ChipFind - документация

Электронный компонент: CR04AM-12

Скачать:  PDF   ZIP
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
To all our customers
Sep.2000
TYPE
NAME
VOLTAGE
CLASS
5.0 MAX
4.4
5.0 MAX
12.5 MIN
3.9 MAX
1.3
1.25 1.25
CIRCUMSCRIBE
CIRCLE
0.7
1
3 2
OUTLINE DRAWING
Dimensions
in mm
JEDEC : TO-92
2
1
3
1
2
3
CATHODE
ANODE
GATE
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR04AM
LOW POWER USE
GLASS PASSIVATION TYPE
CR04AM
APPLICATION
Ignitor, solid state relay, strobe flasher, circuit breaker, other general purpose control applications
Symbol
V
RRM
V
RSM
V
R (DC)
V
DRM
V
D (DC)
Parameter
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage
DC reverse voltage
Repetitive peak off-state voltage
V
1
DC off-state voltage
V
1
Voltage class
Unit
V
V
V
V
V
MAXIMUM RATINGS
8
400
500
320
400
320
12
600
720
480
600
480
I
T (AV)
........................................................................ 0.4A
V
DRM
..............................................................400V/600V
I
GT
......................................................................... 100
A
Symbol
I
T (RMS)
I
T (AV)
I
TSM
I
2t
P
GM
P
G (AV)
V
FGM
V
RGM
I
FGM
T
j
T
stg
--
Parameter
RMS on-state current
Average on-state current
Surge on-state current
I
2t
for fusing
Peak gate power dissipation
Average gate power dissipation
Peak gate forward voltage
Peak gate reverse voltage
Peak gate forward current
Junction temperature
Storage temperature
Weight
Conditions
Commercial frequency, sine half wave, 180
conduction, T
a
=54
C
60Hz sine half wave 1 full cycle, peak value, non-repetitive
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
Typical value
Unit
A
A
A
A
2
s
W
W
V
V
A
C
C
g
Ratings
0.63
0.4
10
0.4
0.5
0.1
6
6
0.3
40 ~ +125
40 ~ +125
0.23
V
1. With Gate-to-cathode resistance R
GK
=1k
Sep.2000
3V
DC
I
GS
I
GT
6V
DC
60
V
GT
2
1
TUT
1k
R
GK
A3
A2
V1
A1
SWITCH 1 : I
GT
measurement
SWITCH 2 : V
GT
measurement
(Inner resistance of voltage meter is about 1k
)
V
3. I
GT
, V
GT
measurement circuit.
SWITCH
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR04AM
LOW POWER USE
GLASS PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Test conditions
T
j
=125
C, V
RRM
applied
T
j
=125
C, V
DRM
applied, R
GK
=1k
T
a
=25
C, I
TM
=1.2A, instantaneous value
T
a
=25
C, V
D
=6V, I
T
=0.1A
V
3
T
j
=125
C, V
D
=1/2V
DRM
, R
GK
=1k
T
j
=25
C, V
D
=6V, I
T
=0.1A
V
3
T
j
=25
C, V
D
=12V, R
GK
=1k
Junction to ambient
Unit
mA
mA
V
V
V
A
mA
C/W
Typ.
--
--
--
--
--
--
1.5
--
Symbol
I
RRM
I
DRM
V
TM
V
GT
V
GD
I
GT
I
H
R
th (j-a)
Parameter
Repetitive peak reverse current
Repetitive peak off-state current
On-state voltage
Gate trigger voltage
Gate non-trigger voltage
Gate trigger current
Holding current
Thermal resistance
V
2. If special values of I
GT
are required, choose at least two items from those listed in the table below. (Example: AB, BC)
B
20 ~ 50
C
40 ~ 100
Item
I
GT
(
A)
A
1 ~ 30
The above values do not include the current flowing through the 1k
resistance between the gate and cathode.
Limits
Min.
--
--
--
--
0.2
1
--
--
Max.
0.5
0.5
1.2
0.8
--
100
V
2
3
150
PERFORMANCE CURVES
10
0
2 3
5 7 10
1
4
2
2 3
5 7 10
2
4
4
6
8
10
3
1
5
7
9
0
5
0
1
4
2
3
10
2
7
5
3
2
10
1
7
5
3
2
10
0
7
5
3
2
10
1
T
a
= 25
C
MAXIMUM ON-STATE CHARACTERISTICS
ON-STATE CURRENT (A)
ON-STATE VOLTAGE (V)
RATED SURGE ON-STATE CURRENT
SURGE ON-STATE CURRENT (A)
CONDUCTION TIME
(CYCLES AT 60Hz)
Sep.2000
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR04AM
LOW POWER USE
GLASS PASSIVATION TYPE
10
2
10
2
10
0
10
1
7
5
3
2
10
1
7
5
3
2
10
0
7
5
3
2
7
5
3
2
10
2
2 3 57
2 3 57
10
1
2 3 57
10
2
2 3 57
2 3
10
1
V
FGM
= 6V
V
GT
= 0.8V
(T
j
= 25
C)
I
GT
= 100
A
(T
j
= 25
C)
P
GM
= 0.5W
P
G(AV)
= 0.1W
V
GD
= 0.2V
I
FGM
= 0.3V
2 3
10
0
5 7 10
1
2 3 5 7 10
2
2 3 5 7 10
3
10
1
2 3
10
3
5 710
2
2 3 5 710
1
2 3 5 7 10
0
10
3
7
5
3
2
10
2
7
5
3
2
7
5
3
2
10
0
160
60
20
40
0
20 40
80 100 120 140
10
3
7
5
3
2
10
2
7
5
3
2
10
1
7
5
3
2
10
0
TYPICAL EXAMPLE
1.0
0.8
0.7
0.6
0.3
0.4
0.1
0
120
40 20
20
80
0.2
0.5
0.9
0
60
40
100
TYPICAL EXAMPLE
DISTRIBUTION
160
120
60
40
20
140
100
80
0
0.8
0
0.2
0.4
0.6 0.7
0.1
0.3
0.5
= 30
60
120
90
180
360
RESISTIVE,
INDUCTIVE
LOADS
NATURAL
CONVECTION
0.8
0.6
0.3
0.2
0.1
0.7
0.5
0.4
0
0.8
0
0.2
0.4
0.6 0.7
0.1
0.3
0.5
360
= 30
60
120
90
180
RESISTIVE, INDUCTIVE LOADS
MAXIMUM AVERAGE POWER DISSIPATION
(SINGLE-PHASE HALF WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO AMBIENT)
TRANSIENT THERMAL IMPEDANCE (
C/
W)
TIME (s)
ALLOWABLE AMBIENT TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(SINGLE-PHASE HALF WAVE)
AMBIENT TEMPERATURE (
C)
AVERAGE ON-STATE CURRENT (A)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
GATE TRIGGER VOLTAGE
( V
)
JUNCTION TEMPERATURE (
C)
GATE VOLTAGE (V)
GATE CURRENT (mA)
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (
C)
GATE CHARACTERISTICS
100 (%)
GATE TRIGGER CURRENT (T
j
= t
C)
GATE TRIGGER CURRENT (T
j
= 25
C)
Sep.2000
MITSUBISHI SEMICONDUCTOR
THYRISTOR
CR04AM
LOW POWER USE
GLASS PASSIVATION TYPE
160
120
60
40
20
140
100
80
0
160
40
0
40
80
120 140
20
20
60
100
R
GK
= 1k
TYPICAL EXAMPLE
0.8
0.6
0.3
0.2
0.1
0.7
0.5
0.4
0
0.8
0
0.2
0.4
0.6 0.7
0.1
0.3
0.5
= 30
60
120
90
180
360
RESISTIVE LOADS
160
120
60
40
20
140
100
80
0
0.8
0
0.2
0.4
0.6 0.7
0.1
0.3
0.5
= 30
120
180
DC
270
60
90
360
RESISTIVE,
INDUCTIVE
LOADS
NATURAL
CONVECTION
0.8
0.6
0.3
0.2
0.1
0.7
0.5
0.4
0
0.8
0
0.2
0.4
0.6 0.7
0.1
0.3
0.5
= 30
60
120
90
180
270
DC
360
RESISTIVE,
INDUCTIVE
LOADS
160
120
60
40
20
140
100
80
0
0.8
0
0.2
0.4
0.6 0.7
0.1
0.3
0.5
= 30
60
120
90
180
360
RESISTIVE LOADS
NATURAL
CONVECTION
2 3
10
1
5 7 10
0
2 3 5 7 10
1
2 3 5 7 10
2
0
80
100
120
40
60
20
TYPICAL EXAMPLE
T
j
= 125
C
MAXIMUM AVERAGE POWER DISSIPATION
(SINGLE-PHASE FULL WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
ALLOWABLE AMBIENT TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(SINGLE-PHASE FULL WAVE)
AMBIENT TEMPERATURE (
C)
AVERAGE ON-STATE CURRENT (A)
MAXIMUM AVERAGE POWER DISSIPATION
(RECTANGULAR WAVE)
AVERAGE POWER DISSIPATION (W)
AVERAGE ON-STATE CURRENT (A)
ALLOWABLE AMBIENT TEMPERATURE VS.
AVERAGE ON-STATE CURRENT
(RECTANGULAR WAVE)
AMBIENT TEMPERATURE (
C)
AVERAGE ON-STATE CURRENT (A)
BREAKOVER VOLTAGE VS.
GATE TO CATHODE RESISTANCE
GATE TO CATHODE RESISTANCE (k
)
100 (%)
BREAKOVER VOLTAGE
( R
GK
=
r
k
)
BREAKOVER VOLTAGE
( R
GK
= 1k
)
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
JUNCTION TEMPERATURE (
C)
100 (%)
BREAKOVER VOLTAGE
( T
j
= t
C
)
BREAKOVER VOLTAGE
( T
j
= 2
5
C
)