value of PTS*.
When the STC counter exceeds the PTS* position the
output process is started and audio data is retrieved from
the FIFO at a speed indicated by the bit rate parameter in
the frame header (32 to 448 kbit/s).Only valid audio data is
passed to the output. Each time a valid PTS occurs at the
FIFO output the difference between PTS* and STC is
calculated and stored, to enable reading by the
microcontroller (words: `audio_stc_min_epts', addresses
0x060F to 0x0611, see Table 13). Two modes of
operation can be selected by the microcontroller (bit
`
c_free_run', address 0x060A, see Table 13):
PTS controlled: (`
c_free_run' = 0) the output process is
put on hold if PTS* is greater than the STC counter
position. Otherwise the output process continues at the
given bit-rate. In this mode, the output process could be
halted for every valid PTS which is being output by the
FIFO.
Free running: (uc_free_run = 1) the output process is
synchronized once during start-up only and continues at
the derived bit rate without resynchronizing to new PTS
time stamps. The difference between PTS* and the STC
value is sampled and stored at the moment a PTS is
taken from the FIFO (words: `audio_stc_min_epts',
addresses 0x060F to 0x0611, see Table 13). This event
is signalled to the microcontroller (interrupt:
`irpt_audio_diff', address 0x0000, see Table 13).
A decision for a restart (bit `
c_frc_restart', address
0x060A, see Table 13) can consequently be taken in
software, whenever the difference `audio_stc_min_epts'
exceeds a certain audible threshold (20 ms for
instance).
After the input process is started a continuous check is
performed on the distance between the FIFO read and
write counters. If one pointer approaches the other one a
wrap around may take place (buffer underflow or
overflow), causing synchronization to be lost completely.
Should this occur an internal start-up (restart) is initiated
automatically and signalled to the microcontroller
(interrupt: `irpt_audio_restart', address 0x0000,
see Table 13).
If a third party audio decoder is capable of adjusting the
output delay by itself, the demultiplexer audio output
process does not have to be PTS controlled. In this case
the functionality of the demultiplexer audio interface can
optionally be reduced to (bit `
c_sw_sync' = 1, address
0x060A, see Table 13):
Parsing of audio transport packets with the proper PID
Suppression of transport packet header data
Detection of PES packet borders to find PES packet
length and PTS time stamps
Suppression of PES headers and stuffing bytes (bit
`audio_pes', address 0x060A, see Table 13), optional
Time expansion of the audio transport packet payload.
In this so called software sync mode (`
c_sw_sync' = 1)
the FIFO input runs freely. Either entire PES packets (bit
`audio_pes' = 1, address 0x060A, see Table 13), or the
payload of selected PES packets is stored in the FIFO at
subsequent addresses starting from 0 at start-up.
PTS information is stored in the FIFO but is also available
in registers to make it accessible for the microcontroller
(words: `audio_pts', addresses 0x0601 to 0x0602,
see Table 13).
In the software sync mode, the FIFO output process is
controlled by the microcontroller. The read address
counter is reset to 0 during start-up and stays at this
position until the write address exceeds the read address.
This is the case immediately after the input process starts.
The output process subsequently starts reading data at a
fixed data rate of 9 Mbit/s (AUDATCLK = 9 MHz, 67% duty
cycle (see Table 6 and Fig.10). The output process
continues outputting data as long as the read address
does not exceed the write address. If the read address
equals the write address the output stops (AUDATV is set
to logic 0) until new data is received at the input and the
write address counter increments again. Consequently, if
audio transport packets are equally distributed along the
transport stream, the FIFO remains almost empty.
The FIFO cannot overflow if the output rate equals at least
the average input rate. Given a capacity of 6 kByte for the
FIFO this means that at least 30 audio transport packets
can be stored before an overflow occurs.
Audio data can be downloaded by the microcontroller to
enable generation of `beeps'. For this purpose, the
demultiplexer has to be set to download mode (bit
`
c_downl' = 1, address 0x060A, see Table 13).
1997 Jan 21
27
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
The microcontroller must first force the audio interface to restart (
c_frc_restart = 1). Subsequently it may download
compressed audio data by writing consecutive bytes to the audio buffer (address 0x1xxx, see Table 13). A `beep' must
always consist of valid packetized elementary stream (PES) data. If the `beep' is to be output to the audio decoder in
PES format, `audio_pes' must be set to logic 1. If the audio interface is programmed to software sync mode, the PES
headers do not have to contain PTS data words. However, if the `beep' has to occur at a specific point in time, the
hardware sync mode (
c_sw_sync = 0 and
c_free_run = 1) is most suitable and at least the first PES header has to
contain a valid PTS.
Table 6
SAA2500 and third party audio output interface
PIN
I/O
MODE
FUNCTION
AUDAT
O
normal, SAA2500 and
gated clock
audio elementary stream data, clocked out 111 ns after an
AUDATCLK rising edge in 32 to 448 kHz mode, and 74 ns
after an AUDATCLK rising edge in 9 MHz mode
ADATCLK
O
both normal and SAA2500
continuous audio data acquisition clock, 32 to 448 kHz, or
9 MHz
gated clock
gated audio data acquisition mode, 32 to 448 kHz.
AUDATCLK = 0 in case of invalid data (gated_clock = 1,
address 0x060A, see Table 13)
AUDECLK
O
normal, SAA2500 and
gated clock
continuous audio decoder chip clock (N
27 MHz/M)
AUDATV
O
normal mode, gated clock
valid audio data indicator (microcontroller SAA2500 = 0)
SAA2500 mode
audio sync word indicator (microcontroller SAA2500 = 1)
AUE
O
normal mode, gated clock
audio data error flag (active LOW)
SAA2500 mode
sampling frequency indicator; logic 1 for 44.1 kHz, logic 0 for
the other frequencies
Fig.14 Audio descrambler clock circuit and programming examples.
handbook, full pagewidth
MGG776
+
12
27
f1
27
11.29
fo
12.288
1568
I0
1536
1914 (= 1568
+
4096
-
3750)
I1
2257 (= 1536
+
4096
-
3375)
2.392 (= 3750/1568)
M
2.197 (= 3375/1536)
0
I1
I0
1
12
Co
12
12 (b 0 to 11)
DFF
fo = 256fs
= 11.29 or 12.288 MHz
= AUDECLK
CCLKI
27 MHz
divide-by-M
1997 Jan 21
28
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
andbook, full pagewidth
MGG777
TRANSPOR
T
D
ATA
P
ARSING
SYNC W
ORD
SAMPLE FR
OM
BIT RA
TE
LA
YER
P
ADDING
A
UDIO
FRAME
D
ATA
P
ARSING
INSER
T
3 BYTES
PTS
PES
D
ATA
P
ARSING
STUFFING
PTS
PTS
PR
OCESSING
P
ARSER
A
UDIO D
A
T
A
FIL
TER
PCR
PR
OCESSOR
PCR
STC
DIVIDER
23 bits PTS
FIFO f
o
r
mat of audio data in ES mode (audio_pes = 0):
audio fr
ame data
audio fr
ame data
23 bits PTS
PTS_v
alid indicator bit:
'1' if PTS is v
alid, '0' otherwise
CALCULA
TE
FRAME
LENGTH
WRITE
ADDRESS
COUNTER
READ
ADDRESS
COUNTER
FIFO
CONTR
OL
GENERA
TE
OUTPUT
RA
TE
EXTRA
CT
PTS
AD
A
TCLK
A
UDECLK
FIFO
PTS
(1)
APPL
Y
OFFSET
MICR
O-
CONTR
OLLER
INTERF
A
C
E
VCO
CONTR
OL
AU
D
A
T
A
U
D
A
TV
AU
E
Fig.15 Audio data filtering and delay compensation.
1997 Jan 21
29
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
7.9
Interfacing to combined audio/video decoders
If the audio and video interfaces are programmed to the
A/V combined mode (av_combi = 1, address 0x060A,
see Table 13) they assume operation as illustrated in
Fig.16. The microcontroller controls the VO bus in much
the same way as described in Section "Interfacing to a
third party video decoder". If VSEL = 0, the demultiplexer
sets up a transparent path between the microcontroller
and the combined A/V decoder (see Section "Interfacing to
a third party video decoder"). However, If the data level in
the video FIFO reaches a programmable overflow
threshold (`v_ovfl', address 0x0512, see Table 13), a
non-maskable interrupt (NMI) is pulled LOW. This
indicates that the microcontroller must release the VO bus,
otherwise video data is lost. As soon as the data level in
the video FIFO reaches the programmable underflow
threshold (`v_undfl', address 0x0512, see Table 13), NMI
is driven HIGH again.
Audio and video data are output at the request of the
combined A/V decoder, as illustrated in Fig.16 (VREQ,
AUDATR). If an A/V decoder does not have such a
request, these demultiplexer inputs may be grounded.
In the A/V combined mode, both CLKP and AUDATV can
be used as data valid signals (see Fig.16). Timing figures
for these valid signals are as indicated for CLKP in Fig.10.
Audio and video data are output in a sequence of, for
instance, four video bytes followed by one audio byte.
The length of this sequence is programmable and is
repeated incessantly. However, if the audio FIFO is empty,
or AUDATR is HIGH, a video byte is output, even in audio
time slots (see Fig.16), if VREQ is LOW. Audio data
however, are never output in video time slots.
1997 Jan 21
30
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.16 Interfacing to combined audio/video decoders.
handbook, full pagewidth
MGG778
overflow
threshold
underflow
threshold
VIDEO FIFO
VSEL
NMI
NMI
video FIFO level
at overflow
threshold
video FIFO level
at underflow
threshold
VREQ
AUDATR
VO
video only
A and V
A and V
video
underflow
audio
underflow
micro-
controller
bus
video only
audio only
AUDATR
CLKP
VREQ
AUDATV
VO
V
V
V
V
V
V
V
V
V
A
V
V
V
V
A
V
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
1
2
3
4
5
V
V
V
1997 Jan 21
31
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
7.10
Interfacing to SAA9042 and SAA5270 teletext
decoders and SAA7183 EURO-DENC
The Demultiplexer contains a ITU-R System B compatible
Teletext (TXT) filter. This filter extracts relevant data from
the incoming data stream in accordance with the syntax
specified by the European Telecommunications Standards
Institute (ETSI). The TXT filter interprets the data, provides
temporary storage (2 kBytes) and outputs the data in a
TTC/TTD protocol (compatible with SAA9042 and
SAA5270), or in a TTR/TTX protocol (compatible with
SAA7183). The TTC/TTD output protocol is shown in
Fig.17 and the connection of SAA9042 to the
demultiplexer is shown in Fig.18. The SAA9042 and
SAA5270 teletext decoders are assumed to operate in
`Normal Synchronous Mode', applying 4 channel
acquisition. Some of the options associated with MPEG2
PES packets, such as PTS handling and CRC checking
are not implemented in the demultiplexer TXT filter.
The TXT filter does support interfacing with the
microcontroller, for use with future extensions such as
Close Caption (CC) and OSD. The TXT filter can therefore
be used to retrieve full PES packets. Various modes of
operation can be configured (address 0x0800,
see Table 13).
The PID of the TXT filter is programmable `txt_pid'
(address 0x0801, see Table 13). The delay between an
active horizontal sync edge and the start of TTD/TTX
output is controlled by sync_to_window_delay `sw_del
[6 to 0]' (address 0x0802, see Table 13). The active
horizontal sync edge is defined by `sync_parity' (address
0x0800, see Table 13), logic 0 meaning falling edge. All of
the control registers are write only. The TXT filter however
also has some readable registers which contain the
current values of PES scrambling control, PES flags
(address 0x0805, see Table 13), data_identifier,
data_unit_identifier (address 0x0806, see Table 13,) and
data_unit_flags (address 0x0807, see Table 13,).
The status register of the TXT filter (address 0x0808,
see Table 13) contains the current error code and the
number of 16-bit words in the TXT FIFO.
The TXT interface is capable of supporting TXT insertion
into the vertical blanking interval of a CVBS signal. For this
purpose, it provides an SAA7183 (EURO-DENC)
compatible TXT output. If EURO-DENC requests data via
TTR, the demultiplexer provides it at 6.9375 Mbit/s. This
frequency is generated by dividing 27 MHz by 3 or 4 in a
specific sequence. The rhythm required by the
EURO-DENC is exactly matched. The interpretation of the
field_parity bit, in the TXT data stream, is programmable
(`parity_sign', address 0x0800, see Table 13). Allocation
of TXT data to odd or even fields can therefore be
configured as desired. Field allocation can be switched on
or off with `check_field' (address 0x0800, see Table 13).
The TXT filter can be separately enabled by setting the
input and output modes to `idle' (see Table 7) in the
txt_mode register (address 0x0800, see Table 13) and
reset (`txt_reset', address 0x0804, see Table 13). When
the TXT filter is used in one of the microcontroller
interaction modes close_caption or
c_download, the
FIFO may generate a warning that the TXT_FIFO is almost
full. The threshold for this warning can be set to any value
between 0 and 1023, being the number of 16-bit words in
the TXT_FIFO (`fifo_tresh [9 to 0]', address 0x0803,
see Table 13). An interrupt is also generated at the
moment an overflow occurs. At this point the TXT_FIFO is
automatically reset to empty. If the microcontroller is
writing to the TXT_FIFO, overflow must be prevented and
the reset must be performed by the microcontroller.
Table 7
TXT filter modes and error codes
CODE
TXT INPUT MODE
TXT OUTPUT MODE
TXT_FIFO ERROR CODE
00
idle
idle
no error
01
teletext
TTC/TTD
threshold passed
10
close_caption
TTXrq/TTX
overflow
11
c_download
idle
not used
1997 Jan 21
32
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.17 Teletext output protocol for teletext decoders.
handbook, full pagewidth
MGG779
12
s
64
s
6.75 MHz continuous clock
43 bytes
HSYNC
TTC
TTD
TTC
TTD
reserved
2
1
5
8
16
output to TXT decoder
40
8 = 320 bits
field_parity
line_offset
(6.75 MHz)
'sync_parity' set to 0, 'sw_del [8 to 0]' set to 0
51.
framing_code
magazine
and packet
address
TXT data bytes
TXT FIFO data format:
1997 Jan 21
33
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.18 Demultiplexer - Teletext decoder interconnection.
handbook, full pagewidth
MGG780
TTC
TTD
TTR
TTC
LL3A
LL3D
TTD
HSYNC
HSA
HSA
VSD
VSA
display
sync
VSYNC
DMUX
SAA9042
CLK13.5
13.5 MHz
(Reg 17, bit 6
=
0
for normal
acquisition mode)
7.11
Program clock reference processing
To provide a reference for all timing related actions, two
System Time Counters (STC) are implemented in the
demultiplexer. Each system time counter is split up into
two counters as illustrated in Fig.20. This split has the
advantage that the STC output has the same format as the
incoming PCRs, thus enabling direct comparison.
The STC counters (both of them 9 + 24 bits) are compared
with PCRs alternately. In a selected stream (word:
`pcr_pid', address 0x0401, see Table 13), PCR values are
transmitted at least once every 100 ms in the adaptation
field of a transport header. Each STC counter is therefore
updated once every 200 ms. Whenever a new PCR value
is retrieved (`irpt_discnt_a', or `irpt_discnt_b', address
0x0000, see Table 13), both its value and the value of the
difference
PCR = PCR - STC can be read by the
microcontroller (words: `pcr_base_msw', `pcr_base_lsw',
`pcr_ext', `pcr_base_diff_msw', `pcr_base_diff_lsw',
`pcr_ext_diff', addresses 0x0402 to 0x0407,
see Table 13). The STC counters are preset in turn to the
PCR timing reference, as illustrated in Fig.19. If an STC
counter is preset, the other is used as a timing reference
for PTS/DTS comparison. It should be noted that preset
operations may cause discontinuities and may render
PTS/DTS time stamps obsolete.
Two STC counters are implemented to cope with decoding
problems resulting from discontinuities. Discontinuity
handling is left to the microcontroller. After a discontinuity,
if
PCR (equals PCR - STC) exceeds a certain (software)
threshold, the microcontroller can postpone the switching
from the continuous STC counter to the one that was
preset, as indicated by the vertical dotted line in Fig.19.
For this purpose the microcontroller drives the signal
`stop_toggle' to logic 1 (address 0x0400, see Table 13) as
soon as it detects
PCR > threshold. If `stop_toggle' is
reset, toggling between the STC counters continues,
starting with taking as a reference the STC that is most up
to date.
The measured phase offset (
PCR_ext,
PCR_base) is
filtered by the microcontroller to derive control data for an
externally implemented crystal oscillator. To avoid having
to implement DACs in the demultiplexer, a duty cycle
controlled Pulse Width Modulated (PWM) output is
implemented. The PWM circuit connected to this output
delivers a pulse width modulated signal, the ratio of HIGH
and LOW time which is adjustable by the microcontroller
(byte: `pwm_ctrl [7 to 0]', address 0x0511, see Table 13).
A `pwm_ctrl' value of 127 corresponds to a `Pwm_Out'
signal with a 50% duty cycle, higher values represent a
higher duty cycle. The pulse width modulated signal can
be filtered externally by an RC filter to create a control
signal for a crystal oscillator. The PLL loop bandwidth for
the clock regeneration circuit is determined in software.
An application diagram is shown in Fig.21.
The 27 MHz system clock can be locked to an external
display sync source (see Section "Interfacing to a third
party video decoder").
1997 Jan 21
34
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.19 Example of PTS/DTS reference switching.
handbook, full pagewidth
MGG781
PCR-a
PCR-a
PCR-a
PCR-a
PCR-b
PCR-b
PCR-b
PCR-b
> threshold
STC-A
incoming
PCR
STC-B
'stop_toggle'
reference
for PTS
reference
for PTS
reference
for PTS
reference
for PTS
reference
for PTS
1997 Jan 21
35
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.20 PCR and PTS/DTS processing implementation.
PTS REGISTERS
9 MHz
90 kHz
COU NTER
COUNTER
handbook, full pagewidth
MGG782
PCR EXTENSION
9 bits
STC COUNTER-B
emulated_PTS
incoming_PTS
load A or B
when new PCR
arrives
load A or B
when new PCR
arrives
9
24
24 LSBs
of 33
PCR REGISTERS
PCR BASE
-
-
COUNTER
0 to 299 (step 3)
PTS-BASE
PTS REGISTERS
back-end part runs
on byte clock (9 MHz)
DIVIDE-BY-3
CCLKI
(27 MHz)
transport
stream
microcontroller
interface
PCR received
STC_samples
interrupt upon
zero transition
PCR_ext
PCR_base
COUNTER
0 to 2
24
-
1
- -
1997 Jan 21
36
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.21 VCO control for local time reference regeneration.
handbook, full pagewidth
MGG783
MICROCONTROLLER
(LOOP FILTER)
DMUX
CCLKI (27 MHz)
OSCILLATOR
control voltage
PWMO
VO
R
C
7.12
Time stamp processing (PTS/DTS)
Time stamp processing generates decoding (DTS) or
presentation (PTS) start interrupts for source decoders
(bits: `irpt_audio_strt', irpt_video_strt', address 0x0000,
see Table 13). Each time the stamp processor therefore
compares emulated PTS/DTS values (word:
`video_emu_pts', addresses 0x0505 and 0x0506, or
`audio_emu_pts', addresses 0x0605 and 0x0606,
see Table 13) to the local system time clock (STC,
see Fig.20). An interrupt (IRQ) to the microcontroller is
generated in the event of a positive zero transition of the
differences (STC - `video_emu_pts' and STC -
`audio_emu_pts').
Interrupt-handling routines in the microcontroller translate
the demultiplexer interrupt to control and synchronization
data for the attached source decoder, as illustrated in
Fig.23 for the video time stamp processor. Figure 23
assumes that PTS/DTS are retrieved inside the video
decoder, but this is not necessary. The demultiplexer also
retrieves PTS/DTS words from the stream (words:
`video_pts', `video_dts', addresses 0x0501 to 0x0504,
see Table 13). In contrast to what is illustrated in Fig.23,
video PTS/DTS processing could therefore be identical to
audio PTS/DTS processing (see Fig.24).
While the third party video decoder could retrieve
PTS/DTS data from the incoming PES stream, the audio
decoder generally does not. PTS/DTS retrieval is therefore
performed in each of the time stamp processors
(audio and video) within the demultiplexer. It is for the
microcontroller to decide whether it uses the retrieved time
stamps. For audio time stamp processing the
microcontroller may want to use the values retrieved by the
demultiplexer (words: `audio_pts', audio_dts', addresses
0x0601 to 0x0604, see Table 13) when operating in the
software controlled synchronization mode. In this mode
(bit `
c_sw_sync' = 1, address 0x060A, see Table 13) the
microcontroller loads emulated PTS values into the
demultiplexer (words: `audio_emupts', addresses 0x0605
to 0x0606, see Table 13) to get it to generate start
interrupts (interrupt: `irpt_audio_strt', address 0x0000,
see Table 13), as illustrated in Fig.23. However, audio
synchronization can also be performed automatically by
the demultiplexer (bit `
c_sw_sync' = 0, address 0x060A,
see Table 13) (see Section "Interfacing to SAA2500 and
third party audio decoders").
The microcontroller has to perform time stamp emulation
on the basis of incoming PTS/DTS values (words:
`audio_pts', `audio_dts', addresses 0x0601 to 0x0604,
see Table 13). Emulation involves compensation for
source decoder internal delays and repetitive generation
of time stamps. The latter could be necessary because
time stamps could be needed for every access unit in an
elementary stream, but are broadcast far less frequently.
It should be noted that video PTS/DTS processing can
operate along the same lines as illustrated in Fig.23 for
audio decoders.
1997 Jan 21
37
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.22 Example of PTS/DTS processing for a third party video decoder.
handbook, full pagewidth
MGG784
STC
DMUX
VIDEO
PES
IRQ
IR HANDLING
STC
>
PTS
*
PTS
*
/DTS
*
PTS/DTS
control/sync
EMULATION
MICROCONTROLLER
Fig.23 Example of PTS/DTS processing for a third party audio decoder.
handbook, full pagewidth
MGG785
STC
DMUX
AUDIO
ES
IRQ
IR HANDLING
STC
>
PTS
*
PTS
*
/DTS
*
PTS/DTS
PTS/DTS
control/sync
EMULATION
MICROCONTROLLER
1997 Jan 21
38
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
7.13
Output buffering for audio and video
Output buffering for both audio and video is based on
FIFOs and buffer control circuitry. For audio, a 6 kByte
buffer is needed in which data is written at byte clock
frequency (9 MHz). Data is output bit serially via pin
AUDAT, at AUDATCLK frequency, which is adjusted to the
bit rate of the audio data (32 to 448 kbit/s, or 9 Mbit/s
(software sync mode)). Alternatively, in audio/video
combined mode, audio data is output byte parallel at rates
determined by `av_ratio' (see Section "Interfacing to
SAA9042 and SAA5270 teletext decoders and SAA7183
EURO-DENC"). Valid audio elementary stream data is
indicated by AUDATV = 1. In case of buffer underflow,
AUDATV is kept LOW, unless the combined audio/video
mode is configured (see Fig.16). The audio FIFO is used
to overcome clock interfacing problems and to provide
sufficient delay to synchronize audio and video. The buffer
output process is controllable by the microcontroller
(see Section "Interfacing to SAA2500 and third party audio
decoders").
The microcontroller can access the audio FIFO for
downloading `beeps'. For this purpose the microcontroller
has to program the audio interface to `
c_downl' = 1
(address 0x060A, see Table 13). Furthermore it has to
write valid audio PES packets (to addresses 0x1xxx),
including at least one valid PTS for the first frame, if the
audio interface is not programmed to PES mode or
software sync mode.
For video, a 768 Byte buffer is implemented which is filled
at byte clock frequency (9 MHz). The buffer is emptied on
the video decoder acquisition clock CLKP
(9 MHz = CCLKI/3, or lower rates in audio/video combined
mode). CLKP is gated to create a valid indicator. CLKP is
therefore frozen to logic 1 whenever the microcontroller
wants to communicate with the video decoder (VSEL = 0)
and in the event of buffer underflow.
A 2 kByte FIFO is incorporated for TXT data. The TXT
FIFO is filled at 9 MHz and is emptied at a rate of either
6.75 Mbit/s or 6.9375 Mbit/s (TXT insertion).
The microcontroller can access the FIFO to download TXT
pages. For this purpose the microcontroller has to program
the TXT interface to `txt_downl' = 1 (address 0x0801,
see Table 13). Furthermore it has to write valid TXT pages
(to addresses 0x2000 to 0x23FF) in accordance with the
FIFO format specified in Fig.17.
7.14
Microcontroller interfacing
The microcontroller interface provides the means of
communication between a system controller (e.g. Philips
P90CE201) in a digital TV receiver and the demultiplexer
internal registers and buffers. The physical interface
consists of:
MDAT7 to MDAT0: an 8-bit wide bidirectional data bus.
Data and addresses information can be multiplexed on
this bus (optional).
CSDEM: an active LOW chip select signal.
The demultiplexer only responds to microcontroller
communication if this signal is driven LOW.
CSVID: an active LOW chip select signal for the video
decoder. The demultiplexer responds to a logic 1 on this
pin by putting MDAT7 to MDAT0 in high impedance
state should VSEL = 0. Consequently the
microcontroller is allowed to communicate with other
devices (i.e. RAMs and ROMs) when the demultiplexer
has a transparent control path set up between the
microcontroller and video decoder.
R/W: an active HIGH read signal indicating that the
microcontroller is attempting to read data from registers
or buffers inside the demultiplexer or the video decoder.
If this signal is LOW, data is being written to registers
inside the demultiplexer or video decoder.
MA10 to MA0: an 11-bit address bus. If bit MA10 = 1, it
indicates that direct addressing is applied and address
bits MA9 to MA2 are considered to be valid address
inputs. If MA10 = 0 normal indirect addressing is applied
and address bits MA9 to MA2 are ignored. The address
in this case is derived from the multiplexed data address
bus MDAT7 to MDAT0.
Direct addressing is applicable to a very restricted
number of demultiplexer registers only:
MA9 to MA7: specify register unit numbers, so only
units in the range 0 to 7 are directly accessible
MA6 to MA2: specify individual register addresses,
so only the first 32 registers (0 to 31) of a register unit
can be directly addressed. If address bit MA1 equals
logic 1, MDAT7 to MDAT0 carries address
information, otherwise it carries data (indirect
addressing mode). If the least significant address bit
(MA0) is logic 0, the most significant byte of a 16-bit
register is addressed, otherwise the least significant
byte is selected.
1997 Jan 21
39
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
IRQ: an active LOW interrupt request signal.
An interrupt is set should if one of the 14 bits in the
demultiplexer internal interrupt register is set.
The interrupt mechanism consists of 3
14-bit and
1
16-bit register in total, as indicated in Fig.24.
The interrupt status registers enable the microcontroller
to monitor the momentary status of the interrupts. This
is particularly useful during read actions in the
demultiplexer's section buffers, since the status bit in
question (interrupt: `flt [F to 0]_stat', address 0x0003,
see Table 13) is reset as soon as the buffer is empty.
The interrupt mask register (address 0x0001,
see Table 13) allows individual interrupts to be
prevented from resetting IRQ (to 0). Prior to latching the
interrupts status bits into the interrupt register, they are
logically ANDed with the mask. The interrupt register is
reset (to 0000000000000000) as soon as it is
addressed (0x0000) by the microcontroller.
A typical example of communication between
microcontroller and demultiplexer is illustrated in Fig.25.
The demultiplexer contains an auto-increment address
counter which can be loaded by performing a write
address operation. The subsequent operation, whether
read or write, is then performed at that address.
The operation after that is then automatically performed at
address + 1, unless a new address is loaded.
Note: avoid resetting the auto-increment address counter
to 0x0000, when not handling interrupts, as addressing it
causes the interrupt register to be reset. Interrupt
information might consequently be lost.
The demultiplexer internal register and buffer addresses
are organized as indicated in Fig.26. The first 4 address
(15 to 12) bits are used to select either control registers (0)
or the data buffers (range 1 to 3, 8 to F). In the data buffer
mode, the remaining address bits (11 to 0) are part of the
word address (range depending on the data buffer). In the
register mode, bits 11 to 8 specify the register unit
number. The remaining 8 bits of the address (7 to 0)
specify register addresses within a selected unit. The
address range in a specific register unit depends on the
number of registers present and is different for each unit.
For details refer to see Table 13.
Fig.24 Demultiplexer microcontroller interrupt mechanism.
handbook, halfpage
MGG768
0x0002/0x0003
(read only)
30-bit status
0x0001
(write only)
14-bit mask
0x0000
(read/write)
14-bit interrupt
momentary status of the
individual interrupt bits
enables/disables
individual interrupts
latched interrupts, indicating
which interrupt(s) set IRQ
IRQ
The interrupt register is reset upon addressing.
See Table 8 for definition of interrupt mechanism.
1997 Jan 21
40
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.25 Example of microcontroller to demultiplexer communication.
handbook, full pagewidth
MGG786
Address 1
Address 0
R/W
CSDEM
MSB
LSB
MSB
>
24 ns
>
666 ns
LSB
MSB
LSB
DATA7
to
DATA0
write address N
read data @ N
write data @ N
+
1
>
666 ns
Fig.26 Demultiplexer register organization (see Table 13).
handbook, halfpage
MGG771
if 0, registers are addressed,
if 1 to F, buffers are addressed
register unit number, range 0 to 8
individual register addresses,
range depending on the unit
number
0 x H H H H
(1)
(1) See Table 9
1997 Jan 21
41
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Table 8
Definition of interrupt mechanism
Table 9
Unit contents
The microcontroller interface module contains a short filter
module, a long module and a subtitling module. These
filter modules allow the microcontroller to retrieve several
sorts of data from the incoming transport stream.
7.14.1
S
HORT FILTER MODULE
The short filter module is capable of accessing, for
instance, program specific or service information,
transported in sections, with a length of up to and including
BIT NUMBER
MEANING OF INTERRUPT
0
a new PCR arrived, STC_B preset
1
a new video PTS arrived
2
a new video DTS arrived
3
video emulated PTS matched STC
4
a new PCR arrived, STC_A preset
5
a new audio PTS arrived
6
audio emulated PTS matched STC
7
audio output processing was restarted
8
the difference: STC - emulated PTS
was recalculated at the audio FIFO
output
9
the parser lost synchronization
10
subtitling FIFO level at threshold
11
TXT FIFO level at threshold
12
one of the 12 short detection units
detected data
13
one of the 4 long detection units
detected data
REGISTER
UNIT NUMBER
UNIT CONTENTS
0
interrupt request handling control
1
parser input control
2
error handling, error count
3
data filtering control
4
PCR and timing regeneration control
5
video filtering and interfacing control
6
audio filtering and interfacing control
7
GP and HS Data filtering control
8
TXT filtering control
1 kBytes. The configuration of the short filter module is
shown in Fig. 28.
The filter consists of 12 section detectors. Each section
detector selects and retrieves section data on the basis of:
PID
Table_id
4 maskable bytes (32 bits) in the section payload
(see Fig 28).
The section data detected by a certain section detector is
always stored in the associated 1 kByte section buffer.
As soon as an entire section of data is stored, an interrupt
(interrupt: `flt0_B_irpt', address 0x0000, see Table 13) is
generated. The 12 section detectors can be separately
enabled (disabled), to avoid unnecessary interrupts.
The `filter fired' registers enable the microcontroller to track
which section detector loaded its buffer (bits: `flt
[B to 0]_frd', address 0x0304, see Table 13). Each of the
section detectors checks incoming section data for errors,
by means of the CRC_32 mechanism specified in MPEG2
systems. If an error is detected, an error status flag is set
(bit: `err_stat', see Table 13). The error flag can therefore
be accessed by the microcontroller.
If the microcontroller decides to read data from one of the
buffers (see Table 13, address range as indicated in
Table 10) it can determine when to stop reading in two
ways. It can periodically poll the `flt [B to 0]_stat' bits in the
interrupt status register (address 0x0003, see Table 13).
These bits go LOW as soon as the last valid section data
word is read from the buffer in question.
Another possibility is for the microcontroller to read the
`high_address' word (`hadr [B to 0]', see Table 13). This
word is proportional to the number of valid section words
(1 word equals 2 bytes) that was written into the buffer.
Actually #words equal `high_address' + 1. This number
equals the number of read cycles that has to be performed
to retrieve all valid data from the section buffer.
If the buffer contents have to be removed without being
read, the microcontroller can write a logic 1 to one of the
`rst_bf [B to 0]' bits (address 0x0315, see Table 13), thus
releasing the buffer. Another possibility is to perform one
write address operation to (0x.... - hadr [B to 0] + 1).
The internal auto increment address counter is thus set to
the last byte in the buffer. The filters are reactivated after
having been idle during buffer emptying.
1997 Jan 21
42
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Table 10 Description of filter modules
Table 11 Explanation of Fig.27
FILTER
MODULE
SECTION DETECTORS
(DEPTH)
BUFFERS (SIZE)
RESPECTIVE ADDRESS RANGES
Short
12 (4 Bytes), detectors 0 to B
12 (1 kBytes)
0x8000 to 0x81FF; 0x8200 to 0x83FF;
0x8400 to 0x85FF; 0x8600 to 0x87FF;
0x8800 to 0x89FF; 0x8A00 to 0x8BFF;
0x8C00 to 0x8DFF; 0x8E00 to 0x8FFF;
0x9000 to 0x91FF; 0x9200 to 0x93FF;
0x9400 to 0x95FF; 0x9600 to 0x97FF
Long
4 (7 Bytes), detectors C to F
4 (4 kBytes)
0x9800 to 0x9FFF; 0xA000 to 0xA7FF;
0xA800 to 0xAFFF; 0xB000 to 0xB7FF
Subtitling
1 (PES)
1 FIFO, 4 kBytes
0xF000 to 0xFFFF
SYNTAX
DESCRIPTION
Table_id
8-bit section identification field
Reserved
4 reserved bits; section_syntax_indicator (1 bit), DVB reserved (1 bit), ISO reserved (2 bits)
Section length
number of bytes in the section following this 12-bit word
Section_data_byte
8-bit field carrying section payload information
Fig.27 Architecture of long data filters
handbook, full pagewidth
MGG787
table_id
reserved
section length
4 or 7 bytes
of filtering
section header
(3 bytes)
section payload
(max. 4093 bytes)
section_data_bytes
(max. 4093 bytes)
1997 Jan 21
43
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Table 12 Explanation of Fig.28
NUMBER
PRIV_DAT AND PES/AFN
DESCRIPTION
0
10
adaptation field private data
1
11
PES private data
2
01
PES payload
3
00
complete PES
Fig.28 Architecture of short data filters
handbook, full pagewidth
MGG788
2
adaptation field
PES header
PES payload
packet
header
0
1
complete PES(3)
1997 Jan 21
44
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
7.14.2
L
ONG FILTER MODULE
The long filter module is capable of accessing, for
instance, electronic program guides or event information
tables, transported in private sections, with a length of up
to and including 4 kBytes. The configuration of the long
filter module is shown in Fig. 27.
The filter consists of 4 section detectors. Each section
detector selects and retrieves section data on the basis of:
PID
Table_id
7 maskable bytes (56 bits) in the section payload
(see Fig. 27).
The section data detected by a certain section detector is
always stored in the associated 4 kByte section buffer.
As soon as an entire section of data is stored, an interrupt
(interrupt: `fltC_F_irpt', address 0x0000, see Table 13) is
generated. The 4 section detectors can be separately
enabled (disabled), to avoid unnecessary interrupts.
The `filter fired' registers enable the microcontroller to track
which section detector loaded its buffer (bits `flt
[F to C]_frd', address 0x0304, see Table 13). Each of the
section detectors checks incoming data for errors by
means of the CRC_32 mechanism specified in MPEG2
systems. If an error is detected, an error status flag is set
(bit `err_stat', see Table 13) in the filter unit. The error flag
can therefore be accessed by the microcontroller.
If the microcontroller decides to read data from the long
filter buffers (see Table 13; address range as indicated in
Table 10) it can determine when to stop reading in two
ways. It can periodically poll the `flt [F to C]_stat' bits in the
interrupt status register (address 0x0003, see Table 13).
These bits go LOW as soon as the last valid section data
word is read from the section buffer.
Another possibility is for the microcontroller to read the
`high_address' word (`hadr [9 to 0]', see Table 13). This
word is proportional to the number of valid section words
(1 word equals 2 bytes) that was written into the buffer.
Actually #words equal `high_address' + 1. This number
equals the number of read cycles that has to be performed
to retrieve all valid data from the buffer.
If the buffer contents have to be removed without being
read, the microcontroller can write a logic 1 to the `rst_bf
[F to C]' bit (address 0x0315, see Table 13) thus releasing
the buffer. Another possibility is to perform one write
address operation to (0x.... - hadr [9 to 0] + 1). The internal
auto-increment address counter is thus set to the last byte
in the buffer and the filters are reactivated, after having
been idle during buffer emptying.
7.14.3
S
UBTITLING FILTER
The subtitling filter is capable of accessing, for instance,
subtitling data transported in PES packets, transport
packet private data or PES private data. The architecture
of the subtitling filter is shown in Figs 27 and 28.
The filter consists of 1 PES detector, which selects and
retrieves data on the basis of PID filtering. The subtitling
data (including PES header), or private data (without
headers) detected by the filter is stored in a 4 kByte PES
FIFO.
The microcontroller can read the data in the FIFO one
word (equals 2 bytes) at a time. The `subt_cont' (address
0x0303, see Table 13) register indicates the number of
bytes in the FIFO. If this number is odd, one byte remains
after reading all words. Before reading the last byte the
`hlt_adr_ptr' bit has to be set (address 0x0301,
see Table 13). The valid byte can be found in the MSB's.
The first byte of new data is stored in the LSB. Reset the
`hlt_adr_ptr' before reading the new data.
An interrupt `subt_irpt' (address 0x0000, see Table 13) is
generated as soon as the FIFO contains more than a
programmable level of bytes. This level may indicate that
there is just enough room in the FIFO to store one
additional packet payload. The microcontroller should
therefore start reading data, or halt data retrieval
(`enable' = 0, address 0x0300, see Table 13) otherwise an
overflow may occur.
The subtitling filter is capable of retrieving private data on
the basis of PID selection (word: `subt_pid', address
0x0300, see Table 13) by programming `priv_dat' to
logic 1 (address 0x0301, see Table 13). The filter can be
programmed to retrieve transport_private_data (bit:
`pes_afn' = 0, address 0x0301, see Table 13) or
PES_private_data (`pes_afn' = 1) for a selected PID.
The filter is separately enabled (bit `enable', address
0x0300, see Table 13).
1997 Jan 21
45
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
8
PROGRAMMING THE DEMUL
TIPLEXER
An overview of the registers and buffer in the Demultiplexer that are available for microcontroller access is incorporated in see
Table
13. The table
contains information on register functionality, addressing, accessibility (read only
=
-
R
-, write only
=
-
W
-, read/write
=
-
R/
W
-) and the meaning of the
individual bits in a register. The shaded areas in the table indicate registers which are also directly addressable by the microcontroller.
T
able 13
Demultiplexer programming
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
IRPT
0x0000
- R/
W -
-
-
fltC_F_ irpt
ftl0_B_ irpt
cc_txt_ irpt
subt_ irpt
prs_ sync_
lost
irpt_ audio_
dif
f
irpt_ audio_
rstrt
irpt_ audio_
strt
irpt_ audio_
pts
irpt_ discnt_
a
irpt_ video_
strt
irpt_ video_
dts
irpt_ video_
pts
irpt_ discnt_
b
IRPT_ MASK
0x0001
- W -
-
-
msk13
msk12
msk1
1
msk10
msk9
msk8
msk7
msk6
msk5
msk4
msk3
msk2
msk1
msk0
IRPT_ ST
A
TUS
0x0002
- R -
-
-
fltC_F_ stat
flt0_B_ stat
cc_txt_ stat
subt_ stat
prs_ sync_
stat
audio_ dif
f_
stat
audio_ rstrt_
stat
audio_ strt_
stat
audio_ pts_
stat
audio_
discnt_ stat
video_ strt_
stat
video_ dts_
stat
video_ pts_
stat
video_
discnt_ stat
IRPT_ ST
A
TUS
0x0003
- R -
fltF_ stat
fltE_ stat
fltD_ stat
fltC_ stat
fltB_ stat
fltA_ stat
flt9_ stat
flt8_ stat
flt7_ stat
flt6_ stat
flt5_ stat
flt4_ stat
flt3_ stat
flt2_ stat
flt1_ stat
flt0_ stat
VER-SION_ NR
0x0004
- R -
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
EMPTY
0x0003 -
0x00FF
-
-
------
-
-
------
PRS_INP CTRL
0x0100
- W -
-
-
-
-
-
-
-
-
-
-
-
-
-
prs_ reset
Bad_
polarity
9
MHz_
interface
EMPTY
0x0101 -
0x01FF
-
-
------
-
-
------
ERR_H CNT
0x0200
- R/
W -
cnt15
cnt14
cnt13
cnt12
cnt1
1
cnt10
cnt9
cnt8
cnt7
cnt6
cnt5
cnt4
cnt3
cnt2
cnt1
cnt0
EMPTY
0x0201 -
0x02FF
-
-
------
-
-
------
1997 Jan 21
46
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
SUBT_PID
0x0300
- W -
-
-
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
SUBT_ CTRL
0x0301
-W -
-
-
-
-
-
-
-
-
-
-
-
-
hlt_rd_ptr
c_rst
priv_ dat
pes/afn
SUBT_
threshold
0x0302
-W -
-
-
-
-
threshold
1
1
threshold
10
threshold
9
threshold
8
threshold
7
threshold
6
threshold
5
threshold
4
threshold
3
threshold
2
threshold
1
threshold
0
SUBT_
contents
0x0303
- R -
-
-
-
-
nr_1
1
nr_10
nr_9
nr_8
nr_7
nr_6
nr_5
nr_4
nr_3
nr_2
nr_1
nr_0
FL
T_ FIRED
0x0304
-R -
fltF_frd
fltE_frd
fltD_frd
fltC_frd
fltB_frd
fltA_frd
flt9_frd
flt8_frd
flt7_frd
flt6_frd
flt5_frd
flt4_frd
flt3_frd
flt2_frd
flt1_frd
flt0_frd
FL
T0_ ST
A
TUS
0x0305
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
T1_ ST
A
TUS
0x0306
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
T2_ ST
A
TUS
0x0307
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
T3_ ST
A
TUS
0x0308
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
T4_ ST
A
TUS
0x0309
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
T5_ ST
A
TUS
0x030A
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
T6_ ST
A
TUS
0x030B
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
T7_ ST
A
TUS
0x030C
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
T8_ ST
A
TUS
0x030D
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
T9_ ST
A
TUS
0x030E
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
47
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
FL
T
A_ ST
A
TUS
0x030F
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
TB_ ST
A
TUS
0x0310
-R -
err_stat
-
-
-
-
-
-
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
TCST
A
TUS
0x031
1
-R -
err_stat
-
-
-
-
hadr10
hadr9
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
TDST
A
TUS
0x0312
-R -
err_stat
-
-
-
-
hadr10
hadr9
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
TE- ST
A
TUS
0x0313
-R -
err_stat
-
-
-
-
hadr10
hadr9
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
FL
TFST
A
TUS
0x0314
-R -
err_stat
-
-
-
-
hadr10
hadr9
hadr8
hadr7
hadr6
hadr5
hadr4
hadr3
hadr2
hadr1
hadr0
RESET
BUFFER
0x0315
- W -
rst_bfF
rst_bfE
rst_bfD
rst_bfC
rst_bfB
rst_bfA
rst_bf9
rst_bf8
rst_bf7
rst_bf6
rst_bf5
rst_bf4
rst_bf3
rst_bf2
rst_bf1
rst_bf0
FL
T0_ PID
0x0316
- W -
-
-
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T0_ TBL_ID
0x0317
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
FL
T0_ BYTE0
0x0318
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T0_ BYTE1
0x0319
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T0_ BYTE2
0x031A
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T0_ BYTE3
0x031B
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T1_ PID
0x031C
- W -
-
-
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T1_ TBL_ID
0x031D
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
48
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
FL
T1_ BYTE0
0x031E
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T1_ BYTE1
0x031F
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T1_ BYTE2
0x0320
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T1_ BYTE3
0x0321
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T2_ PID
0x0322
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T2_ TBL_ID
0x0323
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
FL
T2_ BYTE0
0x0324
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T2_ BYTE1
0x0325
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T2_ BYTE2
0x0326
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T2_ BYTE3
0x0327
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T3_ PID
0x0328
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T3_ TBL_ID
0x0329
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
FL
T3_ BYTE0
0x032A
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T3_ BYTE1
0x032B
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T3_ BYTE2
0x032C
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
49
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
FL
T3_ BYTE3
0x032D
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T4_ PID
0x032E
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T4_ TBL_ID
0x032F
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
FL
T4_ BYTE0
0x0330
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T4_ BYTE1
0x0331
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T4_ BYTE2
0x0332
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T4_ BYTE3
0x0333
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T5_ PID
0x0334
- W -
--
-
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T5_ TBL_ID
0x0335
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
FL
T5_ BYTE0
0x0336
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T5_ BYTE1
0x0337
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T5_ BYTE2
0x0338
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T5_ BYTE3
0x0339
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T6_ PID
0x033A
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T6_ TBL_ID
0x033B
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
50
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
FL
T6_ BYTE0
0x033C
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T6_ BYTE1
0x033D
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T6_ BYTE2
0x033E
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T6_ BYTE3
0x033F
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T7_ PID
0x0340
- W -
--
Eanble
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T7_ TBL_ID
0x0341
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
FL
T7_ BYTE0
0x0342
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T7_ BYTE1
0x0343
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T7_ BYTE2
0x0344
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T7_ BYTE3
0x0345
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T8_ PID
0x0346
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T8_ TBL_ID
0x0347
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
FL
T8_ BYTE0
0x0348
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T8_ BYTE1
0x0349
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T8_ BYTE2
0x034A
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
51
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
FL
T8_ BYTE3
0x034B
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T9_ PID
0x034C
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T9_ TBL_ID
0x034D
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
FL
T9_ BYTE0
0x034E
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T9_ BYTE1
0x034F
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T9_ BYTE2
0x0350
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T9_ BYTE3
0x0351
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T
A_ PID
0x0352
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
T
A_ TBL_ID
0x0353
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
FL
T
A_ BYTE0
0x0354
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T
A_ BYTE1
0x0355
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T
A_ BYTE2
0x0356
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
T
A_ BYTE3
0x0357
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TB_ PID
0x0358
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
TB_ TBL_ID
0x0359
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
52
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
FL
TB_ BYTE0
0x035A
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TB_ BYTE1
0x035B
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TB_ BYTE2
0x035C
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TB_ BYTE3
0x035D
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TC_ PID
0x035E
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
TC_ TBL_ID
0x035F
- W -
msk_7
msk_6
msk_5
msk_4
msk_3
msk_2
msk_1
msk_0
tblid_7
tblid_6
tblid_5
tblid_4
tblid_3
tblid_2
tblid_1
tblid_0
FL
TC_ BYTE0
0x0360
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TC_ BYTE1
0x0361
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TC_ BYTE2
0x0362
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TC_ BYTE3
0x0363
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TC_ BYTE4
0x0364
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TC_ BYTE5
0x0365
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TC_ BYTE6
0x0366
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TD_ PID
0x0367
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
TD_ TBL_ID
0x0368
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
53
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
FL
TD_ BYTE0
0x0369
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TD_ BYTE1
0x036A
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TD_ BYTE2
0x036B
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TD_ BYTE3
0x036C
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TD_ BYTE4
0x036D
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TD_ BYTE5
0x036E
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TD_ BYTE6
0x036F
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TE_ PID
0x0370
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
TE_ TBL_ID
0x0371
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TE_ BYTE0
0x0372
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TE_ BYTE1
0x0373
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TE_ BYTE2
0x0374
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TE_ BYTE3
0x0375
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TE_ BYTE4
0x0376
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TE_ BYTE5
0x0377
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
54
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
FL
TE_ BYTE6
0x0378
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TF_ PID
0x0379
- W -
--
Enable
Pid12
Pid_1
1
Pid_10
Pid_9
Pid_8
Pid_7
Pid_6
Pid_5
Pid_4
Pid_3
Pid_2
Pid_1
Pid_0
FL
TF_ TBL_ID
0x037A
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TF_ BYTE0
0x037B
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TF_ BYTE1
0x037C
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TF_ BYTE2
0x037D
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TF_ BYTE3
0x037E
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TF_ BYTE4
0x037F
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TF_ BYTE5
0x0380
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
FL
TF_ BYTE6
0x0381
- W -
msk7
msk6
msk5
msk4
msk3
msk2
ms1
msk0
bit_7
bit_6
bit_5
bit_4
bit_3
bit_2
bit_1
bit_0
EMPTY
0x0380 -
0x03FF
-
-
------
-
-
------
PCR_ CTRL
0x0400
- W -
-
-
-
-
-
-
-
-
-
-
-
-
-
Stop_
T
oggle
Stop_
T
oggle_B
Stop_
T
oggle_A
PCR_ PID
0x0401
- W -
-
-
enable
pid12
pid1
1
pid10
pid9
pid8
pid7
pid6
pid5
pid4
pid3
pid2
pid1
pid0
PCR_ BASE_
MSW
0x0402
- R -
PCR_
base32
PCR_
base31
PCR_
base30
PCR_
base29
PCR_
base28
PCR_
base27
PCR_
base26
PCR_
base25
PCR_
base24
PCR_
base23
PCR_
base22
PCR_
base21
PCR_
base20
PCR_
base19
PCR_
base18
PCR_
base17
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
55
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
PCR_ BASE_
LSW
0x0403
- R -
PCR_
base16
PCR_
base15
PCR_
base14
PCR_
base13
PCR_
base12
PCR_
base1
1
PCR_
base10
PCR_
base9
PCR_ base8
PCR_ base7
PCR_ base6
PCR_ base5
PCR_ base4
PCR_ base3
PCR_ base2
PCR_ base1
PCR_ EXT
0x0404
- R -
PCR_ base0
-
-
-
-
-
-
PCR_ ext8
PCR_ ext7
PCR_ ext6
PCR_ ext5
PCR_ ext4
PCR_ ext3
PCR_ ext2
PCR_ ext1
PCR_ ext0
PCR_ BASE_
DIFF_ MSW
0x0405
- R -
-
-
-
-
-
-
-
base_ dif
f24
base_ dif
f23
base_ dif
f22
base_ dif
f21
base_ dif
f20
base_ dif
f19
base_ dif
f18
base_ dif
f17
base_ dif
f16
PCR_ BASE_
DIFF_ LSW
0x0406
- R -
base_ dif
f15
base_ dif
f14
base_ dif
f13
base_ dif
f12
base_ dif
f1
1
base_ dif
f10
base_ dif
f9
base_ dif
f8
base_ dif
f7
base_ dif
f6
base_ dif
f5
base_ dif
f4
base_ dif
f3
base_ dif
f2
base_ dif
f1
base_ dif
f0
PCR_ EXT_
DIFF
0x0407
- R -
-
-
-
-
-
-
ext_ dif
f9
ext_ dif
f8
ext_ dif
f7
ext_ dif
f6
ext_ dif
f5
ext_ dif
f4
ext_ dif
f3
ext_ dif
f2
ext_ dif
f1
ext_ dif
f0
VIN_ H_POS
0x0408
- R -
-
-
-
-
-
hpos10
hpos9
hpos8
hpos7
hpos6
hpos5
hpos4
hpos3
hpos2
hpos1
hpos0
VIN_ V_POS
0x0409
- R -
-
-
-
-
-
-
vpos9
vpos8
vpos7
vpos6
vpos5
vpos4
vpos3
vpos2
vpos1
vpos0
EMPTY
0x040A -
0x04FF
-
-
------
-
-
------
VIDEO_ PID
0x0500
- R -
-
-
enable
pid12
pid1
1
pid10
pid9
pid8
pid7
pid6
pid5
pid4
pid3
pid2
pid1
pid0
VIDEO_ PTS
0x0501
- R -
v_pts31
v_pts30
v_pts29
v_pts28
v_pts27
v_pts26
v_pts25
v_pts24
v_pts23
v_pts22
v_pts21
v_pts20
v_pts19
v_pts18
v_pts17
v_pts16
VIDEO_ PTS
0x0502
- R -
v_pts15
v_pts14
v_pts13
v_pts12
v_pts1
1
v_pts10
v_pts9
v_pts8
v_pts7
v_pts6
v_pts5
v_pts4
v_pts3
v_pts2
v_pts1
v_pts0
VIDEO_ DTS
0x0503
- R -
v_dts31
v_dts30
v_dts29
v_dts28
v_dts27
v_dts26
v_dts25
v_dts24
v_dts23
v_dts22
v_dts21
v_dts20
v_dts19
v_dts18
v_dts17
v_dts16
VIDEO_ DTS
0x0504
- R -
v_dts15
v_dts14
v_dts13
v_dts12
v_dts1
1
v_dts10
v_dts9
v_dts8
v_dts7
v_dts6
v_dts5
v_dts4
v_dts3
v_dts2
v_dts1
v_dts0
VIDEO_
EMUPTS
0x0505
- W -
-
-
-
-
-
-
-
-
v_emu_
pts23
v_emu_
pts22
v_emu_
pts21
v_emu_
pts20
v_emu_
pts19
v_emu_
pts18
v_emu_
pts17
v_emu_
pts16
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
56
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
VIDEO_
EMUPTS
0x0506
- W -
v_emu_
pts15
v_emu_
pts14
v_emu_
pts13
v_emu_
pts12
v_emu_
pts1
1
v_emu_
pts10
v_emu_
pts9
v_emu_
pts8
v_emu_pts7
v_emu_pts6
v_emu_pts5
v_emu_pts4
v_emu_pts3
v_emu_pts2
v_emu_pts1
v_emu_pts0
VIDEO_ STC_
SMPL
0x0507
- R -
-
-
-
-
-
-
-
-
v_stc_
smpl23
v_stc_
smpl22
v_stc_
smpl21
v_stc_
smpl20
v_stc_
smpl19
v_stc_
smpl18
v_stc_
smpl17
v_stc_
smpl16
VIDEO_ STC_
SMPL
0x0508
- R -
v_stc_
smpl15
v_stc_
smpl14
v_stc_
smpl13
v_stc_
smpl12
v_stc_
smpl1
1
v_stc_
smpl10
v_stc_
smpl9
v_stc_
smpl8
v_stc_
smpl7
v_stc_
smpl6
v_stc_
smpl5
v_stc_
smpl4
v_stc_
smpl3
v_stc_
smpl2
v_stc_
smpl1
v_stc_
smpl0
VIDEO_ INFO
0x0509
- R -
ad_cp_ info7
ad_cp_ info6
ad_cp_ info5
ad_cp_ info4
ad_cp_ info3
ad_cp_ info2
ad_cp_ info1
ad_cp_ info0
-
ad_cp_ flag
cp_ info1
cp_ info0
pes_scr_
ctrl1
pes_scr
_ctrl0
ts_scr_
ctrl1
ts_scr_
ctrl0
VIDEO_
OUTP_ CTRL
0x050A
- W -
-
-
-
-
-
-
-
-
-
video_ rst
clk_ 13p5_
pol
video_
pes_esn
cb_ref_
phase1
cb_ref_
phase0
v_in_ pol
ccir_50_60n
H_SYNCF
ALL
0x050B
- W -
-
-
-
-
-
hs_fl10
hs_fl9
hs_fl8
hs_fl7
hs_fl6
hs_fl5
hs_fl4
hs_fl3
hs_fl2
hs_fl1
hs_fl0
H_SYNCRISE
0x050C
- W -
-
-
-
-
-
hs_rs10
hs_rs9
hs_rs8
hs_rs7
hs_rs6
hs_rs5
hs_rs4
hs_rs3
hs_rs2
hs_rs1
hs_rs0
V_SYNCF
ALL
0x050D
- W -
-
-
-
-
-
-
vs_fl9
vs_fl8
vs_fl7
vs_fl6
vs_fl5
vs_fl4
vs_fl3
vs_fl2
vs_fl1
vs_fl0
V_SYNCRISE
0x050E
- W -
-
-
-
-
-
-
vs_rs9
vs_rs8
vs_rs7
vs_rs6
vs_rs5
vs_rs4
vs_rs3
vs_rs2
vs_rs1
vs_rs0
HORIZ_
OFFSET
0x050F
- W -
-
-
-
-
-
hof
fs10
hof
fs9
hofss8
hof
fs7
hof
fs6
hof
fs5
hof
fs4
hof
fs3
hof
fs2
hof
fs1
hof
fs0
VER
TI_
OFFSET
0x0510
- W -
-
-
-
-
-
-
vof
fs9
vof
fs8
vof
fs7
vof
fs6
vof
fs5
vof
fs4
vof
fs3
vof
fs2
vof
fs1
vof
fs0
PWM_ CTRL
0x051
1
- W -
-
-
-
-
-
-
-
-
pwm7
pwm6
pwm5
pwm4
pwm3
pwm2
pwm1
pwm0
V_ FIFO_
THRESHOLD
0x0512
- W -
-
-
-
-
-
-
-
v_ undfl8
v_ undfl7
v_ undfl6
v_ undfl5
v_ undfl4
v_ undfl3
v_ undfl2
v_ undfl1
v_ undfl0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
57
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
V_ FIFO_
THRES HOLD
0x0513
- W -
-
-
-
-
-
-
-
v_ ovfl8
v_ ovfl7
v_ ovfl6
v_ ovfl5
v_ ovfl4
v_ ovfl3
v_ ovfl2
v_ ovfl1
v_ ovfl0
EMPTY
0x0514 -
0x05FF
-
-
------
-
-
------
AUDIO_ PID
0x0600
- W -
-
-
enable
pid12
pid1
1
pid10
pid9
pid8
pid7
pid6
pid5
pid4
pid3
pid2
pid1
pid0
AUDIO_ PTS
0x0601
- R -
a_pts31
a_pts30
a_pts29
a_pts28
a_pts27
a_pts26
a_pts25
a_pts24
a_pts23
a_pts22
a_pts21
a_pts20
a_pts19
a_pts18
a_pts17
a_pts16
AUDIO_ PTS
0x0602
- R -
a_pts15
a_pts14
a_pts13
a_pts12
a_pts1
1
a_pts10
a_pts9
a_pts8
a_pts7
a_pts6
a_pts5
a_pts4
a_pts3
a_pts2
a_pts1
a_pts0
AUDIO_ DTS
0x0603
- R -
a_dts31
a_dts30
a_dts29
a_dts28
a_dts27
a_dts26
a_dts25
a_dts24
a_dts23
a_dts22
a_dts21
a_dts20
a_dts19
a_dts18
a_dts17
a_dts16
AUDIO_ DTS
0x0604
- R -
a_dts15
a_dts14
a_dts13
a_dts12
a_dts1
1
a_dts10
a_dts9
a_dts8
a_dts7
a_dts6
a_dts5
a_dts4
a_dts3
a_dts2
a_dts1
a_dts0
AUDIO_
EMUPTS
0x0605
- W
-
-
-
-
-
-
-
-
-
a_emu_
pts23
a_emu_
pts22
a_emu_
pts21
a_emu_
pts20
a_emu_
pts19
a_emu_
pts18
a_emu_
pts17
a_emu_
pts16
AUDIO_
EMUPTS
0x0606
- W -
a_emu_
pts15
a_emu_
pts14
a_emu_
pts13
a_emu_
pts12
a_emu_
pts1
1
a_emu_
pts10
a_emu_
pts9
a_emu_
pts8
a_emu_pts7
a_emu_pts6
a_emu_pts5
a_emu_pts4
a_emu_pts3
a_emu_pts2
a_emu_pts1
a_emu_pts0
AUDIO_ STC_
SMPL
0x0607
- R -
-
-
-
-
-
-
-
-
a_stc_
smpl23
a_stc_
smpl22
a_stc_
smpl21
a_stc_
smpl20
a_stc_
smpl19
a_stc_
smpl18
a_stc_
smpl17
a_stc_
smpl16
AUDIO_ STC_
SMPL
0x0608
- R -
a_stc_
smpl15
a_stc_
smpl14
a_stc_
smpl13
a_stc_
smpl12
a_stc_
smpl1
1
a_stc_
smpl10
a_stc_
smpl9
a_stc_
smpl8
a_stc_
smpl7
a_stc_
smpl6
a_stc_
smpl5
a_stc_
smpl4
a_stc_
smpl3
a_stc_
smpl2
a_stc_
smpl1
a_stc_
smpl0
AUDIO_ INFO
0x0609
- R -
ad_cp_ info7
ad_cp_ info6
ad_cp_ info5
ad_cp_ info4
ad_cp_ info3
ad_cp_ info2
ad_cp_ info1
ad_cp_ info0
-
ad_cp_ flag
cp_ info1
cp_ info0
pes_scr_
ctrl1
pes_scr_
ctrl0
ts_scr_
ctrl1
ts_scr_
ctrl0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
58
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
AUDIO_OUTP
UT_CTRL
0x060A
- W -
-
-
-
av_ ratio3
av_ ratio2
av_ ratio1
av_ ratio0
av_ combi
gated_ clock
audio_ pes
pes_ pusi
c_ downl
c_saa 2500
c_sw_sync
c_free_run
c_frc_
restart
AUDIO_ INCR0
0x060B
- W -
-
-
-
-
a0_ inc1
1
a0_ inc10
a0_ inc9
a0_ inc8
a0_ inc7
a0_ inc6
a0_ inc5
a0_ inc4
a0_ inc3
a0_ inc2
a0_ inc1
a0_ inc0
AUDIO_ INCR1
0x060C
- W -
-
-
-
-
a1_ inc1
1
a1_ inc10
a1_ inc9
a1_ inc8
a1_ inc7
a1_ inc6
a1_ inc5
a1_ inc4
a1_ inc3
a1_ inc2
a1_ inc1
a1_ inc0
AUDIO_PTS_
OFFSET
0x060D
- W -
-
-
-
-
-
-
-
-
pts_ of
fs23
pts_ of
fs22
pts_ of
fs21
pts_ of
fs20
pts_ of
fs19
pts_ of
fs18
pts_ of
fs17
pts_ of
fs16
AUDIO_ PTS_
OFFSET
0x060E
- W -
pts_ of
fs15
pts_ of
fs14
pts_ of
fs13
pts_ of
fs12
pts_ of
fs1
1
pts_ of
fs10
pts_ of
fs9
pts_ of
fs8
pts_ of
fs7
pts_ of
fs6
pts_ of
fs5
pts_ of
fs4
pts_ of
fs3
pts_ of
fs2
pts_ of
fs1
pts_ of
fs0
AUDIO_STC_
MIN_EPTS
0x060F
-R -
-
-
-
-
-
-
-
stc_m_
epts24
stc_m_
epts23
stc_m_
epts22
stc_m_
epts21
stc_m_
epts20
stc_m_
epts19
stc_m_
epts18
stc_m_
epts17
stc_m_
epts16
AUDIO_ STC_
MIN_ EPTS
0x0610
-R -
stc_m_
epts15
stc_m_
epts14
stc_m_
epts13
stc_m_
epts12
stc_m_
epts1
1
stc_m_
epts10
stc_m_
epts9
stc_m_
epts8
stc_m_epts7
stc_m_epts6
stc_m_epts5
stc_m_epts4
stc_m_epts3
stc_m_epts2
stc_m_epts1
stc_m_epts0
AUDIO_
FRAME_
LENGTH
0x061
1
-R -
-
-
-
-
-
frame_
len10
frame_
len9
frame_
len8
frame_ len7
frame_ len6
frame_ len5
frame_ len4
frame_ len3
frame_ len2
frame_ len1
frame_ len0
AUDIO_
FRAME_ INFO
0x0612
-R -
-
-
-
-
-
-
-
padding
sample_
freq1
sample_
freq0
bitrate_
index3
bitrate_
index2
bitrate_
index1
bitrate_
index0
audio_
layer1
audio_
layer0
EMPTY
0x0613 -
0x06FF
-
-
------
-
-
------
GP_HS_ CTRL
0x0700
- W -
GP_
direction
HS_ mode1
HS_ mode0
HS_ pid12
HS_ pid1
1
HS_ pid10
HS_ pid9
HS_ pid8
HS_ pid7
HS_ pid6
HS_ pid5
HS_ pid4
HS_ pid3
HS_ pid2
HS_ pid1
HS_ pid0
GP_HS_ PID_
MSK
0x0701
- W -
HS_sect_flt_
en
HS_err_rmv
HS_dupl_
rmv
pid_ msk12
pid_ msk1
1
pid_ msk10
pid_ msk9
pid_ msk8
pid_ msk7
pid_ msk6
pid_ msk5
pid_ msk4
pid_ msk3
pid_ msk2
pid_ msk1
pid_ msk0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
59
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
GP_HS_
TBL_ID
0x0702
- W -
hs_tbl_ id7
hs_tbl_ id6
hs_tbl_ id5
hs_tbl_ id4
hs_tbl_ id3
hs_tbl_ id2
hs_tbl_ id1
hs_tbl_ id0
tid_ msk7
tid_ msk6
tid_ msk5
tid_ msk4
tid_ msk3
tid_ msk2
tid_ msk1
tid_ msk0
GP_HS_
BYTE1
0x0703
- W -
byte1_7
byte1_6
byte1_5
byte1_4
byte1_3
byte1_2
byte1_1
byte1_0
b1msk7
b1msk6
b1msk5
b1msk4
b1msk3
b1msk2
b1msk1
b1msk0
GP_HS_
BYTE2
0x0704
- W -
byte2_7
byte2_6
byte2_5
byte2_4
byte2_3
byte2_2
byte2_1
byte2_0
b2msk7
b2msk6
b2msk5
b2msk4
b2msk3
b2msk2
b2msk1
b2msk0
EMPTY
0x0705 -
0x07FF
-
-
------
-
-
------
TXT_ CTRL
0x0800
-
-
----
input_
mode1
input_
mode0
--
output_
mode1
output_
mode0
-
check_field
parity_sign
sync_ parity
TXT_ PID
0x0801
- W -
--
enable
pid12
pid1
1
pid10
pid9
pid8
pid7
pid6
pid5
pid4
pid3
pid2
pid1
pid0
TXT_SW_
DELA
Y
0x0802
- W -
-
-
-----
del8
del7
del6
del5
del4
del3
del2
del1
del0
TXT_ TRSHLD
0x0803
- W -
-
-
---
thold10
thold9
thold8
thold7
thold6
thold5
thold4
thold3
thold2
thold1
thold0
TXT_reset
0x0804
- W -
-
-
------
TXT_pes_info
0x0805
- R -
--
scrmbl_ctrl1
scrmbl_ctrl0
priority
alignment
copyright
org_or_copy
pts_dts_
flag1
pts_dts_
flag0
escr_ flag
es_rate_flag
trickmd_flag
add_cp_info
pes_crc_flag
pes_ext_flag
TXT_ ID&unit
0x0806
- R -
dat_id7
dat_id6
dat_id5
dat_id4
dat_id3
dat_id2
dat_id1
dat_id0
unt_id7
unt_id6
unt_id5
unt_id4
unt_id3
unt_id2
unt_id1
unt_id0
TXT_ unit_flags
0x0807
- R -
-
-
------
--
fld_par
of
fset4
of
fset3
of
fset2
of
fset1
of
fset0
TXT_ ST
A
TUS
0x0808
- R -
--
fifoerr1
fifoerr0
load1
1
load10
load9
load8
load7
load6
load5
load4
load3
load2
load1
load0
EMPTY
0x0809 -
0x08FF
-
-
------
-
-
------
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
60
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
AUDIO_ FIFO
0x1000 -
0x1BFF
- W -
beep15
beep14
beep13
beep12
beep1
1
beep10
beep9
beep8
beep7
beep6
beep5
beep4
beep3
beep2
beep1
beep0
EMPTY
0x1C00 -
0x1FFF
-
-
------
-
-
------
TXT_ FIFO
0x2000 -
0x23FF
- R/W -
txt15
txt14
txt13
txt12
txt1
1
txt10
txt9
txt8
txt7
txt6
txt5
txt4
txt3
txt2
txt1
txt0
EMPTY
0x2400 -
0x7FFF
-
-
------
-
-
------
Sct_ buf
fer_0
0x8000 -
0x81FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_1
0x8200 -
0x83FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_2
0x8400 -
0x85FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_3
0x8600 -
0x87FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_4
0x8800 -
0x89FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_5
0x8A00-
0x8BFF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_6
0x8C00-
0x8DFF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_7
0x8E00-
0x8FFF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_8
0x9000-
0x91FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_9
0x9200-
0x93FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
61
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Sct_ buf
fer_A
0x9400-
0x95FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_B
0x9600-
0x97FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_C
0x9800-
0x9FFF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_D
0xA000-
0xA7FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_E
0xA800-
0xAFFF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Sct_ buf
fer_F
0xB000-
0xB7FF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Subtitle buf
fer
0xB800-
0xBFFF
data15
data14
data13
data12
data1
1
data10
data9
data8
data7
data6
data5
data4
data3
data2
data1
data0
Empty
0xC000-
0xFFFF
-
-
------
-
-
------
REGISTER
FUNCTION
ADDR
(HEX)
BITS
15/7
14/6
13/5
12/4
1
1/3
10/2
9/1
8/0
1997 Jan 21
62
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
9
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
10 HANDLING
Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling integrated circuits.
11 DC CHARACTERISTICS
V
DDD(core)
= 3.3 V; V
DDD(pads)
= 5 V; T
amb
= 25
C; unless otherwise specified.
Notes
1. V
DDD(pads)
= 5.5 V, V
DDD(core)
= 3.6 V, all inputs at V
SS
or V
DD
.
2. V
DDD(pads)
= 5.5 V, V
DDD(core)
= 3.6 V, operating inputs, unloaded outputs, T
amb
= 70
C.
SYMBOL
PARAMETER
MIN.
MAX.
UNIT
V
DDD(core)
digital supply voltage for core
-
0.5
+5.0
V
V
DDD(pads)
digital supply voltage for pads
-
0.5
+6.5
V
V
I
DC input voltage
-
0.5
V
DDD
+ 0.5
V
V
O
DC output voltage;
-
0.5
V
DDD
+ 0.5
V
I
i(max)
maximum input current
-
10
+10
mA
I
o(max)
maximum output current
-
20
+20
mA
T
stg
storage temperature
-
65
+150
C
T
amb
operating ambient temperature
0
70
C
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
I
DDD(q)
quiescent supply current
note 1
-
100
A
I
DDD(pads)
operating current for pads
note 2
-
50
mA
I
DDD(core)
operating current for core
note 2
-
40
mA
V
IL
LOW level input voltage
0
0.8
V
V
IH
HIGH level input voltage
2.0
V
DDD
V
I
LI
input leakage current
V
i
= 0 V; T
amb
= 25
C
-
-
10
A
V
i
= V
DDD
; T
amb
= 25
C
-
+10
A
V
OL
LOW level output voltage
I
o
= 4 mA
0
0.1V
DDD
V
V
OH
HIGH level output voltage
I
o
= 4 mA
0.9V
DDD
V
DDD
V
1997 Jan 21
63
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
12 AC CHARACTERISTICS
V
DDD(core)
= 3.3 V; V
DDD(pads)
= 5 V; T
amb
= 25
C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
Chip clock (see Figs 43 and 44)
T
cy(CCLK)
chip clock cycle time
37
-
ns
t
r(CCLK)
chip clock rise time
-
4
ns
t
f(CCLK)
chip clock fall time
-
4
ns
t
CCLKH
chip clock HIGH time
40
60
%
t
CCLKL
chip clock LOW time
40
60
%
Input interface (see Figs 29, 30, 31, 32 and 43)
C
i
input capacitance
note 1
-
5
pF
T
cy(DCLK)
input clock cycle time
111
-
ns
t
DCLKH
input clock HIGH time
37
-
ns
t
DCLKL
input clock LOW time
37
-
ns
t
i(r)(DCLK)
input clock rise time
-
4
ns
t
i(f)(DCLK)
input clock fall time
-
4
ns
t
i(r)
input rise time
-
4
ns
t
i(f)
input fall time
-
4
ns
t
i(su)
input set-up time
18
-
ns
t
i(h)
input hold time
3
-
ns
t
i(h)s
input hold time
0
-
ns
t
i(h)a
input hold time
40
-
ns
Microcontroller interface
C
i
input capacitance
note 1
-
5
pF
T
cy(CS)
chip select cycle time
111
-
ns
t
r(CS)
chip select rise time
-
10
ns
t
f(CS)
chip select fall time
-
10
ns
t
CSH
chip select HIGH time
20
-
ns
t
CSL
chip select LOW time
20
-
ns
t
o(L-Z)
output LOW to Z time
12
ns
t
o(H-Z)
output HIGH to Z time
12
ns
t
o(h)(R)
output hold time
5
ns
W
RITE CYCLE
(see Figs. 33, 34 and 35)
t
i(r)(W)
input rise time
-
10
ns
t
i(f)(W)
input fall time
-
10
ns
t
i(su)(W)
input set-up time
15
-
ns
t
i(h)(W)
input hold time
5
-
ns
1997 Jan 21
64
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
R
EAD CYCLE
(see Fig. 36)
t
o(r)(R)
output rise time
-
10
ns
t
o(f)(R)
output fall time
-
10
ns
t
o(d)(R)
output delay time
-
30
ns
D
IRECT READ CYCLE
(see Fig.37)
t
CSL(R)
chip select LOW time for read
240
-
ns
t
o(d)(1R)
output delay time on first byte
-
240
ns
t
o(d)(2R)
output delay time on second byte
-
30
ns
t
o(r)(R)
output rise time
-
10
ns
t
o(f)(R)
output fall time
-
10
ns
Output interface
C
o
output capacitance
note 1
-
10
pF
C
L
output load capacitance
-
50
pF
T
cy(DCLK)
output clock cycle time of the
descrambler clock
111
-
ns
t
r(CLKO)
output clock rise time
-
10
ns
t
f(CLKO)
output clock fall time
-
10
ns
t
CLKOH
output clock HIGH time
25
-
ns
t
CLKOL
output clock LOW time
25
-
ns
t
o(r)
output rise time
-
10
ns
t
o(f)
output fall time
-
10
ns
t
o(h)
output hold time
C
L
= 5 pF
3
-
ns
t
o(d)
output delay time
C
L
= 30 pF
-
20
ns
t
o(d)p
output delay time
C
L
= 5 pF
0
-
ns
A
UDIO INTERFACE
(see Fig.44)
T
cy(CLKOa)
output clock cycle time
2232
31250
ns
t
CLKOHa
output clock HIGH time
40
60
%
t
CLKOLa
output clock LOW time
40
60
%
GP/HS
INTERFACE
(see Figs 38 and 39)
t
o(h)g
output hold time
74
-
ns
t
o(d)g
output delay time
-
t
o(h)g
+ 20
ns
t
o(h)h
output hold time
2
-
ns
t
o(d)h
output delay time
-
t
o(h)h
+ 8
ns
TXT
INTERFACE
(see Figs 44 and 48)
T
cy(CLKOtt)
output clock cycle time
111
148
ns
t
CLKOHtt
output clock HIGH time
37
74
ns
t
CLKOLtt
output clock LOW time
37
74
ns
t
o(h)tt
output clock HIGH time
C
L
= 5 pF
68
-
ns
t
o(d)tt
output clock LOW time
C
L
= 30 pF
-
t
o(h)tt
+ 15
ns
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
1997 Jan 21
65
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Note
1. Actual input capacitance maximum value may change because of package selection.
SRAM interface (see Figs 49 and 50)
T
cy(W)
write cycle time
86
98
ns
t
su(A)
address set-up to write enable
12
28
ns
t
h(A)
WE inactive to end of RAMA
12
-
ns
t
W
pulse width
35
-
ns
t
su(D-W)
data set-up to write end
32
-
ns
t
h(D-W)
data hold from write end
12
-
ns
t
su(OE-RAMA)
OE to RAM A set-up time
-
5
+5
ns
t
AV
address valid time
69
-
ns
t
dat(Z-OE)
data 3-state to OE inactive
12
24
ns
T
cy(R)
read cycle time
123
135
ns
t
su(A-OE)
address set-up to OE
10
24
ns
t
su(WE-OE)
WE to OE set-up time
-
60
ns
t
d(DAT)(h)
data hold delay time
0
-
ns
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
Fig.29 Timing definition of the synchronous input interface signals with the SAA7206 (descrambler).
handbook, full pagewidth
MGG789
ti(r)
ti(f)
ti(su)
ti(h)s
Tcy(DCLK)
ti(r)(DCLK)
ti(f)(DCLK)
tDCLKH
tDCLKL
DCLK
PKTDAT7 to PKTDAT0
PKTDATV
PKTBAD/PKTBAD
PKTSYNC
1997 Jan 21
66
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.30 Timing definition of the asynchronous interface signals with FEC.
handbook, full pagewidth
MGG790
ti(r)
ti(f)
ti(su)
ti(h)a
Tcy(CLK)
ti(r)(CLK)
ti(f)(CLK)
tCLKH
tCLKL
PKTBCLK
PKTDAT7 to PKTDAT0
PKTDATV
PKTBAD/PKTBAD
PKTSYNC
Fig.31 Timing definition of the alternative synchronous input interface signals.
handbook, full pagewidth
MGG791
ti(r)
ti(f)
ti(su)
ti(h)s
Tcy(DCLK)
ti(r)(DCLK)
ti(f)(DCLK)
tDCLKH
tDCLKL
DCLK
GPO7 to GPO0
GPV
GPSYNC
HSE
1997 Jan 21
67
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.32 Timing definition of the alternative asynchronous input interface signals.
handbook, full pagewidth
MGG792
ti(r)
ti(f)
ti(su)
ti(h)a
Tcy(CLK)
ti(r)(CLK)
ti(f)(CLK)
tCLKH
tCLKL
GPO7 to GPO0
GPSYNC
GPV
HSE
GPST
1997 Jan 21
68
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.33 Timing definition of the microcontroller interface signals (address write cycle).
handbook, full pagewidth
MGG793
tr(CS)
tf(CS)
tCSL
tCSH
Tcy(CS)
ti(su)(W)
ti(su)(W)
ti(su)(W)
ti(su)(W)
ti(h)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(h)(W)
ti(h)(W)
ti(r)(W)
ti(f)(W)
ti(r)(W)
ti(f)(W)
CSDEM
A1
A0
R/W
MDAT
MSB
LSB
1997 Jan 21
69
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.34 Timing definition of the microcontroller interface signals (data write cycle).
handbook, full pagewidth
MGG794
tr(CS)
tf(CS)
tCSL
tCSH
Tcy(CS)
ti(f)(W)
ti(r)(W)
ti(r)(W)
ti(f)(W)
CSDEM
A1
A0
R/W
MDAT
MSB
LSB
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
1997 Jan 21
70
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.35 Timing definition of the microcontroller interface signals (data write cycle in direct addressing mode).
handbook, full pagewidth
MGG795
CSDEM
A0
A1
R/W
MDAT
MSB
LSB
A2 to A9
ADDRESS
ADDRESS
Tcy(CS)
tCSL
tr(CS)
tf(CS)
tCSH
ti(r)(W)
ti(f)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
ti(h)(W)
ti(su)(W)
1997 Jan 21
71
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.36 Timing definition of the microcontroller interface signals (read cycle).
handbook, full pagewidth
MGG796
tf(CS)
ti(su)(W)
to(d)(R)
to(d)(R)
to(h)(R)
to(h)(R)
to(L-Z)
to(H-Z)
ti(h)(W)
to(r)(R)
to(f)(R)
CSDEM
A0
A1
R/W
MDAT
Tcy(CSL)(R)
tr(CS)
MSB
LSB
1997 Jan 21
72
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.37 Timing definition of the microcontroller interface signals (read cycle in direct addressing mode).
handbook, full pagewidth
MGG797
tf(CS)
ti(su)(W)
ti(su)(W)
ti(su)(W)
to(d)(R2)
to(d)(R1)
to(h)(R)
to(h)(R)
to(L-Z)
to(H-Z)
ti(h)(W)
ti(h)(W)
ti(h)(W)
to(r)(R)
to(f)(R)
CSDEM
A0
A1
A2 to A9
R/W
MDAT
Tcy(CSL)(R)
tr(CS)
ADDRESS
ADDRESS
MSB
LSB
1997 Jan 21
73
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.38 Timing definition of the high speed data output interface signals.
handbook, full pagewidth
MGG798
tCLKOL
tCLKOH
tf(CLKO)
tr(CLKO)
Tcy(CLKO)
to(d)h
to(h)h
to(r)
to(f)
GPO7 to GPO0
HSV
HSYNC
HSE
DCLK
Fig.39 Timing definition of the generic data filter output interface signals.
handbook, full pagewidth
MGG799
tCLKOL
tCLKOH
tf(CLKO)
tr(CLKO)
Tcy(CLKO)
to(d)g
to(h)g
to(r)
to(f)
GPO7 to GPO0
GPV
GPSYNC
GPST
1997 Jan 21
74
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.40 Timing definition of the third party video output interface signals.
handbook, full pagewidth
MGG800
video or audio data
video or audio data
CLKP
VO7 to VO0
Tcy(CLKO)
tCLKOH
tr(CLKO)
to(d)p
to(d)
tf(CLKO)
tCLKOL
to(r)
to(f)
1997 Jan 21
75
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
ok, full pagewidth
MGG801
VSEL
<
90
s
<
24 ns
<
24 ns
<
24 ns
<
24 ns
<
17 ns
>
0 ns
>
222 ns
>
5 ns
222 ns
<
360
s
R/W
MICR
O-
CONTR
OLLER
PIN's CONTR
OL
MD
A
T7 to
MD
A
T
0
V
O7 to
V
O
0
CSVID
video data
See microcontroller timing definition of read wr
ite cycle
Fig.41 Timing definition of the third party video read and write cycle interface signals.
1997 Jan 21
76
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.42 Timing definition of the generic video interface signals in master mode.
handbook, full pagewidth
MGG802
CCLKI
Tcy(CCLK)
to(d)
+
5
to(h)
to(f)
to(r)
tr(CCLK)
tf(CCLK)
tCCLKH
tCCLKL
CLK13.5
CbREF
COMSYNC
HSYNC
VSYNC
EVEN/ODD
PWMO
Fig.43 Timing definition of the generic video interface signals in slave mode.
handbook, full pagewidth
MGG803
CLK13.5
CbREF
COMSYNC
HSYNC
VSYNC
EVEN/ODD
PWMO
CCLKI
VIN
tr(CCLK)
tf(CCLK)
tCCLKL
tCCLKH
ti(h)
ti(su)
ti(f)
ti(r)
to(h)
to(d)
+
5
to(f)
to(r)
Tcy(CCLK)
1997 Jan 21
77
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.44 Timing definition of audio decoders in normal mode (32 to 448 kHz).
handbook, full pagewidth
MGG804
AUDECLK
AUDAT
AUDATV
AUE
tr(CLKO)
tf(CLKO)
111 ns
+
to(d)
111 ns
-
to(h)
tCLKOHa
Tcy(CLKOa)
tCLKOLa
Fig.45 Timing definition of audio decoders in SAA2500 mode (9 MHz).
handbook, full pagewidth
MGG805
AUDECLK
AUDAT
AUDATV
AUE
tr(CLKO)
tf(CLKO)
74 ns
+
to(d)
74 ns
-
to(h)
tCLKOHa
Tcy(CLKOa)
tCLKOLa
1997 Jan 21
78
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.46 Timing definition of audio decoders in gated clock mode.
handbook, full pagewidth
MGG806
CCLKI
AUDECLK
tr(CCLK)
tf(CCLK)
to(d)
to(h)
tCCLKH
Tcy(CCLK)
tCCLKL
Fig.47 Timing definition of the combined audio/video output interface signals.
handbook, full pagewidth
MGG807
video or audio data
video or audio data
VO7 to VO0
Tcy(CLKO)
111
-
to(h)
111
+
to(d)
tCLKOL
to(f)
to(r)
CLKP
or
AUDATV
VSEL = 1.
VREQ (for video) = 0.
or
AREQ (for audio) = 0.
1997 Jan 21
79
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.48 Timing definition of the teletext decoders.
handbook, full pagewidth
MGG808
tr(CLKO)
tCLKOHtt
to(d)tt
to(h)tt
Tcy(CLKOtt)
tf(CLKO)
tCLKOLtt
TTC
TTD
Fig.49 Timing definition of the SRAM interface write cycle.
handbook, full pagewidth
MGG809
Tcy(W)
tAV
tW
th(A)
tsu(D-W)
th(D-W)
tdat(Z-OE)
tsu(A)
tsu(OE-RAMA)
OERAM
RAMA14 to
RAMA0
RAMIO7 to
RAMIO0
WERAM
1997 Jan 21
80
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
Fig.50 Timing definition of the SRAM interface read cycle.
handbook, full pagewidth
MGG810
Tcy(R)
OERAM
RAMA14 to RAMA0
RAMIO7 to RAMIO0
tsu(A-OE)
td(DAT)(h)
tsu(WE-OE)
13 APPENDIX
Table 14 Parser states
STATE NUMBER
STATE NAME
MPEG-2 FIELD SIZE (BITS)
1
reset
indefinite
2
sync
8
3
indicators
16
4
flag_n_continuity
8
5
adaption_field/af_length
8
6
adaption_field/flags
8
7
adaption_field/prg_clk_ref
48
8
adaption_field/org_prg_clk_ref
48
9
adaption_field/private_segment
8K
10
adaption_field/splice_countdown
8
11
adaption_field/af_extension
8K
12
adaption_field/af_stuffing
8K
1997 Jan 21
81
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
14 PACKAGE OUTLINE
UNIT
A
1
A
2
A
3
b
p
c
E
(1)
(1)
(1)
e
H
E
L
L
p
Q
Z
y
w
v
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
EIAJ
mm
0.40
0.25
3.70
3.15
0.25
0.45
0.30
0.23
0.13
28.1
27.9
0.8
1.70
1.55
1.8
1.4
7
0
o
o
0.2
0.3
0.1
1.6
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.95
0.65
SOT320-2
95-02-04
96-03-14
D
(1)
28.1
27.9
H
D
31.45
30.95
31.45
30.95
E
Z
1.8
1.4
D
0
5
10 mm
scale
pin 1 index
b
p
e
E
A
1
A
L
p
Q
detail X
L
(A )
3
B
32
c
b
p
E
H
A
2
D
H
v
M
B
D
Z D
A
Z E
e
v
M
A
X
1
128
97
96
65
64
33
y
w
M
w
M
128 leads (lead length 1.6 mm); body 28 x 28 x 3.4 mm; high stand-off height
QFP128: plastic quad flat package;
SOT320-2
A
max.
3.95
1997 Jan 21
82
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
15 SOLDERING
15.1
Introduction
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our
"IC Package Databook" (order code 9398 652 90011).
15.2
Reflow soldering
Reflow soldering techniques are suitable for all QFP
packages.
The choice of heating method may be influenced by larger
plastic QFP packages (44 leads, or more). If infrared or
vapour phase heating is used and the large packages are
not absolutely dry (less than 0.1% moisture content by
weight), vaporization of the small amount of moisture in
them can cause cracking of the plastic body. For more
information, refer to the Drypack chapter in our
"Quality
Reference Handbook" (order code 9397 750 00192).
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250
C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45
C.
15.3
Wave soldering
Wave soldering is not recommended for QFP packages.
This is because of the likelihood of solder bridging due to
closely-spaced leads and the possibility of incomplete
solder penetration in multi-lead devices.
If wave soldering cannot be avoided, the following
conditions must be observed:
A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave)
soldering technique should be used.
The footprint must be at an angle of 45
to the board
direction and must incorporate solder thieves
downstream and at the side corners.
Even with these conditions, do not consider wave
soldering the following packages: QFP52 (SOT379-1),
QFP100 (SOT317-1), QFP100 (SOT317-2),
QFP100 (SOT382-1) or QFP160 (SOT322-1).
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Maximum permissible solder temperature is 260
C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150
C within
6 seconds. Typical dwell time is 4 seconds at 250
C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
15.4
Repairing soldered joints
Fix the component by first soldering two diagonally-
opposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300
C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320
C.
1997 Jan 21
83
Philips Semiconductors
Preliminary specification
MPEG-2 systems demultiplexer
SAA7205H
16 DEFINITIONS
17 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Internet: http://www.semiconductors.philips.com
Philips Semiconductors a worldwide company
Philips Electronics N.V. 1997
SCA53
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 So Paulo, SO PAULO - SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2870, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580/xxx
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstrae 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Printed in The Netherlands
547047/1200/01/pp84
Date of release: 1997 Jan 21
Document order number:
9397 750 00924