ChipFind - документация

Электронный компонент: RF2483

Скачать:  PDF   ZIP
5-29
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Preliminary
Product Description
Ordering Information
Typical Applications
Features
Functional Block Diagram
RF Micro Devices, Inc.
7628 Thorndike Road
Greensboro, NC 27409, USA
Tel (336) 664 1233
Fax (336) 664 0454
http://www.rfmd.com
Optimum Technology Matching Applied
Si BJT
GaAs MESFET
GaAs HBT
Si Bi-CMOS
SiGe HBT
Si CMOS
*
*
*
*
*
Represents "GND".
3
ISIG P
2
VCC2
1
VCC3
4
ISIG N
5
EN
VCC
1
6
7
LO
LB
8
GN
D
L
O
9
LO
H
B
10
GND
1
11 BAND SEL
12 QSIG N
13 QSIG P
14 VREF
15 GC DEC
16
GC
17
RF
O
U
T
L
B
18
GN
D2
19
RF
O
U
T
H
B
20
GN
D3
Mode
Control
&
Biasing
Power
Control
+45
-45
+45
-45
RF2483
LOW NOISE DUAL-BAND QUADRATURE
MODULATOR WITH AGC
TDMA/GSM/EDGE Handsets
GSM/EDGE Handsets
W-CDMA Handsets
TDMA-Based Wireless Applications
Wireless Local Loop
Basestations
The RF2483 is a dual-band direct I/Q to RF modulator
designed for handset applications where multiple modes
of operation are required. The device provides common
differential I/Q inputs and a common AGC amplifier. Inde-
pendent single-ended LO inputs and single-ended high
and low band RF outputs are provided. The device
achieves a very low out-of-band noise density of
-156dBm/Hz minimizing RF filtering. Operating from a
single 2.7V supply, the device is packaged in a
4 mmx4mm, 20-pin, plastic leadless chip carrier.
Dual-Band Operation 700-2200MHz
-156dBm/Hz noise@20MHz offset
+19dBm OIP3
+6dBm OP1dB
35dB Gain Control Range
Single 2.7V to 3.3V Supply
RF2483
Low Noise Dual-Band Quadrature Modulator with
AGC
RF2483 PCBA
Fully Assembled Evaluation Board
5
Rev A2 010904
1.85
1.55 sq.
.60
.24 typ
.30
.18
3
.75
.50
.50
.23
.13
4 PLCS
.05
.01
12
max
1.00
0.85
.80
.65
4.00
sq.
NOTES:
Shaded Pin is Lead 1.
1
Package Warpage: 0.05 mm max.
4
Die Thickness Allowable: 0.305 mm max.
5
Pin 1 identifier must exist on top surface of package by identification
mark or feature on the package body. Exact shape and size is optional.
2
Dimension applies to plated terminal: to be measured between 0.02
mm and 0.25 mm from terminal end.
3
.65
.30
4 PLCS
Package Style: LCC, 20-Pin, 4x4
Preliminary
5-30
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Absolute Maximum Ratings
Parameter
Rating
Unit
Supply Voltage
-0.5 to 3.6
V
Storage Temperature
-40 to +150
C
Operating Ambient Temperature
-40 to +85
C
Input Voltage, any pin
-0.5 to 3.6
V
Input Power, any pin
+10
dBm
Parameter
Specification
Unit
Condition
Min.
Typ.
Max.
Operating Range
Supply Voltage*
2.7
3.3
V
Temperature Range*
-40
+85
C
High Band Frequency Range*
1700
2200
MHz
Bandsel = 2.7V
Low Band Frequency Range*
700
1000
MHz
Bandsel = 0V
DC Parameters
High Band Supply Current
65
85
110
mA
GC =2.0V, V
CC
= 2.7V, EN = 2.7V,
Bandsel = 2.7V, IQ = 1.2V
DC
, T
A
= 25
o
C
Low Band Supply Current
65
85
110
mA
GC =2.0V, V
CC
= 2.7V, EN = 2.7V,
Bandsel = 0V, IQ = 1.2V
DC
, T
A
= 25
o
C
Sleep Current
< 1.0
10
A
EN= 0V
Logic Levels
Input Logic Low
0
0.5
V
Input Logic High
1.4
V
CC
V
Logic Pins Input Current*
<1.0
A
LO Input Port
High Band Frequency Range*
1700
2200
MHz
Bandsel= 2.7V
Low Band Frequency Range*
700
1000
MHz
Bandsel= 0V
High Band LO Input Power*
-3
0
6
dBm
Bandsel= 2.7V
LO Band LO Input Power*
-3
0
6
dBm
Bandsel= 0V
Input Impedance*
50
Caution! ESD sensitive device.
RF Micro Devices believes the furnished information is correct and accurate
at the time of this printing. However, RF Micro Devices reserves the right to
make changes to its products without notice. RF Micro Devices does not
assume responsibility for the use of the described product(s).
Preliminary
5-31
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Parameter
Specification
Unit
Condition
Min.
Typ.
Max.
I/Q Modulator High Band
V
CC
= 2.7V, EN= 2.7V, Bandsel= 2.7V,
FLO= 0dBm, PLO= 1900MHz, LO HB and
RF OUT HB ports are matched to 50
.
IQ= 800mV
P-P
at 100kHz 1.2V
DC
. Input IQ
signals driven differentially and in quadrature
from a 50
source impedance. T
A
= 25
o
C
Baseband Input Voltage*
1.15
1.2
1.25
V
Common mode voltage
Baseband Input Level
0.8
V
PP
Measured differentially
Baseband Input Impedance*
5.5
k
Measured at 100kHz
Input Bandwidth*
50
150
MHz
I/Q source impedance 50
Sideband Suppression
30
43
dBc
GC= 2.0V, no I/Q adjustment
30
43
dBc
GC= 1.5V, no I/Q adjustment
30
46
dBc
GC= 1.0V, no I/Q adjustment
30
47
dBc
GC= 0.5V, no I/Q adjustment
Carrier Suppression
30
48
dBc
GC= 2.0V, no I/Q adjustment
30
44
dBc
GC= 1.5V, no I/Q adjustment
25
40
dBc
GC= 1.0V, no I/Q adjustment
25
35
dBc
GC= 0.5V, no I/Q adjustment
3rd Harmonic of Modulation
Suppression at FLO-3x100kHz
40
47
dBc
GC= 2.0V
40
47
dBc
GC= 1.5V
35
42
dBc
GC= 1.0V
35
42
dBc
GC= 0.5V
Baseband Inputs DC Current
Drain*
100
A
Baseband Inputs AC Current
Drain*
100
A
PP
I/Q Modulator Low Band
V
CC
= 2.7V, EN= 2.7V, Bandsel= 0V,
FLO= 0dBm, PLO= 900MHz, LO LB and RF
OUT LB ports are matched to 50
.
IQ= 800mV
P-P
at 100kHz 1.2V
DC
. Input IQ
signals driven differentially and in quadrature
from a 50
source impedance. T
A
= 25
o
C
Baseband Input Voltage*
1.15
1.2
1.25
V
Common mode voltage
Baseband Input Level
0.8
V
PP
Measured differentially
Baseband Input Impedance*
5.5
k
Measured at 100kHz
Input Bandwidth*
50
150
MHz
I/Q source impedance 50
Sideband Suppression
30
37
dBc
GC= 2.0V, no I/Q adjustment
30
37
dBc
GC= 1.5V, no I/Q adjustment
30
44
dBc
GC= 1.0V, no I/Q adjustment
30
40
dBc
GC= 0.5V, no I/Q adjustment
Carrier Suppression
30
52
dBc
GC= 2.0V, no I/Q adjustment
30
50
dBc
GC= 1.5V, no I/Q adjustment
25
33
dBc
GC= 1.0V, no I/Q adjustment
15
22
dBc
GC= 0.5V, no I/Q adjustment
3rd Harmonic of Modulation
Suppression at FLO-3x100kHz
40
59
dBc
GC= 2.0V
40
59
dBc
GC= 1.5V
35
48
dBc
GC= 1.0V
35
41
dBc
GC= 0.5V
Baseband Inputs DC Current
Drain*
100
A
Baseband Inputs AC Current
Drain*
100
A
PP
Preliminary
5-32
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Parameter
Specification
Unit
Condition
Min.
Typ.
Max.
Variable Gain Amplifiers
High Band
V
CC
= 2.7V, EN =2.7V, Bandsel= 2.7V,
FLO= 0dBm, PLO= 1900MHz, LO HB and
RF OUT HB ports are matched to 50
. Input
IQ signals driven differentially and in quadra-
ture from a 50
source impedance.
T
A
= 25
o
C
Gain Control Voltage Range
0
2.0
V
Gain Control Range
32
35
dB
Difference between output power at
GC= 2.0V and GC= 0.5V
Gain Control Slope
23
29
dB/V
Calculated GC =1.0V and 1.5V
Gain Control Input Impedance*
10
k
Output Power
-3
0.4
3
dB
GC= 2.0V, IQ= 800mV
P-P
at 100kHz
-11
-7
-5
dB
GC= 1.5V, IQ= 800mV
P-P
at 100kHz
-23
-20
-17
dB
GC= 1.0V, IQ= 800mV
P-P
at 100kHz
-36
-35
-30
dB
GC= 0.5V, IQ= 800mV
P-P
at 100kHz
Output Noise at FLO+ 20MHz*
-155
dBm/Hz
GC= 2.0V, IQ= 800mV
P-P
at 100kHz
-156.7
dBm/Hz
GC= 2.0V, IQ= 0mV
P-P
Output P1dB*
+6
dBm
IQ at 100kHz
Output IP3*
+20
dBm
GC= 2.0V. Extrapolated from IM3 with two
baseband tones at 90kHz applied differen-
tially, in quadrature, at both I and Q inputs,
each tone 400mV
P-P
.
Intermodulation IM3 tone at
FLO+ 70kHz and
FLO+ 130kHz relative to tone
at FLO+ 90kHz
Two baseband tones at 90kHz and 110kHz
applied differentially, in quadrature, at both I
and Q inputs, each tone 400mV
P-P
.
40
50
dBc
GC= 2.0V
40
50
dBc
GC= 1.5V
30
35
dBc
GC= 1.0V
30
35
dBc
GC= 0.5V
Preliminary
5-33
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
*= Not tested in production
Parameter
Specification
Unit
Condition
Min.
Typ.
Max.
Variable Gain Amplifiers
Low Band
V
CC
= 2.7V, EN= 2.7V, Bandsel= 0V,
FLO= 0dBm, PLO= 900MHz, LO LB and RF
OUT LB ports are matched to 50
. Input IQ
1.2Vdc, signals driven differentially and in
quadrature from a 50
source impedance.
T
A
= 25
o
C
Gain Control Voltage Range
0
2.0
V
Gain Control Range
32
36
dB
Difference between output power at
GC= 2.0V and 0.5V
Gain Control Slope
27
33
dB/V
Calculated using output power at GC =1.0V
and 1.5V
Gain Control Input Impedance*
10
k
Output Power
-3
0.8
3
dB
GC= 2.0V, IQ= 800mV
P-P
at 100kHz
-10
-6
-4
dB
GC= 1.5V, IQ= 800mV
P-P
at 100kHz
-25
-21
-19
dB
GC= 1.0V, IQ= 800mV
P-P
at 100kHz
-38
-35
-32
dB
GC= 0.5V, IQ= 800mV
P-P
at 100kHz
Output Noise at FLO+20MHz*
-156.4
dBm/Hz
GC= 2.0V, IQ= 800mV
P-P
at 100kHz
-157.2
dBm/Hz
GC= 2.0V, IQ= 0mV
P-P
Output P1dB*
+6
dBm
IQ at 100kHz
Output IP3*
+19
dBm
GC= 2.0V. Extrapolated from IM3 with two
baseband tones at 90kHz and 110kHz
applied differentially, in quadrature, at both I
and Q inputs, each tone 400mV
P-P
.
Intermodulation IM3 tone at
FLO+70kHz and
FLO+ 130kHz relative to tone
at FLO+ 90kHz
Two baseband tones at 90kHz and 110kHz
applied at both I and Q inputs, each tone
400mV
P-P
.
40
47
dBc
GC= 2.0V
40
49
dBc
GC= 1.5V
30
41
dBc
GC= 1.0V
25
31
dBc
GC= 0.5V
MODE
EN
BANDSEL
COMMENTS
Sleep
0
X
I/Q and GC inputs go open circuit through the
use of a FET switch in sleep mode.
High Band Mode
1
1
LO input LO HB
RF output= RF OUT HB
Low Band Mode
1
0
LO input LO LB
RF output= RF OUT LB
Preliminary
5-34
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Pin
Function
Description
Interface Schematic
1
VCC3
Supply for RF output circuits.
2
VCC2
Supply for modulator and biasing circuits.
3
ISIG P
In phase I channel positive baseband input port. Best performance is
achieved when the ISIGP and ISIGN are driven differentially. The rec-
ommended CW differential drive level (V
ISIGP
- V
ISIGN
) is 800mV
P-P
.
This input should be DC-biased at 1.2V 0.05V. The common-mode
DC coltage on the ISIGP and ISIGN input signals is used to bias the
modulator. In sleep mode an internal FET switch is opened, the input
goes high impedance and the modulator is de-biased. The input imped-
ance is typically 5.5k
at low frequencies and at higher frequencies
can be modeled as 50
in series with 12pF to ground.
Phase or amplitude errors between the ISIGP and ISIGN signals may
result in the even order distortion of the modulation in the output spec-
trum.
DC offsets between the ISIGP and ISIGN signals will result in
increased carrier leakage. Small DC offsets may be deliberately
applied between the ISIGP/ISIGN and QSIGP/QSIGN inputs to cancel
out LO leakage. The optimum corrective DC offsets will change with
mode, frequency and gain control.
Common-mode noise on the ISIGP and ISGN should be kept low as it
may degrade the noise performance of the modulator.
Phase offsets may be applied between the I and Q channels to improve
the sideband suppression performance.
4
ISIG N
In phase I channel negative baseband input port. See ISIGP.
5
ENABLE
Enables power to the device.
CMOS input.
Logic 1 (1.4V to VCC)=Enabled.
Logic 0 (0V to 0.5V) = Powered Down.
6
VCC1
Supply for the LO buffers and quadrature network.
The sideband suppression is a function of the VCC1 voltage. The inclu-
sion of R3 (39
) lowers the voltage on VCC1 by around 400mV and
results an improvement in sideband suppression but around a 0.2dB
increase in noise at 20MHz offset.
VCC3
RF Output
Amplifier
VCC2
Modulator and
VGA
VCC2
V
CC2
12 pF
50
V
CC2
12 pF
50
V
CC2
VCC1
LO Quadrature
Generator and
Buffers
GND1
Preliminary
5-35
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Pin
Function
Description
Interface Schematic
7
LOLB
Local oscillator input low band.
This input is biased internally at around 1.6V when the chip is in low
band mode and 0V when the chip is in high band mode or powered
down. The LO signal typically needs to be AC coupled.
The noise performance, carrier suppression at low output powers and
sideband suppression are all a function of LO power.
The optimum LO power is between 0dBm and 3dBm.
The device will work with LO powers as low as -20dBm however this is
at the expense of higher noise performance at high output powers and
poorer sideband suppression.
8
GND LO
Ground return for the local oscillator input signals.
The GND LO pin is effectively the complementary LO input for both the
high band and low band LO signals. It has significant amounts of LO
signal flowing through it. This pin is brought out as an independent
ground to enable the PCB board designer to isolate the LO return from
the RF outputs ground and the general chip ground.
It is recommended that this ground is kept isolated from the die flag
ground. Any connections between the GND LO and any other ground
should be made through a ground plane.
See pins 7 and 9.
9
LOHB
Local oscillator input high band.
This input is biased internally at around 1.6V when the chip is in high
band mode and 0V when the chip is in low band mode or powered
down. The LO HB signal typically needs to be AC coupled.
The noise performance, carrier suppression at low output powers and
sideband suppression are all a function of LO power.
The optimum LO power is between 0dBm and 3dBm.
The device will work with LO powers as low as - 20dBm however this is
at the expense of higher noise performance at high output powers and
poorer sideband suppression.
10
GND1
Ground for LO buffers.
See pin 6.
11
BAND SEL
Band select input to define active mode.
CMOS input.
Logic 1 (1.4V to VCC) = High band mode.
Logic 2 (0V to 0.5V)=Low band mode.
12
QSIG N
Quadrature channel negative baseband input port. See QSIGP.
LOLB
GNDLO
LOHB
GND LO
V
CC2
V
CC2
12 pF
50
Preliminary
5-36
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Pin
Function
Description
Interface Schematic
13
QSIG P
Quadrature Q channel positive baseband input port.
Best performance is achieved when the ISIGP and ISIGN are driven
differentially. The recommended CW differential drive level (V
QSIGP
-
V
QSIGN
) is 800mV
P-P
.
This input should be DC-biased at 1.2V0.05V. The common-mode
DC voltage on the QSIGP and QSIGN input signals is used to bias the
modulator. In sleep mode an internal FET switch is opened, the input
goes high impedance and the modulator is de-biased. The input imped-
ance is typically 5.5k
at low frequencies and at higher frequencies
can be modeled as 50
in series with 12pF to ground.
Phase or amplitude errors between the QSIGP and QSIGN signals
which may result in an increase in the even order distortion of the mod-
ulation in the output spectrum.
DC offsets between the QSIGP and QSIGN signals will result in an
increased carrier leakage. Small DC offsets may be deliberately
applied between the ISIGP/ISIGN and QSIGP/QSIGN inputs to cancel
out the LO leakage. The optimum corrective DC offsets will change with
mode, frequency and gain control.
Common-mode noise on the QSIGP and QSIGN should be kept low as
it may degrade the noise performance of the modulator.
Phase offsets may be applied between the I and Q channels to improve
the sideband suppression performance.
14
VREF
Voltage reference decouple with an external 10nF capacitor to ground.
The voltage on this pin is typically 1.67V when the chip is enabled. The
voltage is 0V when the chip is powered down.
The purpose of this decoupling capacitor is to filter out low frequency
noise (20MHz) on the gain control lines.
Poor positioning of the VREF decoupling capacitor can cause a degra-
dation in LO leakage.
A voltage of around 2.5V on this pin indicates that the die flag under
the chip is not grounded and the chip is not biased correctly.
15
GC DEC
Voltage reference decouple with an external 1nF decoupling capacitor
to ground.
The voltage on this pin is a function of gain control (GC) voltage when
the chip is enabled. The voltage is 0V when the chip is powered down.
The purpose of this decoupling capacitor is to filter out low frequency
noise (20MHz) on the gain control lines. The size of the capacitor on
the GC DEC line will effect the settling time response to a change in
gain control voltage. A 1nF capacitor equates to around 200ns settling
time and a 0.5nF capacitor equates to a 100ns settling time. There is a
trade-off between settling time and noise contributions by the gain con-
trol circuitry as gain control is applied.
Poor positioning of the VREF decoupling capacitor can cause a degra-
dation in LO leakage.
16
GC
Gain control voltage. Maximum output power at 2.0V. Minimum output
power at 0V. When the chip is enabled the input impedance is 10k
referenced to 1.7V
DC
. When the chip is powered down a FET switch is
opened and the input goes high impedance.
17
RF OUT LB
RF low band output. Open collector output.
The output should be biased at VCC through an inductor that can be
used to form part of an output matching circuit.
In our proposed applications circuit some power is dissipated in R6
(130
) which appears as a de-Qing resistor in parallel with the output
inductor L4. If R6 is eliminated and the RFOUT LB pin is re-matched to
50
it is possible to get approximately 5dB extra power out of the
device in low band mode.
18
GND2
Ground for RF output sections.
V
CC2
12 pF
50
4 k
V
CC2
+
-
4 k
V
CC2
+
-
V
CC2
1.7 V
10 k
4 k
+
-
Preliminary
5-37
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Pin
Function
Description
Interface Schematic
19
RF OUT HB
RF high band output. Open collector output.
The output should be biased at VCC through an inductor that can be
used to form part of an output matching circuit.
In our proposed applications circuit some power is dissipated in R4
(180
) which appears as a de-Qing resistor in parallel with the output
inductor L3. If R4 is eliminated and the RFOUT HB pin is re-matched to
50
it is possible to get approximately 3dB extra power out of the
device in high band mode.
20
GND3
Ground for RF output sections.
Die
Flag
GND4
Ground for modulator, variable gain amplifier and substrate.
Preliminary
5-38
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Application Notes
The baseband inputs must be driven with balanced dif-
ferential signals. We suggest amplitude and phase
matching <0.5 dB and <0.5. Phase or gain imbalances
between the complementary input signals will cause
additional distortion including some second order
baseband distortion.
The common-mode voltage on the baseband inputs
should be well controlled at 1.2V. We suggest that the
common-mode DC voltage be 1.2 V+0.05V. The com-
mon-mode DC voltage is used to bias the modulator;
hence, deviations from 1.2 V will result in changes in
the current consumption, noise and intermodulation
performance.
The chip is designed to be driven with a single-ended
LO signal.
The GC DEC and VREF output pins should be decou-
pled to ground. We recommend a 10nF capacitor on
VREF, and a 1nF capacitor on GC DEC. The purpose
of this capacitor is to filter out low frequency noise
(20MHz) in the gain control lines, which may cause
noise on the RF signal. The capacitor on the GC DEC
line will effect the settling time response to a change in
power control voltage. A 1nF capacitor equates to
around a 200ns settling time, and a 0.5 nF capacitor
equates to a 100ns settling time. There is a trade-off
between settling time and phase noise as you start to
apply gain control.
The ground lines for the LO sections, GNDLO and
GND1, are brought out of the chip independently from
the ground to the RF and modulator sections. This iso-
lates the LO signals from the RF output sections.
The GND LO pin is effectively the complementary LO
input for both the high band and low band LO signals. It
has significant amounts of LO signal flowing through it.
This is brought out as an independent ground to try to
enable the PCB board designer to isolate the LO return
from the RF output sections and general chip ground.
The RF output ports of the RF2483 consist of open col-
lector architecture and require pull up inductors to the
supply voltage. This, in conjunction with a DC blocking
capacitor provides a simple, broadband L-match net-
work as shown in the schematic diagram. A shunt
resistor is included to control the Q of the matching
network and set the modulator output power. In this
case, both outputs were designed to provide 0 dBm.
An alternate output match containing a third harmonic
trap was evaluated. This circuit uses a tapped-C
matching network, whereby the shunt C provides a low
impedance path near the third harmonic frequency.
Although an additional component is required, the ben-
efit of suppressing the third harmonic distortion may
improve overall system intermodulation. This network
has been shown to provide better than 20 dB of
improved suppression in high-band mode.
High Band LOHB (S11) and RFHB (S22) Parameters
(V
CC
=2.7V, V
GC
= 2.0V, Band Sel= 2.7V, EN =2.7V, T = +25C)
Low Band LOLB (S11) and RFLB (S22) Parameters
(V
CC
=2.7V, V
GC
= 2.0V, Band Sel= 0V, EN= 2.7V, T =+25C)
Freq. (MHz)
S11 MAG S11 ANG S22 MAG S22 ANG
1700
0.478
-110.8
0.903
-55.0
1750
0.469
-112.4
0.901
-56.2
1800
0.465
-115.1
0.902
-57.2
1850
0.472
-117.2
0.902
-58.0
1900
0.476
-117.6
0.904
-59.0
1950
0.465
-118.4
0.905
-59.6
2000
0.457
-120.8
0.906
-60.3
2050
0.452
-122.6
0.909
-60.9
2100
0.464
-123.0
0.916
-61.9
2150
0.453
-123.4
0.914
-64.0
2200
0.442
-125.4
0.879
-64.5
Freq. (MHz)
S11 MAG S11 ANG S22 MAG S22 ANG
700
0.468
-63.2
0.92
-9.9
750
0.452
-67.6
0.915
-11.3
800
0.437
-72.1
0.913
-12.6
850
0.425
-76.6
0.908
-14.0
900
0.414
-81.2
0.905
-15.6
950
0.407
-85.6
0.901
-17.1
1000
0.402
-89.8
0.898
-18.8
L3
2.2 nH
R4
180
C4
100 pF
VCC
C11
2 pF
C12
1 pF
J4
RFOUT HB
C15
6 pF
C13
2 pF
J8
RFOUT LB
L4
10 nH
R6
130
C6
100 pF
VCC
Figure 1. Alternate RF output match with
third-harmonic suppression.
Preliminary
5-39
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Evaluation Board Schematic
(Download Bill of Materials from www.rfmd.com.)
*
Represents "GND".
2483400-
*
*
*
*
3
2
1
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
C8
1 nF
VCC
EN
J1
I+
C5
10 pF
L2
3.3 nH
J5
LO HB
L1
6.8 nH
C3
100 pF
J3
LO LB
C7
1 nF
R3
39
VCC
BAND SEL
J7
Q-
J6
Q+
C14
10 nF
C9
1 nF
C10
1 nF
R5
100
GC
L4
10 nH
R6
130
VCC
C6
100 pF
C15
3 pF
C13*
DNI
J8
RF OUT LB
L3
3.3 nH
R4
180
VCC
C4
100 pF
C11
1 pF
C12*
DNI
J4
RF OUT HB
P1
1
2
3
CON3
P1-1
C2
1 uF
+
VCC
GND
P1-3
EN
R2
1 M
P2
1
2
3
CON3
GND
P1-3
BAND SEL
R1
1 M
P1-1
C1
1 uF
+
GC
J2
I-
Note: Parts with * following the reference designator
should not be populated on the evaluation board.
Preliminary
5-40
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Evaluation Board Layout
Board Size 2.0" x 2.0"
Board Thickness 0.062", Board Material FR-4, Multi-Layer
Assembly
Top
Inner 1
Preliminary
5-41
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Inner 2
Back
Preliminary
5-42
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
High Band Modulator Performance versus Frequency
LO=0dBm, V
CC
=2.7V, GC=2V, IQ=100kHz 800mV
P-P
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
1700.0
1800.0
1900.0
2000.0
2100.0
2200.0
Frequency (MHz)
Output
Power
(
dBm)
Carrier
Suppression
(dBc)
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
Sideband
Suppression
(dBc)
3rd
H
armonic
(
dBc)
Carrier Suppression
Sideband Suppression
3rd Harmonic of Modulation
Output Power
High Band Output Noise 20MHz Offset versus LO Power
V
CC
=2.7V, LO=1900MHz, GC=2V
-158.0
-157.0
-156.0
-155.0
-154.0
-153.0
-152.0
-10.0
-8.0
-6.0
-4.0
-2.0
0.0
2.0
4.0
6.0
8.0
LO Power (dBm)
Output
Noise
(
dBm/Hz)
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
Output
Power
(
dBm)
Output Noise 20MHz
Offset,
I&Q =
800mVpp 1.2Vdc
Output Noise 20MHz
Offset,
I&Q = 0 mVpp
1.2Vdc
Output Power
I&Q = 800mVpp
High Band Output Noise 20MHz Offset versus Gain
Control -
V
CC
=2.7V, LO=1900MHz, GC=2V
-170.0
-165.0
-160.0
-155.0
-150.0
-145.0
-140.0
-135.0
-130.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Output
Noise
(
dBm/Hz)
-35.0
-30.0
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
Output
Power
(
dBm)
Output Noise 20MHz
Offset,
I&Q =
800mVpp 1.2Vdc
Output Noise 20MHz
Offset,
I&Q = 0mVpp
1.2Vdc
Output Power
I&Q=800mVpp 1.2Vdc
High Band Modulator Performance versus LO Power
LO=1900MHz, V
CC
=2.7V, GC=2V, IQ=100kHz 800mV
P-P
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
-10.0
-8.0
-6.0
-4.0
-2.0
0.0
2.0
4.0
6.0
8.0
LO Power (dBm)
Output
Power
(
dBm)
Carrier
Suppression
(dBc)
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
Sideband
Suppression
(dBc)
3rd
H
armonic
(
dBc)
Carrier Suppression
Sideband Suppression
3rd Harmonic of
Modulation
Output Power
High Band Output Power versus Baseband Signal Level -
V
CC
=2.7V, LO=1900MHz 0dBm, IQ=100kHz 1.2Vdc
-80.0
-70.0
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
10.0
20.0
10.0
100.0
1000.0
10000.0
Baseband Signal Level (mVpp)
Output
Power
(
dBm)
GC = 2.0V
GC = 1.5V
GC = 1.0V
GC = 0.5V
High Band Output IP3 versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=900kHz and 1100kHz at 1.2V
DC
-30.00
-20.00
-10.00
0.00
10.00
20.00
30.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
OIP3
(dBm)
1700MHz
1800MHz
1900MHz
2000MHz
Preliminary
5-43
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
High Band Output Power versus Gain Control
LO=1900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-40.00
-35.00
-30.00
-25.00
-20.00
-15.00
-10.00
-5.00
0.00
5.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Output
Power
(
dBm)
Vcc = 2.7V
Vcc = 3.0V
Vcc = 3.3V
High Band Sideband Suppression versus Gain Control -
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Sideband
Suppression
(dBc)
1700MHz
1800MHz
1900MHz
2000MHz
High Band Carrier Suppression versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Carrier
Suppression
(dBc)
1700MHz
1800MHz
1900MHz
2000MHz
High Band Output Power versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-40.0
-35.0
-30.0
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Output
Power
(
dBm)
1700MHz
1800MHz
1900MHz
2000MHz
High Band Output Power versus Gain Control
LO=1900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-40.0
-35.0
-30.0
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Output
Power
(
dBm)
Temp = -40C,
Vcc=2.7V
Temp = +25C,
Vcc=2.7V
Temp = +85C,
Vcc=2.7V
High Band Modulation's 3rd Harmonic versus Gain
Control -
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
3rd
H
armonic
o
f
M
odulation
S
uppression
1700MHz
1800MHz
1900MHz
2000MHz
Preliminary
5-44
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
High Band Carrier Suppression versus Gain Control
LO=1900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Carrier
Suppression
(dBc)
Temp = -40C,
Vcc=2.7V
Temp = +25C,
Vcc=2.7V
Temp = +85C,
Vcc=2.7V
High Band Sideband Suppression versus Gain Control -
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Sideband
Suppression
(dBc)
Vcc=2.7V
Vcc=3.0V
Vcc=3.3V
High Band Modulation's 3rd Harmonic versus Gain
Control -
LO=1900MHz 0dBm, IQ=100kHz 800mV
p-p
1.2V
DC
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
3rd
H
armonic
o
f
M
odulation
S
uppression
(dBc)
Vcc=2.7V
Vcc=3.0V
Vcc=3.3V
High Band Sideband Suppression versus Gain Control -
LO=1900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Sideband
Suppression
(dBc)
Temp = -40C,
Vcc=2.7V
Temp = +25C,
Vcc=2.7V
Temp = +85C,
Vcc=2.7V
High Band Carrier Suppression versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Carrier
Suppression
(dBc)
Vcc=2.7V
Vcc=3.0V
Vcc=3.3V
High Band Output IP3 versus Gain Control
LO=1900MHz 0dBm, IQ=900kHz and 1100kHz at 1.2V
DC
-30.0
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Output
IP3
(dBm)
Vcc=2.7V
Vcc=3.0V
Vcc=3.3V
Preliminary
5-45
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Low Band Modulator Performance versus Frequency
LO=0dBm, V
CC
=2.7V, GC=2V, IQ=100kHz 800mV
P-P
-70.00
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
700.0
800.0
900.0
1000.0
1100.0
1200.0
Frequency (MHz)
Output
Power
(
dBm)
Carrier
Suppression
(dBc)
-70.00
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
Sideband
Suppression
(dBc)
3rd
H
armonic
(
dBc)
Carrier Suppression
Sideband Suppression
3rd Harmonic of
Modulation
Output Power
Low Band Output Noise 20MHz Offset versus LO Power
V
CC
=2.7V, LO=900MHz, GC=2V
-158.00
-157.00
-156.00
-155.00
-154.00
-153.00
-152.00
-10.0
-8.0
-6.0
-4.0
-2.0
0.0
2.0
4.0
6.0
8.0
LO Power (dBm)
Output
Noise
(
dBm/Hz)
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
Output
Power
(
dBm)
Output Noise 20MHz
Offset,
I&Q =
800mVpp 1.2Vdc
Output Noise 20MHz
Offset,
I&Q = 0
mVpp 1.2Vdc
Output Power
I&Q=800mVpp 1.2Vdc
Low Band Output Noise at 20MHz Offset versus GC
V
CC
=2.7V, LO=900MHz 0dBm
-170.0
-165.0
-160.0
-155.0
-150.0
-145.0
-140.0
-135.0
-130.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Output
Noise
(
dBm/Hz)
-35.0
-30.0
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
Output
Power
(
dBm)
Output Noise 20MHz
Offset,
I&Q =
800mVpp 1.2Vdc
Output Noise 20MHz
Offset,
I&Q = 0 mVpp
1.2Vdc
Output Power
I&Q=800mVpp 1.2Vdc
Low Band Modulator Performance versus LO Power
LO=900MHz, V
CC
=2.7V, GC=2V, IQ=100kHz 800mV
P-P
-70.00
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
-10.0
-8.0
-6.0
-4.0
-2.0
0.0
2.0
4.0
6.0
8.0
LO Power (dBm)
Output
Power
(
dBm)
Carrier
Suppression
(dBc)
-70.00
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
Sideband
Suppression
(dBc)
3rd
H
armonic
(
dBc)
Carrier Suppression
Sideband Suppression
3rd Harmonic of
Modulation
Output Power
Low Band Output Power versus Baseband Signal Level
V
CC
=2.7V, LO=900MHz, IQ=100kHz 1.2Vdc
-80.0
-70.0
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
10.0
20.0
10.0
100.0
1000.0
10000.0
Baseband Signal Level (mVpp)
Output
Power
(
dBm)
GC = 2.0V
GC = 1.5V
GC = 1.0V
GC = 0.5V
Low Band Output IP3 versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=900kHz and 1100kHzat 1.2V
DC
-40.00
-30.00
-20.00
-10.00
0.00
10.00
20.00
30.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
OIP3
(dBm)
700MHz
800MHz
900MHz
1000MHz
Preliminary
5-46
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Low Band Output Power versus Gain Control
LO=900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-45.00
-40.00
-35.00
-30.00
-25.00
-20.00
-15.00
-10.00
-5.00
0.00
5.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Output
Power
(
dBm)
Vcc=2.7V
Vcc=3.0V
Vcc=3.3V
Low Band Output Power versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-45.0
-40.0
-35.0
-30.0
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Output
Power
(
dBm)
700MHz
800MHz
900MHz
1000MHz
Low Band Sideband Suppression versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Sideband
Suppression
(dBc)
700MHz
800MHz
900MHz
1000MHz
Low Band Output Power versus Gain Control
LO=900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-45.00
-40.00
-35.00
-30.00
-25.00
-20.00
-15.00
-10.00
-5.00
0.00
5.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Output
Power
(
dBm)
Temp = -40C,
Vcc=2.7V
Temp = +25C,
Vcc=2.7V
Temp = +85C,
Vcc=2.7V
Low Band Carrier Suppression versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Carrier
Suppression
(dBc)
700MHz
800MHz
900MHz
1000MHz
Low Band Modulation's 3rd Harmonic versus Gain
Control -
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-80.0
-70.0
-60.0
-50.0
-40.0
-30.0
-20.0
-10.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
3rd
H
armonic
o
f
M
odulation
S
uppression
(dBc)
700MHz
800MHz
900MHz
1000MHz
Preliminary
5-47
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
Low Band Carrier Suppression versus Gain Control
LO=900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Carrier
Suppression
(dBc)
Temp = -40C,
Vcc=2.7V
Temp = +25C,
Vcc=2.7V
Temp = +85C,
Vcc=2.7V
Low Band Carrier Suppression versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Carrier
Suppression
(dBc)
Vcc=2.7V
Vcc=3.0V
Vcc=3.3V
Low Band Modulation's 3rd Harmonic versus Gain
Control -
LO=900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-70.00
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
3rd
H
armonic
o
f
M
odulation
S
uppression
(dBc)
Vcc=2.7V
Vcc=3.0V
Vcc=3.3V
Low Band Sideband Supperssion versus Gain Control
LO=900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-70.00
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Sideband
Suppression
(dBc)
Temp = -40C,
Vcc=2.7V
Temp = +25C,
Vcc=2.7V
Temp = +85C,
Vcc=2.7V
Low Band Sideband Suppression versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
-70.00
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Sideband
Suppression
(dBc)
Vcc=2.7V
Vcc=3.0V
Vcc=3.3V
Low Band Output IP3 versus Gain Control
V
CC
=2.7V, LO=0dBm, IQ=900kHz and 1100kHzat 1.2V
DC
-40.00
-30.00
-20.00
-10.00
0.00
10.00
20.00
30.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
OIP3
(dBm)
700MHz
800MHz
900MHz
1000MHz
Preliminary
5-48
RF2483
Rev A2 010904
5
MO
D
U
LA
T
O
R
S
A
N
D
UP
C
O
N
V
E
R
T
E
RS
High Band Current Consumption versus Gain Control
LO=1900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Current
(mA)
Temp = -40C,
Vcc=2.7V
Temp = +25C,
Vcc=2.7V
Temp = +85C,
Vcc=2.7V
High Band Current Consumption versus Gain Control
LO=1900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Current
(mA)
Vcc=2.7V
Vcc=3.0V
Vcc=3.3V
Low Band Current Consumption versus Gain Control
LO=900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
0.00
20.00
40.00
60.00
80.00
100.00
120.00
140.00
160.00
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Current
(mA)
Temp = -40C,
Vcc=2.7V
Temp = +25C,
Vcc=2.7V
Temp = +85C,
Vcc=2.7V
Low Band Current Consumption versus Gain Control
LO=900MHz 0dBm, IQ=100kHz 800mV
P-P
1.2V
DC
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
0.0
0.5
1.0
1.5
2.0
2.5
Gain Control (V)
Current
(mA)
Vcc=2.7V
Vcc=3.0V
Vcc=3.3V
High Band
Return Loss versus Frequency
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
1700.0
1750.0
1800.0
1850.0
1900.0
1950.0
2000.0
Frequency (MHz)
Return
Loss
(
dB)
LO HB Port
RFOUT HB Port
Low Band
Return Loss versus Frequency
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
700.0
750.0
800.0
850.0
900.0
950.0
1000.0
Frequency (MHz)
Return
Loss
(
dB)
LO LB Port
RFOUT LB Port