ChipFind - документация

Электронный компонент: TDA8046H

Скачать:  PDF   ZIP

Document Outline

DATA SHEET
Product specification
Supersededs data of 1996 Jul 23
File under Integrated Circuits, IC02
1996 Nov 19
INTEGRATED CIRCUITS
TDA8046
Multi-mode QAM demodulator
1996 Nov 19
2
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
CONTENTS
1
FEATURES
2
APPLICATION
3
QUICK REFERENCE DATA
4
ORDERING INFORMATION
5
BLOCK DIAGRAM
6
PINNING
7
FUNCTIONAL DESCRIPTION
7.1
Functional description of the individual blocks
7.1.1
Quadrature demodulator and half Nyquist filter
7.1.2
Equalizer
7.1.3
Lock detector
7.1.4
Carrier recovery
7.1.5
Clock recovery
7.1.6
AGC
7.1.7
Offset control
7.1.8
Loop amplifiers
7.1.9
Output formatter
7.1.10
Boundary scan
7.1.11
I
2
C-bus interface
7.1.12
I
2
C-bus write parameters
7.1.13
I
2
C-bus read parameters
8
LIMITING VALUES
9
THERMAL CHARACTERISTICS
10
DEMODULATOR AND HALF NYQUIST
FILTER CHARACTERISTICS
11
LOCK DETECTOR CHARACTERISTICS
12
CARRIER RECOVERY CHARACTERISTICS
13
CLOCK RECOVERY CHARACTERISTICS
14
AGC CHARACTERISTICS
15
INTEGRATED LOOP AMPLIFIERS
CHARACTERISTICS
16
CHARACTERISTICS OF DIGITAL INPUTS
AND OUTPUTS
17
PACKAGE OUTLINE
18
SOLDERING
18.1
Introduction
18.2
Reflow soldering
18.3
Wave soldering
18.4
Repairing soldered joints
19
DEFINITIONS
20
LIFE SUPPORT APPLICATIONS
21
PURCHASE OF PHILIPS I
2
C COMPONENTS
1996 Nov 19
3
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
1
FEATURES
Different modulation schemes: 4, 16, 32,
64 and 256-QAM
Digital demodulator and square root raised cosine
Nyquist filter with roll-off of 15% or 20%
High performance adaptive equalizer (no training
sequence needed)
Digital detectors for generation of required control
voltages for carrier recovery, clock recovery and AGC
Digital-to-analog converters and operational amplifiers
allowing high flexibility for selection of the (PLL) loop
time constants
High maximum symbol rate (r
s
) of 7 Msymbols/s
Input format: Straight binary or 2's complement
(up to 9 bits, TTL compatible)
Output format: 8-bit wide bus (CMOS compatible)
I
2
C-bus interface to initialize and monitor the
demodulator. When no I
2
C-bus usage; 64-QAM,
20% roll-off factor in default mode
5 V peripheral and analog supply voltage
3.3 V core supply voltage
Boundary scan test.
2
APPLICATION
Demodulation for digital cable TV and cable modem.
3
QUICK REFERENCE DATA
Notes
1. The supply currents are specified for the maximum symbol frequency.
2. The implementation loss (IL) of the demodulator is defined as the distance between the measured and theoretical
BER curve as function of signal-to-noise ratio at a BER = 10
-
6
for a back-to-back measurement at the IF frequency.
This performance depends on the chosen loop parameters (see
Application notes).
4
ORDERING INFORMATION
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
V
DDD(core)
core supply voltage
3.00
3.30
3.60
V
V
DDD
digital peripheral supply voltage
4.75
5.00
5.25
V
V
DDA
analog supply voltage
4.75
5.00
5.25
V
I
DDD(core)
core supply current
V
DDD(core)
= 3.3 V; note 1
-
100
-
mA
I
DDD
digital peripheral supply current
V
DDD
= 5 V; note 1
-
14
-
mA
I
DDA
analog supply current
V
DDA
= 5 V; note 1
-
16
-
mA
r
s
symbol rate
-
-
7
Msym/s
IL
implementation loss
note 2
-
0.7
-
dB
Nyquist roll-off (programmable)
-
15 or 20
-
%
SNR
lock
signal-to-noise ratio for locking a
64-QAM constellation
21
-
-
dB
signal-to-noise ratio for locking a
256-QAM constellation
27
-
-
dB
TYPE
NUMBER
PACKAGE
NAME
DESCRIPTION
VERSION
TDA8046H
QFP64
plastic quad flat package; 64 leads (lead length 1.95 mm);
body 14
20
2.8 mm
SOT319-2
1996 Nov 19
4
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
5
BLOCK DIAGRAM
dbook, full pagewidth
1 to 5,
8 to 11
DIN0
to
DIN8
SQUARE ROOT
RAISED COSINE
DEMODULATOR
INPUT
REPRESEN-
TATION
SQUARE ROOT
RAISED COSINE
COARSE
AGC
DAC
I ref1
V
ref
54
53
CLOCK
RECOVERY
DAC
I ref2
V
ref
58
57
NCO
CONTROL
DIGITAL
PHASE
ROTATOR
OFFSET
OFFSET
CONTROL
BOUNDARY
SCAN TEST
FINE AGC
EQUALIZER
FINE AGC
CONTROL
OUTPUT
FORMATTER
20 to 23
27 to 30
18
DO7 to
DO0
CLKSDV
V
CARREC
V
CARTC
V
CLKREC
V
CLKTC
V
AGC
60
V
DDA
59
V
SSA
V
AGCTC
I BIAS
CARRIER
RECOVERY
DAC
I ref3
V
ref
56
55
52
BIAS
GENERATOR
V
ref
I ref1
I ref2
I ref3
ANALOG SECTION
CLOCK GENERATOR
15
62
4r
s
2r
s
r s
to DACs
internal clock for
digital processing
CLKADC
CLK
A0
37
SCL
35
TMS
44
PRESET
49
CLKT
19
TDO
47
TDI
48
TRST
42
TCK
43
SDA
36
I
2
C-BUS
CONTROL
32
CLKOUT
6, 13, 16,
25, 33, 38,
45, 51, 63
TDA8046
MGG198
V
DDD1 to 9
7, 12, 14, 17,
24, 26, 31, 34,
46, 50, 61, 64
V
SSD1 to 12
41
TEST1
40
TEST2
39
TEST3
Fig.1 Block diagram.
1996 Nov 19
5
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
6
PINNING
SYMBOL
PIN
I/O
DESCRIPTION
DIN0
1
I
digital input bit 0 (LSB)
DIN1
2
I
digital input bit 1
DIN2
3
I
digital input bit 2
DIN3
4
I
digital input bit 3
DIN4
5
I
digital input bit 4
V
DDD1
6
supply
digital peripheral supply voltage 1 (+5 V)
V
SSD1
7
supply
digital ground 1; for input peripheral and core
DIN5
8
I
digital input bit 5
DIN6
9
I
digital input bit 6
DIN7
10
I
digital input bit 7
DIN8
11
I
digital input bit 8 (MSB)
V
SSD2
12
supply
digital ground 2; for core and clock buffers
V
DDD2
13
supply
digital supply voltage 2; for core and clock buffers (+3.3 V)
V
SSD3
14
supply
digital peripheral ground 3
CLKADC
15
O
clock output to ADC (4
r
s
)
V
DDD3
16
supply
digital peripheral supply voltage 3 (+5 V)
V
SSD4
17
supply
digital ground 4; for core
CLKSDV
18
O
clock symbol data valid output
CLKT
19
I
for test purpose only
DO7
20
O
parallel data output (bit 7)
DO6
21
O
parallel data output (bit 6)
DO5
22
O
parallel data output (bit 5)
DO4
23
O
parallel data output (bit 4)
V
SSD5
24
supply
digital peripheral ground 5
V
DDD4
25
supply
digital peripheral supply voltage 4 (+5 V)
V
SSD6
26
supply
digital ground 6; for core
DO3
27
O
parallel data output (bit 3)
DO2
28
O
parallel data output (bit 2)
DO1
29
O
parallel data output (bit 1)
DO0
30
O
parallel data output (bit 0)
V
SSD7
31
supply
digital peripheral ground 7
CLKOUT
32
I
output formatter clock output
V
DDD5
33
supply
digital peripheral supply voltage 5 (+5 V)
V
SSD8
34
supply
digital peripheral ground 8
SCL
35
I
serial clock input (I
2
C-bus)
SDA
36
I/O
serial data input/output (I
2
C-bus)
A0
37
I
hardware address input (I
2
C-bus)
V
DDD6
38
supply
digital peripheral supply voltage 6 (+5 V)
TEST3
39
I
test input 3 (normally connected to ground)
TEST2
40
I
test input 2 (normally connected to ground)
1996 Nov 19
6
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
TEST1
41
I
test input 1 input (normally connected to ground)
TRST
42
I
optional asynchronous reset input
TCK
43
I
dedicated test clock input
TMS
44
I
input control signal
V
DDD7
45
supply
digital supply voltage 7; for core (+3.3 V)
V
SSD9
46
supply
digital ground 9; for core
TDO
47
O
serial test data output
TDI
48
I
serial test data input
PRESET
49
I
set device into default mode input
V
SSD10
50
supply
digital ground 10; for the digital section of the analog block
V
DDD8
51
supply
digital supply voltage 8; for the digital section of the analog block (+5 V)
I
BIAS
52
I
input bias current for DACs
V
AGCTC
53
O
inverted operational amplifier input voltage for loop filtering
V
AGC
54
O
analog output voltage for AGC
V
CARTC
55
O
inverted operational amplifier input voltage for carrier recovery loop
filtering
V
CARREC
56
O
analog output voltage for carrier recovery
V
CLKTC
57
O
inverted operational amplifier input voltage for clock recovery loop
filtering
V
CLKREC
58
O
analog output voltage for clock recovery
V
SSA
59
supply
analog ground
V
DDA
60
supply
analog supply voltage (+5 V)
V
SSD11
61
supply
digital ground 11; for clock
CLK
62
I
clock input (4
r
s
)
V
DDD9
63
supply
digital supply voltage 9; for clock
V
SSD12
64
supply
digital peripheral ground 12
SYMBOL
PIN
I/O
DESCRIPTION
1996 Nov 19
7
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
handbook, full pagewidth
TDA8046
MGG197
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
TDI
TDO
VSSD9
VDDD7
TMS
TCK
TRST
TEST1
TEST2
TEST3
VDDD6
A0
SDA
SCL
VSSD8
VDDD5
DIN0
DIN1
DIN2
DIN3
DIN4
VDDD1
VSSD1
DIN5
DIN6
DIN7
DIN8
VSSD2
VDDD2
VSSD3
CLKADC
VDDD3
V
SSD12
V
DDD9
CLK
V
SSD11
V
DDA
V
SSA
V
CLKREC
V
CLKTC
V
CARREC
V
CARTC
V
AGC
V
AGCTC
I BIAS
VDDD8
VSSD10
PRESET
VSSD4
CLKSDV
CLKT
DO7
DO6
DO5
DO4
V
SSD5
V
DDD4
V
SSD6
DO3
DO2
DO1
DO0
V
SSD7
CLKOUT
Fig.2 Pin configuration.
1996 Nov 19
8
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7
FUNCTIONAL DESCRIPTION
Figure 3 shows the application of the TDA8046
multi-mode QAM demodulator. The frequency of the IF
signal (IF
QAM
) is down converted to a frequency that
equals the symbol rate (r
s
) by a mixer which is driven from
a local oscillator with a frequency of f
CAR
= f
IF
+ r
s
.
After low pass filtering this baseband signal is applied to an
external 8 or 9-bit ADC.
For 256-QAM, a 9-bit ADC is preferred, for the other
modes an 8-bit ADC is sufficient.
The multi-mode QAM demodulator has digital detectors for
AGC, carrier recovery and clock recovery. The on-chip
DACs translate the detector values to analog control
currents which are then integrated by a loop filter.
To perform this loop filtering, an operational amplifier is
integrated after each DAC.
The carrier recovery consists of a two-loop system.
The outer loop is shown in Fig.3, and controls both phase
and frequency at a low speed. The inner loop controls the
carrier phase at a high speed (wide loop bandwidth).
The AGC also consists of two loops; the outer loop is the
coarse AGC and one inner loop is the fine AGC.
The recovered symbols are converted into bits according
to a demapping scheme and represented at the output in
an 8-bit parallel output format. The QAM demodulator can
be initialized and monitored by the I
2
C-bus interface.
Fig.3 Application with multi-mode QAM demodulator.
handbook, full pagewidth
MGG167
LPF
ADC
fCAR = fIF
+
rs
clock recovery
carrier recovery
AGC
DO7 to DO0
CLKOUT
CLKSDV
8 or 9 bits
IFQAM
SAW
TUNER
RF
signal
fclk
TDA8046
I
2
C-BUS
1996 Nov 19
9
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7.1
Functional description of the individual blocks
The functional block diagram of the multi-mode QAM
demodulator is illustrated in Fig.1. This section describes
the individual blocks in the demodulator. After adaptation
for the used input format (2's complement or binary), the
input signal is demodulated in the I and Q baseband
signals which are applied to the inputs of the half-Nyquist
filter (equals square root raised cosine). To avoid
overloading of the ADC, an AGC detector is placed after
the adaptation for the input format. The control value for
the clock recovery is generated after half Nyquist filtering.
The echoes created in the cable network are reduced
significantly in the equalizer.
The equalizer produces a `clean' constellation diagram
from which the information for the carrier recovery is
derived. This constellation is also applied to the output
formatter which demaps the transmitted symbols in
corresponding bits. The carrier recovery and lock
detection functions are based on the equalizer output.
The output of the equalizer is applied to an output
formatter, which translates the symbol bits to a FEC input
format. The digital outputs of the clock recovery, AGC, and
carrier recovery section are converted into currents which
are integrated by the loop filters.
To make these loop filters active, operational amplifiers
are integrated on the chip.
The TDA8046 can handle five different digital modulation
schemes; 4, 16, 32, 64 and 256-QAM. These schemes
are selectable via the I
2
C-bus interface.
7.1.1
Q
UADRATURE DEMODULATOR AND HALF
N
YQUIST
FILTER
Quadrature demodulation is accomplished after selection
of the appropriate input format via the I
2
C-bus.
The in-phase and quadrature components are both
applied to a half Nyquist filter. In default mode, this filter
gives a 20% roll-off half Nyquist shaping. The basic
schematic of the quadrature demodulator followed by the
half Nyquist filter is shown in Fig.4. The signs of the
multiplication factors in the Q-branch can be inverted
(I
2
C-bus bit INVD).
When using an 8-bit ADC the LSB of the 9-bit input word
should be connected to the positive supply (V
DDD
).
This ensures a symmetrical 2's complement
representation which can be multiplied by
-
1 in a correct
(2's complement) way. The overall transfer function of the
square root raised cosine filters is shown in Figs 5 and 6.
For characteristics see Chapter 10.
Fig.4 Schematic diagram of the quadrature demodulator and half Nyquist filter.
handbook, full pagewidth
HALF NYQUIST
FILTER
HALF NYQUIST
FILTER
+
1, 0,
-
1, 0
0,
-
1, 0,
+
1
9
9
DIN8
to
DIN0
BINARY OR
TWO's
COMPLEMENT
I
I
2
C-BUS
I
2
C-BUS
Q
MGG168
9
I
2
C-BUS
I
2
C-BUS
1996 Nov 19
10
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.5 Half Nyquist receiver filter transfer function (20% roll-off).
handbook, full pagewidth
2
5
0
relative
gain
(dB)
0
1
0.25
0.5
0.75
1.75
1.5
1.25
MBG987
-
5
-
15
-
25
-
35
-
45
-
55
relative frequency
(
f
)
rs
Fig.6 Half Nyquist receiver filter transfer function (15% roll-off).
handbook, full pagewidth
2
0
0
0.5
1
1.5
0.25
0.75
1.25
1.75
relative
gain
(dB)
-
10
-
20
-
30
-
40
-
50
MGG169
relative frequency
(
f
)
rs
1996 Nov 19
11
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7.1.2
E
QUALIZER
This function is realized with a T spaced 12 or 14 taps
(selected via the I
2
C-bus) adaptive filter with a feedback
part. The equaliser is based on a Decision Feedback
Equalizer (DFE) structure with Least Mean Square (LMS)
coefficient updating algorithm. No training sequence is
required. The block schematic of the total equalizer is
shown in Fig.8. The main tap of the equalizer is adjustable
for fine AGC function (6 dB AGC range). The settings of
the equalizer taps can be read via the I
2
C-bus. If the
equalizer diverges, an alarm bit is set (I
2
C-bus bit ALEQ)
and an automatic reset of the taps can be performed
(I
2
C-bus bit EAR).
To improve acquisition time, the convergence steps of the
FFE/DFE parts of the equalizer are programmable via the
I
2
C-bus. When the system locks, the steps are
automatically modified for optimum performances.
Besides reading the equalizer tap values, the main tap of
the equalizer can also be programmed. After setting the
main tap, the other coefficients can be set to zero.
The equalizer settings can also be frozen via the I
2
C-bus.
The equalizer has been proven to work correctly under bad
channel conditions as indicated in Table 1. It is guaranteed
that all loops (including equalizer) converge at a SNR of
21 dB for a 64-QAM modulation format and 27 dB for a
256-QAM modulation format.
Table 1
Channel echo profile
Figure 7 represents the QAM spectrum seen by the
equalizer. It corresponds (in the frequency domain) to the
multiplication of a full nyquist spectrum by the impulse
response of the channel specified in Table 1.
DELAY
AMPLITUDE
PHASE
3
/
8
T
sym
0.08
130
1
1
/
8
T
sym
0.20
60
2
T
sym
0.05
310
4
5
/
8
T
sym
0.10
200
6
7
/
8
T
sym
0.03
200
Fig.7 QAM spectrum with echo profile as seen by the equalizer.
handbook, full pagewidth
1
-
11
-
0.5
0.5
relative frequency
relative
gain
(dB)
-
0.375
0.375
-
0.125
0.125
-
0.25
0.25
0
-
3
-
5
-
9
-
1
-
7
MGD636
(
f
)
rs
1996 Nov 19
12
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.8 DFE equalizer structure.
handbook, full pagewidth
MGG170
FEED
FORWARD
EQUALIZER
TAPS CALCULATION
DECISION
FEEDBACK
EQUALIZER
TAPS CALCULATION
input
output
decision
+
-
7.1.3
L
OCK DETECTOR
The lock detector indicates whether all algorithms in the
demodulator are converged or not. For a symbol error rate
(at the input of the demodulator) smaller than 2
10
-
2
, the
detector will give the indication `LOCK' (I
2
C-bus bit
LK = 1). For larger symbol error rates, the detector will
generate the `UNLOCK' signal (I
2
C-bus bit LK = 0).
It should ne noted that this `UNLOCK' signal is generated
before any other part of the demodulator loses lock.
The lock detector is part of the carrier recovery loop, see
Fig.9. The Lock Detector Threshold (LDT) can be changed
with the help of the I
2
C-bus. The estimation algorithm used
in the lock detector also provides information about the
SER ratio which can be read out via the I
2
C-bus interface.
For characteristics see Chapter 11.
7.1.4
C
ARRIER RECOVERY
The carrier recovery detector consists of a
Phase-Frequency Detector (PFD) and Phase Detector
(PD). Depending on the mode of operation, the carrier
recovery is switched either between the phase frequency
(no lock) or the phase detector (lock). The carrier recovery
consists of the following two loops:
1. The outer loop; this loop controls the phase and
frequency of the incoming QAM signal at the IF
frequency in such a way that the constellation is
optimally positioned for detection.
2. The inner loop; the bandwidth of this loop can be large
and can therefore reduce the influence of large
bandwidth phase noise.
A fully digital carrier recovery function is also possible and
can be selected via the I
2
C-bus. Should this configuration
be used, then the external components of the loop filter will
not have to be implemented.
Four different maximum DAC output currents can be
selected via the I
2
C-bus. The output currents of the DAC
are defined in such a way that a VCO with a behaviour as
shown in Fig.9 can be connected directly to the output of
the integrated operational amplifier. Should the VCO slope
be negative then the sign of the current can be inverted by
the I
2
C-bus. Figure 10 defines the DAC output currents.
For characteristics see Chapter 12.
1996 Nov 19
13
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.9 Schematic diagram of the carrier recovery.
handbook, full pagewidth
MGG171
DEMODULATION
AND
FILTERING
EQUALIZER
PHASE
FREQUENCY
DETECTOR
PHASE
DETECTOR
LOCK
0
DAC
rs Iref1
ICAR
Vref
lock
external
DIGITAL
INNER LOOP
ADC
LPF
VCO
IFQAM
I
2
C-BUS
I
2
C-BUS
I
2
C-BUS
I
2
C-BUS
lock
I
2
C-BUS
1996 Nov 19
14
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.10 Definition of the DAC currents and the expected frequency behaviour of the VCO.
I
pos
= positive output current.
I
neg
= negative output current.
I
O
I
pos
I
neg
(
)
2
-------------------------------
=
I
O
I
pos
I
neg
+
(
)
I
pos
I
neg
(
)
---------------------------------
100
=
handbook, full pagewidth
DAC output
current
ICAR
digital input
-
ICAR
1
/
2
ICAR
-
1
/
2
ICAR
CARI = 1
CARI = 0
fVCO
VCARREC
MGG180
1996 Nov 19
15
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7.1.5
C
LOCK RECOVERY
The clock recovery function uses the unequalized I and Q
signals, i.e. the half Nyquist filter outputs (see Fig.4).
The clock recovery section generates a control value each
symbol period. As this algorithm is based on the energy
maximization, both main and mid symbols are required at
the input. Consequently, the input data rate is twice the
symbol rate. The schematic diagram of this detector is
illustrated in Fig.11.
The clock generator generates the required internal clocks
from the VCXO clock signal at 4
r
s
. The input stage
amplifier of this generator enables the designer to supply
a low amplitude oscillator signal to the TDA8046. The DAC
output current range (I
CLK
) can be varied via the I
2
C-bus.
The sign of the output current can also be inverted to
adjust for the correct sign of the VCXO slope.
For characteristics see Chapter 13.
Fig.11 Schematic diagram of the clock recovery.
handbook, full pagewidth
DAC
rs Iref3
ICLK
Vref
external
CLOCK
RECOVERY
DETECTOR
I
Q
to
VCXO
from
VCXO
4rs
2rs
rs
MGG172
2
4
1996 Nov 19
16
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.12 The definition of the DAC currents and the expected frequency behaviour of the VCXO for clock recovery.
I
pos
= positive output current; I
CLK
.
I
neg
= negative output current;
-
I
CLK
.
I
oCLK
I
pos
I
neg
(
)
2
-------------------------------
=
I
oCLK
I
pos
I
neg
+
(
)
I
pos
I
neg
(
)
---------------------------------
100
=
handbook, full pagewidth
DAC output
current
ICLK
digital input
-
ICLK
CLKI = 1
CLKI = 0
fVCXO
VCLKREC
MGG181
1
/
2
ICLK
-
1
/
2
ICLK
1996 Nov 19
17
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7.1.6
AGC
The AGC estimates the mean power based on the digital
input signal and relates this to a peak value for a given
constellation. To avoid overloading of the ADC, this
estimation of the peak signals is used to control the AGC
loop. The implemented AGC covers a range of
20 dB in
gain variance. A schematic diagram of the AGC is
illustrated in Fig.13.
If the SAW filter does not have sufficient adjacent channel
attenuation, the AGC threshold can be varied to avoid
clipping of the ADC. To do this, the threshold is made
programmable via the I
2
C-bus (byte ATH). Table 2 shows
that for each mode, a new ATH value (on address 08)
must be set with the help of the I
2
C-bus.
The I
2
C-bus data on address 08 is a factor 16 smaller than
the used AGC threshold ATH.
The DAC output current range can be varied via the
I
2
C-bus interface (bits AGCA and AGCB) and the sign of
the current can be inverted (bit AGCI). The definition of the
DAC currents and the expected frequency behaviour of
the AGC is illustrated in Fig.14.
For characteristics see Chapter 14.
Table 2
AGC threshold values
MODE
ATH (AGC THRESHOLD)
I
2
C-BUS DATA FOR ADDRESS 08
256, 64, 16 and 4-QAM
2040
7F
32-QAM
1442
5A
Fig.13 AGC schematic diagram.
handbook, full pagewidth
DAC
rs
IBIAS
Iref2
Iref2
IAGC
Vref
external
AGC
DETECTOR
BIAS
GENERATOR
to AGC
amplifier
MGG173
ADC
I
2
C-BUS
I
2
C-BUS
I
2
C-BUS
DIN8
to
DIN0
1996 Nov 19
18
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.14 Definition of the DAC currents and the expected frequency behaviour of the AGC.
I
pos
= positive output current; I
CLK
.
I
neg
= negative output current;
-
I
CLK
.
I
oAGC
I
pos
I
neg
(
)
2
-------------------------------
=
I
oAGC
I
pos
I
neg
+
(
)
I
pos
I
neg
(
)
---------------------------------
100
=
handbook, full pagewidth
DAC output
current
IAGC
digital input
-
IAGC
AGCI = 1
AGCI = 0
gain
VAGC
MGG182
1
/
14
IAGC
-
1
/
14
IACG
1996 Nov 19
19
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7.1.7
O
FFSET CONTROL
To compensate offsets in the I and Q branch, due to
spurious signals at the symbol frequency at the ADC input,
an offset compensation loop is included. This loop forces
the constellation to be symmetrically distributed over its
four quadrants. This function can be switched off by
I
2
C-bus bit OFFS.
7.1.8
L
OOP AMPLIFIERS
Analog switches are integrated to discharge the loop filter
capacitors or for test purposes on application boards (a
reference voltage equal to the half of the positive supply
voltage V
DDA
is available at the output of the amplifier
when the switches are closed). The I
2
C-bus bit ANAS
controls the three switches simultaneously. A schematic
diagram of the loop amplifier and analog switch is
illustrated in Fig.15.
For characteristics see Chapter 15.
Fig.15 Loop amplifier and analog switch.
handbook, halfpage
DAC
Vref
external
MGG174
I
2
C-BUS
7.1.9
O
UTPUT FORMATTER
The output formatter transforms the detected symbols into
bits in accordance with the selected mapping. The
TDA8046 has four possible mapping formats which can be
selected via the I
2
C-bus interface. The demapping
procedure and the corresponding bits are defined in
Fig.16. After demapping the bits are allocated to the
output. This output allocation corresponds to one of the
selected demapping schemes.
By using the I
2
C-bus, it is possible to obtain the following
output formats:
8 bits parallel
semi-serial
I and Q 8 bits multiplexed.
The implemented demapping formats and output bit
allocation are illustrated in Figs 17 to 30.
7.1.10
B
OUNDARY SCAN
The TDA8046H offers the possibility of boundary scan
test. The IEEE Standard Test Access Port and Boundary
Scan Architecture allows board manufacturers to test
board interconnections by using the boundary scan
functions.
Complete information on boundary scan test is available in
"Application note AN96048".
1996 Nov 19
20
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.16 Schematic diagram of the output formatter.
handbook, full pagewidth
MGG175
8
DO1 to DO0
CLKSCV
CLKOUT
DO7 to DO0
CLKSCV
DO7 to DO0
CLKSCV
CLKOUT
I
8
Q
DEMAPPING
SCHEMES
1 to 4
MUX
PARALLEL
AND
SEMI-SERIAL
I
2
C-BUS
7.1.10.1
Demapping scheme 1; differential decoding
Fig.17 Demapping scheme 1; bit allocation: 256-QAM.
Bit allocation for 256-QAM: b5, b4, b3, b2, b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
handbook, full pagewidth
MGG193
010110
011110
001110
000110
010111
011111
001111
000111
010101
011101
001101
000101
010100
011100
001100
000100
100110
101110
111110
110110
100111
101111
111111
110111
100101
101101
111101
110101
100100
101100
111100
110100
I
Q
A quadrant
b5 b4 b3 b2 b1 b0
010000
011000
001000
000000
010001
011001
001001
000001
010011
011011
001011
000011
010010
011010
001010
000010
100000
101000
111000
110000
100001
101001
111001
110001
100011
101011
111011
110011
100010
101010
111010
110010
1996 Nov 19
21
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Bit allocation for 4-QAM: b5 = b4 = b3 = b2 = b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
Bit allocation for 64-QAM: b5, b4, b3 and b2; b0 = b1 = 0; b7 and b6 differentially decoded (see Table 3).
Fig.18 Demapping scheme 1; bit allocation: 4-QAM and 64-QAM.
handbook, full pagewidth
MGG183
0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 0
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 0 0
1 0 0 1
1 0 1 1
1 0 1 0
1 0 0 0
1 1 0 0
0 1 0 0
0 0 0 0
1 0 0 1
1 1 0 1
0 1 0 1
0 0 0 1
1 0 1 1
1 1 1 1
0 1 1 1
0 0 1 1
1 0 1 0
1 1 1 0
0 1 1 0
0 0 1 0
I
Q
A quadrant
b5 b4 b3 b2
B quadrant
D quadrant
C quadrant
0 0 1 0
0 1 1 0
1 1 1 0
1 0 1 0
0 0 1 1
0 1 1 1
1 1 1 1
1 0 1 1
0 0 0 1
0 1 0 1
1 1 0 1
1 0 0 1
0 0 0 0
0 1 0 0
1 1 0 0
1 0 0 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0
1 1 1 0
1 1 1 1
1 1 0 1
1 1 0 0
0 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0
0 0 1 0
0 0 1 1
0 0 0 1
0 0 0 0
Fig.19 Demapping scheme 1; bit allocation: 16-QAM and 32-QAM.
Bit allocation for 16-QAM: b5 and b4; b3 = b2 = b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
Bit allocation for 32-QAM: not implemented.
handbook, full pagewidth
MGG184
0 0
0 1
1 0
1 1
1 0
0 0
1 1
0 1
I
Q
A quadrant
b5 b4
B quadrant
D quadrant
C quadrant
0 1
1 1
0 0
1 0
1 1
1 0
0 1
0 0
1996 Nov 19
22
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7.1.10.2
Demapping scheme 2; direct translation
Fig.20 Demapping scheme 2; bit allocation: 256-QAM.
Bit allocation for 256-QAM: b7, b6, b5, b4, b3, b2, b1, b0.
handbook, full pagewidth
MGG195
I
Q
b6
b7
b5 b4
b3
b2
b1
b0
1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
1996 Nov 19
23
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.21 Demapping scheme 2; bit allocation: 64-QAM and 32-QAM.
Bit allocation for 64-QAM: b7, b6, b5, b3, b2, b1; b4 = b0 = 0.
Bit allocation for 32-QAM: not implemented.
handbook, full pagewidth
MGG185
0 1 1
0 1 0
0 0 1
0 0 0
1 1 1
1 1 0
1 0 1
1 0 0
I
Q
b7 b6 b5
b3
b2
b1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1
0 1 0
0 1 1
Fig.22 Demapping scheme 2; bit allocation: 4-QAM and 16-QAM.
a. Bit allocation for 4-QAM: b7 and b3; b6 = b5 = b4 = b2 = b1 = b0 = 0.
b. Bit allocation for 16-QAM: b7, b6, b3 and b2; b5 = b4 = b1 = b0 = 0.
handbook, full pagewidth
MGG186
0 1
0 0
1 1
1 0
I
Q
b7 b6
b3
b2
1 0
1 1
0 0
0 1
0
1
1
0
I
Q
b7
b3
1996 Nov 19
24
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7.1.10.3
Demapping scheme 3; differential decoding: Draft prETS 429: 1994
Fig.23 Demapping scheme 3; bit allocation: 256-QAM.
Bit allocation for 256-QAM: b5, b4, b3, b2, b1, b0; b7 and b6 differentially decoded (see Table 3).
handbook, full pagewidth
MGG194
101100
101101
101001
101000
101110
101111
101011
101010
100110
100111
100011
100010
100100
100101
100001
100000
111000
111001
111101
111100
111010
111011
111111
111110
110010
110011
110111
110110
110000
110001
110101
110100
I
Q
A quadrant
b5 b4 b3 b2 b1 b0
000100
000101
000001
000000
000110
000111
000011
000010
001110
001111
001011
001010
001100
001101
001001
001000
010000
010001
010101
010100
010010
010011
010111
010110
011010
011011
011111
011110
011000
011001
011101
011100
1996 Nov 19
25
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.24 Demapping scheme 3; bit allocation: 4-QAM and 64-QAM.
Bit allocation for 4-QAM: b5 = b4 = b3 = b2 = b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
Bit allocation for 64-QAM: b5, b4, b3 and b2; b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
handbook, full pagewidth
MGG187
0 0 0 0
0 0 1 0
1 0 1 0
1 0 0 0
0 0 0 1
0 0 1 1
1 0 1 1
1 0 0 1
0 1 0 1
0 1 1 1
1 1 1 1
1 1 0 1
0 1 0 0
0 1 1 0
1 1 1 0
1 1 0 0
0 1 0 0
0 1 0 1
0 0 0 1
0 0 0 0
0 1 1 0
0 1 1 1
0 0 1 1
0 0 1 0
1 1 1 0
1 1 1 1
1 0 1 1
1 0 1 0
1 1 0 0
1 1 0 1
1 0 0 1
1 0 0 0
I
Q
A quadrant
b5 b4 b3 b2
B quadrant
D quadrant
C quadrant
1 0 0 0
1 0 0 1
1 1 0 1
1 1 0 0
1 0 1 0
1 0 1 1
1 1 1 1
1 1 1 0
0 0 1 0
0 0 1 1
0 1 1 1
0 1 1 0
0 0 0 0
0 0 0 1
0 1 0 1
0 1 0 0
1 1 0 0
1 1 1 0
0 1 1 0
0 1 0 0
1 1 0 1
1 1 1 1
0 1 1 1
0 1 0 1
1 0 0 1
1 0 1 1
0 0 1 1
0 0 0 1
1 0 0 0
1 0 1 0
0 0 1 0
0 0 0 0
Fig.25 Demapping scheme 3; bit allocation: 16-QAM.
Bit allocation for 16-QAM: b5 and b4; b3 = b2 = b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
handbook, full pagewidth
MGG188
0 0
1 0
0 1
1 1
0 1
0 0
1 1
1 0
I
Q
A quadrant
b5 b4
B quadrant
D quadrant
C quadrant
1 0
1 1
0 0
0 1
1 1
0 1
1 0
0 0
1996 Nov 19
26
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.26 Demapping scheme 3; bit allocation: 32-QAM.
Bit allocation for 32-QAM: b5, b4 and b3; b2 = b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
handbook, full pagewidth
MGG189
0 0 0
1 0 0
1 1 0
0 0 1
1 0 1
0 1 0
0 1 1
1 1 1
0 1 1
0 0 1
0 0 0
1 1 1
1 0 1
1 0 0
0 1 0
1 1 0
I
Q
A quadrant
b5 b4 b3
B quadrant
D quadrant
C quadrant
1 1 0
0 1 0
1 0 0
1 0 1
1 1 1
0 0 0
0 0 1
0 1 1
1 1 1
0 1 1
0 1 0
1 0 1
0 0 1
1 1 0
1 0 0
0 0 0
7.1.10.4
Demapping scheme 4; direct translation: HP8782B/K03
Fig.27 Demapping scheme 4; bit allocation: 256-QAM.
Bit allocation for 256-QAM: b7, b6, b5, b4, b3, b2, b1, b0.
handbook, full pagewidth
MGG196
I
Q
b2
b3
b1 b0
b4
b5
b6
b7
1 1 1 0
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 0 0 0
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
1996 Nov 19
27
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.28 Demapping scheme 4; bit allocation: 64-QAM.
Bit allocation for 64-QAM: b7, b6, b5, b4, b3 and b2; b1 = b0 = 0.
handbook, full pagewidth
MGG190
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1
0 1 0
0 1 1
I
Q
b2 b3 b4
b5
b6
b7
0 1 1
0 1 0
0 0 1
0 0 0
1 1 1
1 1 0
1 0 1
1 0 0
Fig.29 Demapping scheme 4; bit allocation: 32-QAM.
Bit allocation for 32-QAM: b7, b6, b5, b4 and b3; b2 = b1 = b0 = 0.
handbook, full pagewidth
MGG191
0 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 1 1 0 1
0 1 1 1 0
0 1 0 1 1
0 1 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0
0 0 1 1 1
0 0 1 0 1
0 0 1 0 0
0 0 1 1 0
0 0 0 1 0
I
Q
A quadrant
b7 b6 b5 b4 b3
B quadrant
D quadrant
C quadrant
1 1 0 1 0
1 1 1 1 0
1 1 1 0 0
1 1 1 0 1
1 1 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 1
1 0 1 1 1
1 0 0 1 1
1 0 1 1 0
1 0 1 0 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 0 0 0
1996 Nov 19
28
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Table 3
Definition of two MSB's in modulation schemes 1 and 3
Tables 4 and 5 give the output format of the data for semi-serial mode operations.
QUADRANT OF
CURRENTLY
RECEIVED SYMBOL
QUADRANT OF
PREVIOUSLY
RECEIVED SYMBOL
PHASE
CHANGE
(DEGREES)
CURRENT OUTPUT BITS
SCHEME 1
SCHEME 3
b7
b6
b7
b6
A
A
0
0
0
0
0
A
B
270
1
0
0
1
A
C
180
1
1
1
1
A
D
90
0
1
1
0
B
A
90
0
1
1
0
B
B
0
0
0
0
0
B
C
270
1
0
0
1
B
D
180
1
1
1
1
C
A
180
1
1
1
1
C
B
90
0
1
1
0
C
C
0
0
0
0
0
C
D
270
1
0
0
1
D
A
270
1
0
0
1
D
B
180
1
1
1
1
D
C
90
0
1
1
0
D
D
0
0
0
0
0
Fig.30 Demapping scheme 4; bit allocation: 4-QAM and 16-QAM.
a. Bit allocation for 4-QAM: b7 and b6; b5 = b4 = b3 = b2 = b1 = b0 = 0.
b. Bit allocation for 16-QAM: b7, b6, b5 and b4; b3 = b2 = b1 = b0 = 0.
handbook, full pagewidth
MGG192
1 0
1 1
0 0
0 1
I
Q
b4 b5
b6
b7
0 1
0 0
1 1
1 0
1
0
0
1
I
Q
b6
b7
1996 Nov 19
29
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Table 4
Semi-serial format 256, 64 and 32-QAM; see note 1
Note
1. The semi-serial format is only valid for demapping schemes 1, 3 and 4.
Table 5
Semi-serial format 16-QAM and 4-QAM; see note 1
Note
1. The semi-serial format is only valid for demapping schemes 1, 3 and 4.
SLOT
256-QAM
64-QAM
32-QAM
DO1
DO0
CLKSDV
DO1
DO0
CLKSDV
DO1
DO0
CLKSDV
0
S
n-1
(7)
S
n-1
(6)
1
S
n-1
(5)
S
n-1
(4)
1
S
n-1
(4)
S
n-1
(3)
1
1
S
n-1
(5)
S
n-1
(4)
1
S
n-1
(3)
S
n-1
(2)
1
S
n-1
(2)
S
n-1
(1)
1
2
S
n-1
(3)
S
n-1
(2)
1
S
n-1
(1)
S
n-1
(0)
1
X
X
0
3
S
n-1
(1)
S
n-1
(0)
1
X
X
0
X
X
0
4
S
n
(7)
S
n
(6)
1
S
n
(5)
S
n
(4)
1
S
n-1
(0)
S
n
(4)
1
5
S
n
(5)
S
n
(4)
1
S
n
(3)
S
n
(2)
1
S
n
(3)
S
n
(2)
1
6
S
n
(3)
S
n
(2)
1
S
n
(1)
S
n
(0)
1
S
n
(1)
S
n
(0)
1
7
S
n
(1)
S
n
(0)
1
X
X
0
X
X
0
SLOT
16-QAM
4-QAM
DO1
DO0
CLKSDV
DO1
DO0
CLKSDV
0
S
n-1
(3)
S
n-1
(2)
1
S
n-1
(1)
S
n-1
(0)
1
1
S
n-1
(1)
S
n-1
(0)
1
X
X
0
2
X
X
0
X
X
0
3
X
X
0
X
X
0
4
S
n
(3)
S
n
(2)
1
S
n
(1)
S
n
(0)
1
5
S
n
(1)
S
n
(0)
1
X
X
0
6
X
X
0
X
X
0
7
X
X
0
X
X
0
1996 Nov 19
30
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7.1.11
I
2
C-
BUS INTERFACE
The TDA8046 is controlled by an I
2
C-bus. For programming, there is one module address (7 bits) and the R/W bit for
selecting READ or WRITE mode. It should be noted that the TDA8046 starts up in accordance with to the settings defined
in Tables 7, 8 and 9.
Table 6
Slave address
Table 7
WRITE (R/W = 0)
A6
A5
A4
A3
A2
A1
A0
R/W
0
0
0
1
1
1
A0
X
FUNCTION
ADD
D7
D6
D5
D4
D3
D2
D1
D0
DAC current
inversion/general
00
AGCI
CLKI
CARI
OUTE
DEM
NYQ
DPHR
RST
Demodulator
01
INP
RLF
OUTB
OUTA
INVD
CONC
CONB
CONA
DAC/OFFS/switch
02
ANAS
OFFS
AGCB
AGCA
CLKB
CLKA
CARB
CARA
Digital test/output
formatter
03
-
-
-
-
OUTF
TSEL2
TSEL1
TSEL0
Digital loop filter
B.W.
04
DCA7
DCA6
DCA5
DCA4
DCA3
DCA2
DCA1
DCA0
Digital loop filter
B.W.
05
FSOL
-
-
-
-
DCB2
DCB1
DCB0
Lock detector
threshold
06
LDT7
LDT6
LDT5
LDT4
LDT3
LDT2
LDT1
LDT0
Lock detector
window size
07
-
-
-
-
-
-
WS1
WS0
AGC detector
threshold
08
ATH7
ATH6
ATH5
ATH4
ATH3
ATH2
ATH1
ATH0
Equalizer mode
09
-
-
EAR
FFEL
EDFE
EFFE
EFC
PRESET
Equalizer tap FFEI
0A
FFEI07
FFEI06
FFEI05
FFEI04
FFEI03
FFEI02
FFEI01
FFEI00
Equalizer steps
0B
-
FSTP2
FSTP1
FSTP0
-
DSTP2
DSTP1
DSTP0
1996 Nov 19
31
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Table 8
Default settings after reset
Table 9
READ (R/W = 1)
FUNCTION
ADD
D7
D6
D5
D4
D3
D2
D1
D0
DAC current inversion/
general
00
0
1
0
1
1
1
0
0
Demodulator
01
1
1
0
0
0
0
1
1
DAC/OFFS/switch
02
0
1
0
1
0
1
0
1
Digital test/output
formatter
03
-
-
-
-
0
0
0
0
Digital loop filter B.W.
04
0
1
0
0
0
0
0
0
Digital loop filter B.W.
05
1
-
-
-
-
1
0
0
Lock detector
threshold
06
0
0
0
1
1
0
0
0
Lock detector window
size
07
-
-
-
-
-
-
0
0
AGC detector
threshold
08
0
1
1
1
1
1
1
1
Equalizer mode
09
-
-
0
1
0
0
0
0
Equalizer tap FFEI
0A
0
1
0
0
0
0
0
0
Equalizer steps
0B
-
0
0
0
-
0
0
0
FUNCTION
ADD
D7
D6
D5
D4
D3
D2
D1
D0
V
CARREC
(4 bits)
00
-
-
-
-
CR03
CR02
CR01
CR00
V
CLKREC
(4 bits)
01
-
-
-
-
CL03
CL02
CL01
CL00
V
AGC
(4 bits)
02
-
-
-
-
AG03
AG02
AG01
AG00
Alarm equalizer/
lock detector
03
-
-
-
ALEQ
-
-
-
LK
SER estimation
04
LE7
LE6
LE5
LE4
LE3
LE2
LE1
LE0
FFEI3
05
b7
b6
b5
b4
b3
b2
b1
b0
....
...
b7
b6
b5
b4
b3
b2
b1
b0
FFEI0
08
b7
b6
b5
b4
b3
b2
b1
b0
DFEI1
09
b7
b6
b5
b4
b3
b2
b1
b0
....
...
b7
b6
b5
b4
b3
b2
b1
b0
DFEI7
0F
b7
b6
b5
b4
b3
b2
b1
b0
DFEI8
10
b7
b6
b5
b4
b3
b2
b1
b0
FFEQ3
11
b7
b6
b5
b4
b3
b2
b1
b0
....
...
b7
b6
b5
b4
b3
b2
b1
b0
FFEQ0
14
b7
b6
b5
b4
b3
b2
b1
b0
DFEQ1
15
b7
b6
b5
b4
b3
b2
b1
b0
....
...
b7
b6
b5
b4
b3
b2
b1
b0
DFEQ8
1C
b7
b6
b5
b4
b3
b2
b1
b0
FFEI5
1D
b7
b6
b5
b4
b3
b2
b1
b0
FFEQ5
1E
b7
b6
b5
b4
b3
b2
b1
b0
1996 Nov 19
32
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7.1.12
I
2
C-
BUS WRITE PARAMETERS
Table 10 I
2
C-bus write parameters; 1-bit values
FFEI4
1F
b7
b6
b5
b4
b3
b2
b1
b0
FFEQ4
20
b7
b6
b5
b4
b3
b2
b1
b0
IF_frequency_shift
21
FS7
FS6
FS5
FS4
FS3
FS2
FS1
FS0
IF_frequency_shift
22
-
-
-
-
FS11
FS10
FS9
FS8
PARAMETER
BIT
VALUE
DESCRIPTION
Input format
INP
0
2's complement
1
straight binary
Inversion demodulator
INVD
0
Q-branch = 0
-
1, 0, +1
1
Q-branch = 0 + 1, 0,
-
1
Demodulator
DEM
0
by-pass mode
1
normal mode
Half Nyquist filter
NYQ
0
filter in by-pass mode
1
half Nyquist filter on
Roll-off factor
RLF
0
15% roll-off
1
20% roll-off
Digital phase rotator
DPHR
0
off: pass through mode
1
on
General reset
RST
0
normal operation
1
reset (with automatic return to normal operation)
Offset
OFFS
0
off
1
on
Outer loop activation
(carrier recovery)
OUTE
0
outer loop inactive
1
outer loop active
Analog switches
ANAS
0
open
1
closed
1st and 2nd-order loop
(inner loop)
FSOL
0
1st-order loop
1
2nd-order loop
DAC current inversion
CARI
0
no inversion
1
inversion
CLKI
0
no inversion
1
inversion
AGCI
0
no inversion
1
inversion
FUNCTION
ADD
D7
D6
D5
D4
D3
D2
D1
D0
1996 Nov 19
33
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Table 11 I
2
C write parameters; 2-bit values
Equalizer
PRESET
0
normal operation
1
coefficient to zero (main tap to 1)
EDFE
0
normal operation
1
freeze coefficients of DFE part
EFFE
0
normal operation
1
freeze coefficients of FFE part
EFC
[fine AGC (equalizer
freeze centre tap)]
0
normal operation
1
freeze centre tap, no fine AGC
EAR
0
automatic reset switched OFF
1
automatic reset switched ON
FFEL
0
5 taps in FFE part
1
3 taps in FFE part
PARAMETER
BITS
DESCRIPTION
Window size (lock detector)
WS1
WS0
0
0
256 symbols
0
1
512 symbols
1
0
1024 symbols
1
1
2048 symbols
Output format
OUTB
OUTA
0
0
scheme 1
0
1
scheme 2
1
0
scheme 3
1
1
scheme 4
DAC carrier recovery
(maximum current)
CARB
CARA
0
0
50
A
0
1
100
A
1
0
150
A
1
1
200
A
DAC clock recovery
(maximum current)
CLKB
CLKA
0
0
50
A
0
1
100
A
1
0
150
A
1
1
200
A
DAC AGC
(maximum current)
AGCB
AGCA
0
0
50
A
0
1
100
A
1
0
150
A
1
1
200
A
PARAMETER
BIT
VALUE
DESCRIPTION
1996 Nov 19
34
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Table 12 I
2
C-bus write parameters; 3-bit values
Table 13 Convergence step for the equalizer (DFE and FFE parts)
Table 14 I
2
C-bus write parameters; 4-bit values
PARAMETER
BITS
DESCRIPTION
CONC
CONB
CONA
Constellation
0
0
0
4-QAM
0
0
1
16-QAM
0
1
0
32-QAM
0
1
1
64-QAM
1
0
0
256-QAM
DSTP2 FSTP2
DSTP1 FSTP1
DSTP0 FSTP0
CONVERGENCE STEP
(LOCK = 0)
CONVERGENCE STEP
(LOCK = 1)
0
0
0
2
-13
2
-15
0
0
1
2
-13
2
-14
0
1
0
2
-13
2
-13
0
1
1
2
-12
2
-15
1
0
0
2
-12
2
-14
1
0
1
2
-12
2
-13
1
1
0
2
-12
2
-12
1
1
1
2
-11
2
-15
PARAMETER
BITS
DESCRIPTION
OUTF
TSEL2
TSEL1
TSEL0
Output format
0
0
0
0
8 bits in parallel
0
1
1
1
I/Q 8 bits multiplexed (equalizer output)
1
x
x
x
semi-serial
Special test
modes
0
x
0
1
DO7 to DO4 = carrier recovery DAC input;
DO3 to DO0 = AGC DAC input
0
x
1
0
DO7 to DO6 = fine AGC;
DO5 to DO0 = clock recovery DAC input
0
0
1
1
DO7 to DO0 = I and Q equal input
(I/Q 8 bits multiplexed format)
0
1
1
1
DO7 to DO0 = I and Q equal output
(I/Q 8 bits multiplexed format)
1996 Nov 19
35
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
7.1.13
I
2
C-
BUS READ PARAMETERS
Table 15 I
2
C-bus read parameter; 1-bit values
Table 16 I
2
C-bus read parameter; ADC carrier recovery; 4-bit value
Table 17 I
2
C-bus read parameter; ADC clock recovery; 4-bit value
Table 18 I
2
C-bus read parameter; ADC AGC; 4-bit value
Table 19 I
2
C-bus read parameter; 8-bit value
Note
1. The bits LE7 to LE0 give the number of symbols falling inside the lock detector active areas. The count is made during
an observation period (256 to 2048 symbols).
To obtain more details about the SER estimation, refer to
"Application Note AN96048".
Table 20 I
2
C-bus read parameter; 12-bit value
Note
1. The bits FS11 to FS0 indicate the remaining frequency shift of the QAM spectrum (IF spectrum). This data is useful
if the TDA8046H does not use the outer loop of carrier recovery (bit `OUTE' of the I
2
C-bus table set to 0).
To obtain more details about the frequency shift calculation, refer to the
"Application Note AN96048".
PARAMETER
BIT
VALUE
DESCRIPTION
Lock detect
LK
0
no lock
1
lock
Alarm equalizer
ALEQ
0
normal operation (alarm off)
1
divergence detected (alarm on)
PARAMETER
BITS
DESCRIPTION
ADC carrier
recovery
CR03
CR02
CR01
CR00
b3
b2
b1
b0
carrier recovery: V
CARREC
= 0.25 +
1
/
16
V
DDD
(8b3 + 4b2 + 2b1 + b0) V
PARAMETER
BITS
DESCRIPTION
ADC clock
recovery
CL03
CL02
CL01
CL00
b3
b2
b1
b0
clock recovery: V
CLKREC
= 0.25 +
1
/
16
V
DDD
(8b3 + 4b2 + 2b1 + b0) V
PARAMETER
BITS
DESCRIPTION
ADC AGC
AG03
AG02
AG01
AG00
b3
b2
b1
b0
AGC: V
AGC
= 0.25 +
1
/
16
V
DDD
(8b3 + 4b2 + 2b1 + b0) V
PARAMETER
BITS
DESCRIPTION
SER
(1)
LE7
LE6
LE5
LE4
LE3
LE2
LE1
LE0
b7
b6
b5
b4
b3
b2
b1
b0
SER = f (b7 to b0)
PARAMETER
BITS
DESCRIPTION
IF_FREQ_SHIFT
(1)
FS11 to FS0
frequency shift = f (FS11 to FS0)
1996 Nov 19
36
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
8
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
9
THERMAL CHARACTERISTICS
10 DEMODULATOR AND HALF NYQUIST FILTER CHARACTERISTICS
Note
1. Definition of the power inter-symbol interference:
Where N
conv
is the number of coefficients C
conv
. C
conv
(k) represent the coefficient resulting from the convolution of
the transmission and reception filters (K indicates the K
th
coefficient).
The power ISI specified in Table 1 has been calculated on a filter resulting from the convolution of the TDA8046 filters
and a truncated half-Nyquist filter with 57 T/4 taps for the 15% roll-off filter and 41 T/4 taps for the 20% roll-of filter
(see "
Application note AN96048" - Appendix B).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
V
DDD
digital supply voltage
-
0.3
6.0
V
V
max
maximum voltage on all pins
0
V
DDD
V
P
tot
total power dissipation
T
amb
= 70
C
-
1.4
W
T
stg
storage temperature
-
55
+150
C
T
amb
operating ambient temperature
0
70
C
SYMBOL
PARAMETER
CONDITIONS
VALUE
UNIT
R
th j-a
thermal resistance from junction to ambient
in free air
50
K/W
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
roll-off
-
15 or 20
-
%
pass-band ripple
-
0.05
-
dB
stop-band ripple
see Figs 5 and 6
ISI
power
power inter-symbol interference (15% roll-off filter) note 1
-
-
43
-
dB
power inter-symbol interference (20% roll-off filter) note 1
-
-
44
-
dB
ISI
power
dB
(
)
10 log
2
C
conv
(4k)
2
k
1
=
N
conv
1
(
)
2
/
C
conv
(0)
2
---------------------------------------------------------------------
=
1996 Nov 19
37
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
11 LOCK DETECTOR CHARACTERISTICS
12 CARRIER RECOVERY CHARACTERISTICS
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
SNR
lock
signal-to-noise ratio to lock the
demodulator
4-QAM
8
-
-
dB
16-QAM
15
-
-
dB
32-QAM
18
-
-
dB
64-QAM
21
-
-
dB
256-QAM
27
-
-
dB
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Carrier recovery detector
C
ARRIER RECOVERY
:
BIAS CURRENT FOR
DAC
S SET TO
37.5
A
K
d
detector constant
SNR = 21 dB for
64-QAM constellation
-
3I
CAR
-
A/rad
SNR = 27 dB for
256-QAM constellation
-
6.05I
CAR
-
A/rad
f
CAR
frequency range
0.017r
s
-
-
MHz
f
n(inner)
loop bandwidth of inner loop
r
s
= 5 Msym/s
10
-
-
kHz
f
n(outer)
loop bandwidth of outer loop
-
-
0.3f
n(inner)
kHz
I
zero
zero current of DAC
-
100
-
+100
nA
I
CAR
maximum DAC output current
(programmable)
50
-
200
A
f
DAC
DAC sampling rate
-
r
s
-
MHz
C
ARRIER RECOVERY
DAC
OUTPUT CURRENTS DURING LOCK
I
oCARlock
mean output current
-
1
/
2
I
CAR
-
A
I
oCARlock
matching of output currents
-
2.5
-
+2.5
%
C
ARRIER RECOVERY
DAC
OUTPUT CURRENTS DURING UNLOCK
I
oCARunlock
mean output current
-
I
CAR
-
A
I
oCARunlock
matching of output currents
-
2.5
-
+2.5
%
1996 Nov 19
38
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
13 CLOCK RECOVERY CHARACTERISTICS
14 AGC CHARACTERISTICS
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Clock recovery detector
C
LOCK RECOVERY
:
BIAS CURRENT FOR
DAC
S SET TO
37.5
A
K
d
detector constant
SNR = 21 dB for
64-QAM constellation;
SNR = 27 dB for
256-QAM constellation
-
0.24I
CLK
-
A/rad
f
CLK
frequency range
100
-
-
ppm
f
n
natural frequency
-
400
-
Hz
I
CLK(max)
maximum DAC output current
(programmable)
50
-
200
A
f
DAC
DAC sample rate
-
r
s
-
MHz
C
LOCK RECOVERY
DAC output currents
I
oCLKlock
mean output current
-
I
CLK
-
A
I
oCLKlock
matching of output currents
-
2.5
-
+2.5
%
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
AGC detector
AGC
DETECTOR
:
BIAS CURRENT FOR
DAC
S SET TO
37.5
A
R
AGC
AGC range of detector
20
-
-
dB
I
zero
zero current
-
100
-
+100
nA
I
AGC(max)
maximum DAC output current
(programmable)
50
-
200
A
f
DAC
DAC sample rate
-
r
s
-
MHz
AGC DAC output currents
I
oAGC
mean output current
in lock
-
1
/
14
I
AGC
-
A
unlock
-
I
AGC
-
A
I
oAGC
matching of output current
-
5
+5
%
1996 Nov 19
39
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
15 INTEGRATED LOOP AMPLIFIERS CHARACTERISTICS
16 CHARACTERISTICS OF DIGITAL INPUTS AND OUTPUTS
V
DDD
= V
DDA
= 5 V; V
DDD(core)
= 3.3 V; T
amb
= 25
C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Integrated loop amplifiers
L
OOP AMPLIFIERS
G
OL
open loop gain
-
60
-
dB
G
B
gain bandwidth product
-
1
-
MHz
V
ref
reference voltage
-
2.5
-
V
V
o
output voltage
0.1V
DDA
-
0.9V
DDA
V
R
L(VSSD)
load to ground
5
-
-
k
R
L(VDDD)
load to supply
6.5
-
-
k
A
NALOG SWITCHES
Z
SW
switch impedance
closed
-
5
-
k
open
10
-
-
M
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Clock outputs: CLKADC and CLKSDV
V
OL
LOW level output voltage
0
-
0.1V
DDD
V
V
OH
HIGH level output voltage
0.9V
DDD
-
V
DDD
V
T
CLK
cycle time
35
-
-
ns
t
w
pulse width
40 : 60 duty cycle
14
-
-
ns
t
r
rise time
C
L
= 30 pF
-
-
6
ns
t
f
fall time
C
L
= 30 pF
-
-
6
ns
R
L
load resistance
1
-
-
k
Clock input: CLK
V
i(rms)
input voltage level (RMS value)
sine wave
100
-
-
mV
T
CLK
cycle time
35
-
-
ns
t
w
pulse width
40 : 60 duty cycle
14
-
-
ns
R
source
source resistance
-
-
50
Digital inputs: DIN8 to DIN0
V
IL
LOW level input voltage
-
-
0.8
V
V
IH
High level input voltage
2.0
-
-
V
t
SU
set-up time
15
-
-
ns
t
HD
hold time
0
-
-
ns
C
L
load capacitance
-
-
10
pF
1996 Nov 19
40
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Digital outputs: DO1 to DO0 with respect to CLKOUT for semi-serial mode
V
OL
LOW level output voltage
0
-
0.1V
DDD
V
V
OH
HIGH level output voltage
0.9V
DDD
-
V
DDD
V
t
od
output delay time
-
-
7
ns
t
oHD
output hold time
-
-
10
ns
C
L
load capacitance
additional
2
-
30
pF
Digital outputs: DO7 to DO0 with respect to CLKSDV for 8-bit parallel mode
V
OL
LOW level output voltage
0
-
0.1V
DDD
V
V
OH
HIGH level output voltage
0.9V
DDD
-
V
DDD
V
t
od
output delay time
-
-
22
ns
t
oHD
output hold time
-
-
22
ns
C
L
load capacitance
additional
2
-
30
pF
Digital outputs: DO7 to DO0 with respect to CLKOUT for I/Q multiplexed mode
V
OL
LOW level output voltage
0
-
0.1V
DDD
V
V
OH
HIGH level output voltage
0.9V
DDD
-
V
DDD
V
t
od
output delay time
-
-
22
ns
t
oHD
output hold time
-
-
22
ns
Loop amplifier
V
o
output voltage level
0.1V
DDA
-
0.9V
DDA
G
v
DC voltage gain (open loop)
-
60
-
dB
G
B
gain bandwidth product
1
-
-
MHz
R
L
load resistance
5
-
-
K
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
1996 Nov 19
41
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.31 Definition of the Implementation Loss.
handbook, full pagewidth
MBG989
10
-
4
no convergence
theory
measured
SNR (dB)
implementation
loss
BER
Fig.32 CMOS input data timing diagram.
handbook, full pagewidth
MGG176
CLKADC
DIN 0 to
DIN 8
90%
90%
10%
10%
tw
tSU; DAT
tHD; DAT
tCLK
VOH
VOL
VIH
VIL
tf
tr
1996 Nov 19
42
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.33 CMOS semi-serial mode timing diagram.
handbook, full pagewidth
VOH
VOL
CLKOUT
CLKSDV
DO1 to DO0
toHD
tod
VOH
VOL
VOH
VOL
Tsym
slot 3
slot 2
slot 1
slot 0
MGG179
Fig.34 CMOS 8-bit symbol in parallel mode timing diagram
handbook, full pagewidth
MGG177
VOH
VOL
VOH
VOL
CLKSDV
DATA
OUTPUT
toHD
tod
Tsym
1996 Nov 19
43
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
Fig.35 CMOS I and Q multiplexed timing diagram.
handbook, full pagewidth
VOH
VOL
CLKOUT
CLKSDV
DO7 to DO0
toHD
tod
VOH
VOL
VOH
VOL
Tsym
I
Q
MGG178
1996 Nov 19
44
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
17 PACKAGE OUTLINE
UNIT
A
1
A
2
A
3
b
p
c
E
(1)
e
H
E
L
L
p
Q
Z
y
w
v
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
EIAJ
mm
0.25
0.05
2.90
2.65
0.25
0.50
0.35
0.25
0.14
14.1
13.9
1
18.2
17.6
1.4
1.2
1.2
0.8
7
0
o
o
0.2
0.1
0.2
1.95
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
1.0
0.6
SOT319-2
92-11-17
95-02-04
D
(1)
(1)
(1)
20.1
19.9
H
D
24.2
23.6
E
Z
1.2
0.8
D
e
E
A
1
A
L
p
Q
detail X
L
(A )
3
B
19
y
c
E
H
A
2
D
Z D
A
Z E
e
v
M
A
1
64
52
51
33
32
20
X
pin 1 index
b
p
D
H
b
p
v
M
B
w
M
w
M
0
5
10 mm
scale
QFP64: plastic quad flat package; 64 leads (lead length 1.95 mm); body 14 x 20 x 2.8 mm
SOT319-2
A
max.
3.20
1996 Nov 19
45
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
18 SOLDERING
18.1
Introduction
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our
"IC Package Databook" (order code 9398 652 90011).
18.2
Reflow soldering
Reflow soldering techniques are suitable for all QFP
packages.
The choice of heating method may be influenced by larger
plastic QFP packages (44 leads, or more). If infrared or
vapour phase heating is used and the large packages are
not absolutely dry (less than 0.1% moisture content by
weight), vaporization of the small amount of moisture in
them can cause cracking of the plastic body. For more
information, refer to the Drypack chapter in our
"Quality
Reference Handbook" (order code 9397 750 00192).
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250
C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45
C.
18.3
Wave soldering
Wave soldering is not recommended for QFP packages.
This is because of the likelihood of solder bridging due to
closely-spaced leads and the possibility of incomplete
solder penetration in multi-lead devices.
If wave soldering cannot be avoided, the following
conditions must be observed:
A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave)
soldering technique should be used.
The footprint must be at an angle of 45
to the board
direction and must incorporate solder thieves
downstream and at the side corners.
Even with these conditions, do not consider wave
soldering the following packages: QFP52 (SOT379-1),
QFP100 (SOT317-1), QFP100 (SOT317-2),
QFP100 (SOT382-1) or QFP160 (SOT322-1).
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Maximum permissible solder temperature is 260
C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150
C within
6 seconds. Typical dwell time is 4 seconds at 250
C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
18.4
Repairing soldered joints
Fix the component by first soldering two diagonally-
opposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300
C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320
C.
1996 Nov 19
46
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
19 DEFINITIONS
20 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
21 PURCHASE OF PHILIPS I
2
C COMPONENTS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Purchase of Philips I
2
C components conveys a license under the Philips' I
2
C patent to use the
components in the I
2
C system provided the system conforms to the I
2
C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
1996 Nov 19
47
Philips Semiconductors
Product specification
Multi-mode QAM demodulator
TDA8046
NOTES
Internet: http://www.semiconductors.philips.com
Philips Semiconductors a worldwide company
Philips Electronics N.V. 1996
SCA52
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 247 9145, Fax. +7 095 247 9144
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 So Paulo, SO PAULO - SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580/xxx
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstrae 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Printed in The Netherlands
537021/1200/02/pp48
Date of release: 1996 Nov 19
Document order number:
9397 750 01499