ChipFind - документация

Электронный компонент: TDA5140AT

Скачать:  PDF   ZIP
DATA SHEET
Product specification
Supersedes data of March 1992
File under Integrated Circuits, IC02
April 1994
INTEGRATED CIRCUITS
Philips Semiconductors
TDA5140A
Brushless DC motor drive circuit
April 1994
2
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
FEATURES
Full-wave commutation (using push/pull drivers at the
output stages) without position sensors
Built-in start-up circuitry
Three push-pull outputs:
0.8 A output current (typ.)
low saturation voltage
built-in current limiter
Thermal protection
Flyback diodes
Tacho output without extra sensor
Position pulse stage for phase-locked-loop control
Transconductance amplifier for an external control
transistor.
APPLICATIONS
VCR
Laser beam printer
Fax machine
Blower
Automotive.
GENERAL DESCRIPTION
The TDA5140A is a bipolar integrated circuit used to drive
3-phase brushless DC motors in full-wave mode. The
device is sensorless (saving of 3 hall-sensors) using the
back-EMF sensing technique to sense the rotor position.
QUICK REFERENCE DATA
Measured over full voltage and temperature range.
Notes
1. An unstabilized supply can be used.
2. V
VMOT
= V
P
; +AMP IN =
-
AMP IN = 0 V; all outputs I
O
= 0 mA.
ORDERING INFORMATION
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
V
P
supply voltage
note 1
4
-
18
V
V
VMOT
input voltage to the output
driver stages
note 2
1.7
-
16
V
V
DO
drop-out output voltage
I
O
= 100 mA
-
0.93
1.05
V
I
LIM
current limiting
V
VMOT
= 10 V; R
O
= 3.9
0.7
0.8
1
A
EXTENDED TYPE NUMBER
PACKAGE
PINS
PIN POSITION
MATERIAL
CODE
TDA5140A
18
DIL
plastic
SOT102
TDA5140AT
20
SOL
plastic
SOT163A
April 1994
3
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
BLOCK DIAGRAM
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBB
Fig.1 Block diagram (SOT102; DIL18).
April 1994
4
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
PINNING
SYMBOL
PIN
DIL18
PIN
SO20
DESCRIPTION
MOT1
1
1
driver output 1
TEST
2
2
test input/output
n.c.
3
not connected
MOT2
3
4
driver output 2
VMOT
4
5
input voltage for the output driver stages
PG IN
5
6
position generator: input from the position detector sensor to the position
detector stage (optional); only if an external position coil is used
PG/FG
6
7
position generator/frequency generator: output of the rotation speed and position
detector stages (open collector digital output, negative-going edge is valid)
GND2
7
8
ground supply return for control circuits
V
P
8
9
positive supply voltage
CAP-CD
9
10
external capacitor connection for adaptive communication delay timing
CAP-DC
10
11
external capacitor connection for adaptive communication delay timing copy
CAP-ST
11
12
external capacitor connection for start-up oscillator
CAP-TI
12
13
external capacitor connection for timing
+AMP IN
13
14
non-inverting input of the transconductance amplifier
-
AMP IN
14
15
inverting input of the transconductance amplifier
AMP OUT
15
16
transconductance amplifier output (open collector)
MOT3
16
17
driver output 3
n.c.
-
18
not connected
MOT0
17
19
input from the star point of the motor coils
GND1
18
20
ground (0 V) motor supply return for output stages
April 1994
5
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Fig.2 Pin configuration (SOT102; DIL18).
Fig.3 Pin configuration (SOT163A; SO20L).
FUNCTIONAL DESCRIPTION
The TDA5140A offers a sensorless three phase motor
drive function. It is unique in its combination of sensorless
motor drive and full-wave drive. The TDA5140A offers
protected outputs capable of handling high currents and
can be used with star or delta connected motors. It can
easily be adapted for different motors and applications.
The TDA5140A offers the following features:
Sensorless commutation by using the motor EMF.
Built-in start-up circuit.
Optimum commutation, independent of motor type or
motor loading.
Built-in flyback diodes.
Three phase full-wave drive.
High output current (0.8 A).
Outputs protected by current limiting and thermal
protection of each output transistor.
Low current consumption by adaptive base-drive.
Accurate frequency generator (FG) by using the
motor EMF.
Amplifier for external position generator (PG) signal.
Suitable for use with a wide tolerance, external PG
sensor.
Built-in multiplexer that combines the internal FG and
external PG signals on one pin for easy use with a
controlling microprocessor.
Uncommitted operational transconductance amplifier
(OTA), with a high output current, for use as a control
amplifier.
April 1994
6
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
V
P
supply voltage
-
18
V
V
I
input voltage; all pins except
VMOT
V
I
<
18 V
-
0.3
V
P
+ 0.5
V
V
VMOT
VMOT input voltage
-
0.5
17
V
V
O
output voltage
AMP OUT and PG/FG
GND
V
P
V
MOT1, MOT2 and MOT3
-
1
V
VMOT
+ V
DHF
V
V
I
input voltage CAP-ST, CAP-TI,
CAP-CD and CAP-DC
-
2.5
V
T
stg
storage temperature
-
55
+150
C
T
amb
operating ambient temperature
0
+70
C
P
tot
total power dissipation
see Figs 4 and 5
-
-
W
V
es
electrostatic handling
see "Handling"
-
500
V
Fig.4 Power derating curve (SOT102; DIL18).
P tot
(W)
50
3
2
0
0
200
MBD535
50
100
150
T ( C)
amb
o
2.28
1.05
70
Fig.5 Power derating curve (SOT163A; SO20L).
P tot
(W)
50
3
2
0
0
200
MBD536
50
100
150
T ( C)
amb
o
1.38
70
1
HANDLING
Every pin withstands the ESD test in accordance with
"MIL-STD-883C class 2". Method 3015 (HBM 1500
, 100 pF)
3 pulses + and 3 pulses
-
on each pin referenced to ground.
April 1994
7
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
CHARACTERISTICS
V
P
= 14.5 V; T
amb
= 25
C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supply
V
P
supply voltage
note 1
4
-
18
V
I
P
supply current
note 2
-
3.7
5
mA
V
VMOT
input voltage to the output driver
stages
see Fig.1
1.7
-
16
V
Thermal protection
T
SD
local temperature at
temperature sensor causing
shut-down
130
140
150
C
T
reduction in temperature before
switch-on
after shut-down
-
T
SD
-
30
-
K
MOT0; centre tap
V
I
input voltage
-
0.5
-
V
VMOT
V
I
I
input bias current
0.5 V
<
V
I
<
V
VMOT
-
1.5 V
-
10
-
0
A
V
CSW
comparator switching level
note 3
20
30
40
mV
V
CSW
variation in comparator
switching levels
-
3
0
+3
mV
V
hys
comparator input hysteresis
-
75
-
V
MOT1, MOT2 and MOT3
V
DO
drop-out output voltage
I
O
= 100 mA
-
0.93
1.05
V
I
O
= 500 mA
-
1.65
1.80
V
V
OL
variation in saturation voltage
between lower transistors
I
O
= 100 mA
-
-
180
mV
V
OH
variation in saturation voltage
between upper transistors
I
O
=
-
100 mA
-
-
180
mV
I
LIM
current limiting
V
VMOT
= 10 V; R
O
= 6.8
0.7
0.8
1
A
V
DHF
diode forward voltage (diode D
H
) I
O
=
-
500 mA; notes 4
and 5; see Fig.1
-
-
1.5
V
V
DLF
diode forward voltage (diode D
L
)
I
O
= 500 mA; notes 4 and
5; see Fig.1
-
1.5
-
-
V
I
DM
peak diode current
note 5
-
-
1
A
+AMP IN and
-
AMP IN
V
I
input voltage
-
0.3
-
V
P
-
1.7
V
differential mode voltage without
'latch-up'
-
-
V
P
V
I
b
input bias current
-
-
650
nA
C
I
input capacitance
-
4
-
pF
V
offset
input offset voltage
-
-
10
mV
April 1994
8
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
AMP OUT (open collector)
I
I
output sink current
40
-
-
mA
V
sat
saturation voltage
I
I
= 40 mA
-
1.5
2.1
V
V
O
output voltage
-
0.5
-
+18
V
SR
slew rate
R
L
= 330
; C
L
= 50 pF
-
60
-
mA/
s
G
tr
transfer gain
0.3
-
-
S
PG IN
V
I
input voltage
-
0.3
-
+5
V
I
b
input bias current
-
-
650
nA
R
I
input resistance
5
-
30
k
V
CWS
comparator switching level
86
-
107
mV
V
hys
comparator input hysteresis
-
8
-
mV
PG/FG (open collector)
V
OL
LOW level output voltage
I
O
= 1.6 mA
-
-
0.4
V
V
OH(max)
maximum HIGH level output
voltage
V
P
-
-
V
t
THL
HIGH-to-LOW transition time
C
L
= 50 pF; R
L
= 10 k
-
0.5
-
s
ratio of PG/FG frequency and
commutation frequency
-
1 : 2
-
duty factor
-
50
-
%
t
PL
pulse width LOW
after a PG IN pulse
5
7
18
s
CAP-ST
I
sink
output sink current
1.5
2.0
2.5
A
I
source
output source current
-
2.5
-
2.0
-
1.5
A
V
SWL
LOW level switching voltage
-
0.20
-
V
V
SWH
HIGH level switching voltage
-
2.20
-
V
CAP-TI
I
sink
output sink current
-
28
-
A
I
source
output source current
0.05 V < V
CAP-TI
< 0.3 V
-
-
57
-
A
0.3 V < V
CAP-TI
< 2.2 V
-
-
5
-
A
V
SWL
LOW level switching voltage
-
50
-
mV
V
SWM
MIDDLE level switching voltage
-
0.30
-
V
V
SWH
HIGH level switching voltage
-
2.20
-
V
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
April 1994
9
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Notes
1. An unstabilized supply can be used.
2. V
VMOT
= V
P
, all other inputs at 0 V; all outputs at V
P
; I
O
= 0 mA.
3. Switching levels with respect to MOT1, MOT2 and MOT3.
4. Drivers are in the high-impedance OFF-state.
5. The outputs are short-circuit protected by limiting the current and the IC temperature.
APPLICATION INFORMATION
CAP-CD
I
sink
output sink current
10.6
16.2
22
A
I
source
output source current
-
5.3
-
8.1
-
11
A
I
sink
/I
source
ratio of sink to source current
1.85
2.05
2.25
V
IL
LOW level input voltage
850
875
900
mV
V
IH
HIGH level input voltage
2.3
2.4
2.55
V
CAP-DC
I
sink
output sink current
10.1
15.5
20.9
A
I
source
output source current
-
20.9
-
15.5
-
10.1
A
I
sink
/I
source
ratio of sink to source current
0.9
1.025
1.15
V
IL
LOW level input voltage
850
875
900
mV
V
IH
HIGH level input voltage
2.3
2.4
2.55
V
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Fig.6 Application diagram without use of the operational transconductance amplifier (OTA).
(1) Value selected for 3 Hz start-up oscillator frequency.
April 1994
10
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Introduction (see Fig.7)
Full-wave driving of a three phase motor requires three
push-pull output stages. In each of the six possible states
two outputs are active, one sourcing (H) and one sinking
(L). The third output presents a high impedance (Z) to the
motor which enables measurement of the motor
back-EMF in the corresponding motor coil by the EMF
comparator at each output. The commutation logic is
responsible for control of the output transistors and
selection of the correct EMF comparator. In Table 1 the
sequence of the six possible states of the outputs has
been depicted.
Table 1 Output states.
Note
1. H = HIGH state;
L = LOW state;
Z = high impedance OFF-state.
The zero-crossing in the motor EMF (detected by the
comparator selected by the commutation logic) is used to
calculate the correct moment for the next commutation,
that is, the change to the next output state. The delay is
calculated (depending on the motor loading) by the
adaptive commutation delay block.
STATE
MOT1
(1)
MOT2
(1)
MOT3
(1)
1
Z
L
H
2
H
L
Z
3
H
Z
L
4
Z
H
L
5
L
H
Z
6
L
Z
H
Because of high inductive loading the output stages
contain flyback diodes. The output stages are also
protected by a current limiting circuit and by thermal
protection of the six output transistors.
The detected zero-crossings are used to provide speed
information. The information has been made available on
the PG/FG output pin. This is an open collector output and
provides an output signal with a frequency that is half the
commutation frequency. A VCR scanner also requires a
PG phase sensor. This circuit has an interface for a simple
pick-up coil. A multiplexer circuit is also provided to
combine the FG and PG signals in time.
The system will only function when the EMF voltage from
the motor is present. Therefore, a start oscillator is
provided that will generate commutation pulses when no
zero-crossings in the motor voltage are available.
A timing function is incorporated into the device for internal
timing and for timing of the reverse rotation detection.
The TDA5140A also contains an uncommitted
transconductance amplifier (OTA) that can be used as a
control amplifier. The output is capable of directly driving
an external power transistor.
The TDA5140A is designed for systems with low current
consumption: use of I
2
L logic, adaptive base drive for the
output transistors (patented), possibility of using a pick-up
coil without bias current.
April 1994
11
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBB
BBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBB
BBBBBBB
BBBBBBB
BBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
B
B
B
B
BB
BB
BB
BB
BB
BB
BB
BB
Fig.7 Typical application of the TDA5140A as a scanner driver, with use of OTA.
April 1994
12
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Adjustments
The system has been designed in such a way that the
tolerances of the application components are not critical.
However, the approximate values of the following
components must still be determined:
The start capacitor; this determines the frequency of the
start oscillator.
The two capacitors in the adaptive commutation delay
circuit; these are important in determining the optimum
moment for commutation, depending on the type and
loading of the motor.
The timing capacitor; this provides the system with its
timing signals.
T
HE START CAPACITOR
(CAP-ST)
This capacitor determines the frequency of the start
oscillator. It is charged and discharged, with a current of
2
A, from 0.05 to 2.2 V and back to 0.05 V. The time
taken to complete one cycle is given by:
t
start
= (2.15
C) s (with C in
F)
The start oscillator is reset by a commutation pulse and so
is only active when the system is in the start-up mode. A
pulse from the start oscillator will cause the outputs to
change to the next state (torque in the motor). If the
movement of the motor generates enough EMF the
TDA5140A will run the motor. If the amount of EMF
generated is insufficient, then the motor will move one step
only and will oscillate in its new position. The amplitude of
the oscillation must decrease sufficiently before the arrival
of the next start pulse, to prevent the pulse arriving during
the wrong phase of the oscillation. The oscillation of the
motor is given by:
where:
K
t
= torque constant (N.m/A)
I = current (A)
p = number of magnetic pole-pairs
J = inertia J (kg.m
2
)
f
osc
1
2
K
t
I
p
J
-----------------------
-----------------------------------
=
Example: J = 72
10
-6
kg.m
2
, K = 25
10
-3
N.m/A, p = 6
and I = 0.5 A; this gives f
osc
= 5 Hz. If the damping is high
then a start frequency of 2 Hz can be chosen or t = 500 ms,
thus C = 0.5/2 = 0.25
F, (choose 220 nF).
T
HE ADAPTIVE COMMUTATION DELAY
(CAP-CD
AND
CAP-DC)
In this circuit capacitor CAP-CD is charged during one
commutation period, with an interruption of the charging
current during the diode pulse. During the next
commutation period this capacitor (CAP-CD) is discharged
at twice the charging current. The charging current is
8.1
A and the discharging current 16.2
A; the voltage
range is from 0.9 to 2.2 V. The voltage must stay within this
range at the lowest commutation frequency of interest, f
C1
:
(C in nF)
If the frequency is lower, then a constant commutation
delay after the zero-crossing is generated by the discharge
from 2.2 to 0.9 V at 16.2
A.
maximum delay = (0.076
C) ms (with C in nF)
Example: nominal commutation frequency = 900 Hz and
the lowest usable frequency = 400 Hz, so:
(choose 18 nF)
The other capacitor, CAP-DC, is used to repeat the same
delay by charging and discharging with 15.5
A. The same
value can be chosen as for CAP-CD. Figure 8 illustrates
typical voltage waveforms.
C
8.1
10
6
f
1.3
--------------------------
6231
f
c1
-------------
=
=
CAP-CD
6231
400
-------------
15.6
=
=
April 1994
13
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Fig.8 CAP-CD and CAP-DC typical voltage waveforms in normal running mode.
T
HE TIMING CAPACITOR
(CAP-TI)
Capacitor CAP-TI is used for timing the successive steps
within one commutation period; these steps include some
internal delays.
The most important function is the watchdog time in which
the motor EMF has to recover from a negative diode-pulse
back to a positive EMF voltage (or vice versa). A watchdog
timer is a guarding function that only becomes active when
the expected event does not occur within a predetermined
time.
The EMF usually recovers within a short time if the motor
is running normally (
<<
ms). However, if the motor is
motionless or rotating in the reverse direction, then the
time can be longer (
>>
ms).
A watchdog time must be chosen so that it is long enough
for a motor without EMF (still) and eddy currents that may
stretch the voltage in a motor winding; however, it must be
short enough to detect reverse rotation. If the watchdog
time is made too long, then the motor may run in the wrong
direction (with little torque).
The capacitor is charged, with a current of 57
A, from
0.2 to 0.3 V. Above this level it is charged, with a current of
5
A, up to 2.2 V only if the selected motor EMF remains
in the wrong polarity (watchdog function). At the end, or, if
the motor voltage becomes positive, the capacitor is
discharged with a current of 28
A. The watchdog time is
the time taken to charge the capacitor, with a current of
5
A, from 0.3 to 2.2 V.
To ensure that the internal delays are covered CAP-TI
must have a minimum value of 2 nF. For the watchdog
function a value for CAP-TI of 10 nF is recommended.
To ensure a good start-up and commutation, care must be
taken that no oscillations occur at the trailing edge of the
flyback pulse. Snubber networks at the outputs should be
critically damped.
Typical voltage waveforms are illustrated by Fig.9.
April 1994
14
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Fig.9 Typical CAP-TI and V
MOT1
voltage waveforms in normal running mode.
If the chosen value of CAP-TI is too small oscillations can occur in certain positions of a blocked rotor. If the chosen value is too large, then it
is possible that the motor may run in the reverse direction (synchronously with little torque).
Other design aspects
There are other design aspects concerning the application
of the TDA5140A besides the commutation function. They
are:
Generation of the tacho signal FG
A built-in interface for a PG sensor
General purpose operational transconductance
amplifier (OTA)
Possibilities of motor control
Reliability.
FG
SIGNAL
The FG signal is generated in the TDA5140A by using the
zero-crossing of the motor EMF from the three motor
windings. Every zero-crossing in a (star connected) motor
winding is used to toggle the FG output signal. The FG
frequency is therefore half the commutation frequency.
All transitions indicate the detection of a zero-crossing
(except for PG). The negative-going edges are called FG
pulses because they generate an interrupt in a controlling
microprocessor.
The accuracy of the FG output signal (jitter) is very good.
This accuracy depends on the symmetry of the motor's
electromagnetic construction, which also effects the
satisfactory functioning of the motor itself.
Example: A 3-phase motor with 6 magnetic pole-pairs at
1500 rpm and with a full-wave drive has a commutation
frequency of 25
6
6 = 900 Hz, and generates a tacho
signal of 450 Hz.
PG
SIGNAL
The accuracy of the PG signal in applications such as VCR
must be high (phase information). This accuracy is
obtained by combining the accurate FG signal with the PG
signal by using a wide tolerance external PG sensor. The
external PG signal (PG IN) is only used as an indicator to
select a particular FG pulse. This pulse differs from the
other FG pulses in that it has a short LOW-time of 18
s
after a HIGH-to-LOW transition. All other FG pulses have
a 50% duty factor (see Fig.10).
For more information also see
"application note
EIE/AN 93014".
April 1994
15
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
Fig.10 Timing and the FG and PG IN signals.
The special PG pulse is derived from the negative-going
zero-crossing from the MOT3 output (pin 16). The external
PG signal (PG IN on pin 5) must sense a positive-going
voltage (
>
80 mV) within 1.5 to 7.5 commutation periods
before the negative-going zero-crossing in MOT3
(see Fig.10).
The voltage requirements of the PG IN input are such that
an inexpensive pick-up coil can be used as a sensor
(see Fig.11).
Example: If p = 6, then one revolution contains 6
6 = 36
commutations. The tolerance is 6 periods, that is 60
degrees (mechanically) or 6.67 ms at 1500 rpm.
If a PG sensor is not used, the PG IN input must be
grounded, this will result in a 50% duty factor FG signal.
MBD696
2.2 k
PG IN
GND2
22 nF
Fig.11 Pick-up coil as PG sensor.
April 1994
16
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
T
HE
O
PERATIONAL
T
RANSCONDUCTANCE
A
MPLIFIER
(OTA)
The OTA is an uncommitted amplifier with a high output
current (40 mA) that can be used as a control amplifier.
The common mode input range includes ground (GND)
and rises to V
P
-
1.7 V. The high sink current enables the
OTA to drive a power transistor directly in an analog
control amplifier.
Although the gain is not extremely high (0.3 S), care must
be taken with the stability of the circuit if the OTA is used
as a linear amplifier as no frequency compensation has
been provided.
The convention for the inputs (inverting or not) is the same
as for a normal operational amplifier: with a resistor (as
load) connected from the output (AMP OUT) to the positive
supply, a positive-going voltage is found when the
non-inverting input (+AMP IN) is positive with respect to
the inverting input (
-
AMP IN). Confusion is possible
because a 'plus' input causes less current, and so a
positive voltage.
M
OTOR
C
ONTROL
DC motors can be controlled in an analog manner using
the OTA.
For the control an external transistor is required. The OTA
can supply the base current for this transistor and act as a
control amplifier (see Fig.7).
R
ELIABILITY
It is necessary to protect high current circuits and the
output stages are protected in two ways:
Current limiting of the 'lower' output transistors. The
'upper' output transistors use the same base current as
the conducting 'lower' transistor (+15%). This means
that the current to and from the output stages is limited.
Thermal protection of the six output transistors is
achieved by each transistor having a thermal sensor
that is active when the transistor is switched on. The
transistors are switched off when the local temperature
becomes too high.
It is possible, that when braking, the motor voltage (via the
flyback diodes and the impedance on VMOT) may cause
higher currents than allowed (
>
0.6 A). These currents
must be limited externally.
April 1994
17
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
PACKAGE OUTLINES
8.25
7.80
0.32 max
7.62
9.5
8.3
MSA259
18
1
10
9
1.4 max
6.48
6.14
22.00
21.35
3.7
max 4.7
max
0.51
min
3.9
3.4
seating plane
0.254
M
0.53
max
2.54
(8x)
0.85
max
Fig.12 18-pin dual in-line; plastic (SOT102).
Dimensions in mm.
April 1994
18
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
handbook, full pagewidth
7.6
7.4
10.65
10.00
A
MBC234 - 1
0.3
0.1
2.45
2.25
1.1
0.5
0.32
0.23
1.1
1.0
0 to 8
o
2.65
2.35
detail A
S
13.0
12.6
0.1 S
1
10
11
20
pin 1
index
0.9
0.4
(4x)
0.25 M
(20x)
0.49
0.36
1.27
Fig.13 20-pin small-outline; plastic (SO20L; SOT163A).
Dimensions in mm.
April 1994
19
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
SOLDERING
Plastic dual in-line packages
B
Y DIP OR WAVE
The maximum permissible temperature of the solder is
260
C; this temperature must not be in contact with the
joint for more than 5 s. The total contact time of successive
solder waves must not exceed 5 s.
The device may be mounted up to the seating plane, but
the temperature of the plastic body must not exceed the
specified storage maximum. If the printed-circuit board has
been pre-heated, forced cooling may be necessary
immediately after soldering to keep the temperature within
the permissible limit.
R
EPAIRING SOLDERED JOINTS
Apply the soldering iron below the seating plane (or not
more than 2 mm above it). If its temperature is below
300
C, it must not be in contact for more than 10 s; if
between 300 and 400
C, for not more than 5 s.
Plastic small-outline packages
B
Y WAVE
During placement and before soldering, the component
must be fixed with a droplet of adhesive. After curing the
adhesive, the component can be soldered. The adhesive
can be applied by screen printing, pin transfer or syringe
dispensing.
Maximum permissible solder temperature is 260
C, and
maximum duration of package immersion in solder bath is
10 s, if allowed to cool to less than 150
C within 6 s.
Typical dwell time is 4 s at 250
C.
A modified wave soldering technique is recommended
using two solder waves (dual-wave), in which a turbulent
wave with high upward pressure is followed by a smooth
laminar wave. Using a mildly-activated flux eliminates the
need for removal of corrosive residues in most
applications.
B
Y SOLDER PASTE REFLOW
Reflow soldering requires the solder paste (a suspension
of fine solder particles, flux and binding agent) to be
applied to the substrate by screen printing, stencilling or
pressure-syringe dispensing before device placement.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt, infrared, and
vapour-phase reflow. Dwell times vary between 50 and
300 s according to method. Typical reflow temperatures
range from 215 to 250
C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 min at 45
C.
R
EPAIRING SOLDERED JOINTS
(
BY HAND
-
HELD SOLDERING
IRON OR PULSE
-
HEATED SOLDER TOOL
)
Fix the component by first soldering two, diagonally
opposite, end pins. Apply the heating tool to the flat part of
the pin only. Contact time must be limited to 10 s at up to
300
C. When using proper tools, all other pins can be
soldered in one operation within 2 to 5 s at between 270
and 320
C. (Pulse-heated soldering is not recommended
for SO packages.)
For pulse-heated solder tool (resistance) soldering of VSO
packages, solder is applied to the substrate by dipping or
by an extra thick tin/lead plating before package
placement.
April 1994
20
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
DEFINITIONS
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
April 1994
21
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
NOTES
April 1994
22
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
NOTES
April 1994
23
Philips Semiconductors
Product specification
Brushless DC motor drive circuit
TDA5140A
NOTES
Philips Semiconductors
Philips Semiconductors a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40 783 749, Fax. (31)40 788 399
Brazil: Rua do Rocio 220 - 5
th
floor, Suite 51,
CEP: 04552-903-SO PAULO-SP, Brazil.
P.O. Box 7383 (01064-970).
Tel. (011)821-2327, Fax. (011)829-1849
Canada: INTEGRATED CIRCUITS:
Tel. (800)234-7381, Fax. (708)296-8556
DISCRETE SEMICONDUCTORS: 601 Milner Ave,
SCARBOROUGH, ONTARIO, M1B 1M8,
Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
Colombia: Carrera 21 No. 56-17, BOGOTA, D.E., P.O. Box 77621,
Tel. (571)217 4609, Fax. (01)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (9)0-50261, Fax. (9)0-520971
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex,
Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 10 63 23, 20095 HAMBURG ,
Tel. (040)3296-0, Fax. (040)3296 213
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
Hong Kong: 15/F Philips Ind. Bldg., 24-28 Kung Yip St.,
KWAI CHUNG, N.T. Tel. (0)4245 121, Fax. (0)4806 960
India: Philips Components Division,
A Block Shivsagar Estate Worli,
Dr. Annie Besant Rd., Bombay 400 018
Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950,
Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)640 000, Fax. (01)640 200
Italy: Viale F. Testi, 327, 20162 MILANO,
Tel. (02)6752.3358, Fax. (02)6752.3350
Japan: Philips Bldg 13-37, Kohnan 2 -chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5028, Fax. (03)3740 0580
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: Philips Components, 5900 Gateway East, Suite 200,
EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN,
Tel. (040)78 37 49, Fax. (040)78 83 99
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
Pakistan: Philips Markaz, M.A. Jinnah Rd., KARACHI 3,
Tel. (021)577 039, Fax. (021)569 1832
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Portugal: Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex,
Tel. (01)683 121, Fax. (01)658 013
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: 195-215 Main Road, Martindale,
P.O. Box 7430,JOHANNESBURG 2000,
Tel. (011)470-5911, Fax. (011)470-5494
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZRICH,
Tel. (01)488 2211, Fax. (01)481 7730
Taiwan: 23-30F, 66, Chung Hsiao West Road, Sec. 1,
P.O. Box 22978, TAIPEI 10446,
Tel. (2)382 4443, Fax. (2)382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna - Trad Road Km. 3
Prakanong, BANGKOK 10260,
Tel. (2)399-3280 to 9, (2)398-2083, Fax. (2)398-2080
Turkey: Talatpasa Cad. No. 5, 80640 GULTEPE/ISTANBUL,
Tel. (0212)279 2770, Fax. (0212)269 3094
United Kingdom: Philips Semiconductors Limited, P.O. Box 65,
Philips House, Torrington Place, LONDON, WC1E 7HD,
Tel. (071)436 41 44, Fax. (071)323 03 42
United States: INTEGRATED CIRCUITS:
811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. (800)234-7381, Fax. (708)296-8556
DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd.,
P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404,
Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
For all other countries apply to: Philips Semiconductors,
International Marketing and Sales, Building BAF-1,
P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands,
Telex 35000 phtcnl, Fax. +31-40-724825
SCD30
Philips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the
prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation
or contract, is believed to be accurate and reliable and may be changed without
notice. No liability will be accepted by the publisher for any consequence of its
use. Publication thereof does not convey nor imply any license under patent- or
other industrial or intellectual property rights.
Printed in The Netherlands
9397 728 20011