ChipFind - документация

Электронный компонент: R2025D

Скачать:  PDF   ZIP
'03.03.18
12345
I
2
C-Bus Real-Time Clock Module
R2025S/D
12345
Rev.1.01 - 1 -
s
OUTLINE
The R2025S/D is a real-time clock module, built in CMOS real-time clock IC and crystal oscillator, connected to
the CPU by two signal lines, SCL and SDA, and configured to perform serial transmission of time and calendar
data to the CPU. The oscillation frequency is adjusted to high precision (0
5ppm: 15sec. per month at 25
C) The
periodic interrupt circuit is configured to generate interrupt signals with six selectable interrupts ranging from 0.5
seconds to 1 month. The 2 alarm interrupt circuits generate interrupt signals at preset times. As the oscillation
circuit is driven under constant voltage, fluctuation of the oscillator frequency due to supply voltage is small, and
the time keeping current is small (TYP. 0.48
A at 3V). The oscillation halt sensing circuit can be used to judge the
validity of internal data in such events as power-on; The supply voltage monitoring circuit is configured to record a
drop in supply voltage below two selectable supply voltage monitoring threshold settings. The 32-kHz clock output
function (CMOS output) is intended to output sub-clock pulses for the external microcomputer. The oscillation
adjustment circuit is intended to adjust time by correcting deviations in the oscillation frequency of the crystal
oscillator.
s
FEATURES
q
Built in 32.768kHz crystal unit, The oscillation frequency is adjusted to high precision (0
5ppm: at 25
C)
q
Time keeping voltage 1.15V to 5.5V
q
Super low power consumption 0.48
A TYP (1.2
A MAX) at VDD=3V
q
I2C-Bus interface (Maximum serial clock frequency: 400KHz at VDD
1.7V)
q
Time counters (counting hours, minutes, and seconds) and calendar counters (counting years, months, days,
and weeks) (in BCD format)
q
Interrupt circuit configured to generate interrupt signals (with interrupts ranging from 0.5 seconds to 1 month) to
the CPU and provided with an interrupt flag and an interrupt halt
q
2 alarm interrupt circuits (Alarm_W for week, hour, and minute alarm settings and Alarm_D for hour and minute
alarm settings)
q
32768Hz Clock CMOS push-pull output with control pin
q
With Power-on flag to prove that the power supply starts from 0V
q
With Oscillation halt sensing Flag to judge the validity of internal data
q
Supply voltage monitoring circuit with two supply voltage monitoring threshold settings
q
Automatic identification of leap years up to the year 2099
q
Selectable 12-hour and 24-hour mode settings
q
Oscillation adjustment circuit for correcting temperature frequency deviation or offset deviation
q
CMOS process
q
Two types of package, SOP14(10.1x7.4x3.1) or SON22(6.1x5.0x1.3)
s
PIN CONFIGURATION














SCL
SDA
/INTRA
VSS
VDD
N.C.
1
2
3
4
5
6
7
9
TOP VIEW
R2025S (SOP14)
32KOUT
10
8
/INTRB
11
12
13
14
N.C.
VPP
N.C.
N.C.
CLKC
N.C.
SCL
SDA
/INTRA
VSS
VDD
CLKC
1
2
3
4
5
6
7
9
TOP VIEW
R2025D (SON22)
32KOUT
10
8
/INTRB
11
15
16
14
VPP
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
N.C.
18
19
17
21
22
20
R2025S/D

12345
Rev.1.01 - 2 -
s
BLOCK DIAGRAM
32kHz
OUTPUT
CONTROL
OSC
COMPARATOR_D
ALARM_D REGISTER
(MIN,HOUR)
ADDRESS
DECODER
ADDRESS
REGISTER
VOLTAGE
DETECT
DIV
TIME COUNTER
(SEC,MIN,HOUR,WEEK,DAY,MONTH,YEAR)
SHIFT REGISTER
I/O
CONTROL
32KOUT
INTERRUPT CONTROL
SDA
SCL
/INTRA
DIVIDER
CORREC
-TION
VDD
VSS
COMPARATOR_W
ALARM_W REGISTER
(MIN,HOUR, WEEK)
CLKC
OSC
DETECT
/INTRB
TEST
CIRCUIT
VPP


*) I2C-Bus is a trademark of PHILIPS N.V.
Purchase of I2C-Bus components of Ricoh Company, LTD. conveys a license under the Philips I2C Patent
Rights to use these components in an I2C system, provided that the system comforms to the I2C standard
Specification as definded by Philips.
R2025S/D
12345
Rev.1.01 - 3 -
s
PIN DESCRIPTION
Symbol Item
Description
SCL Serial
Clock Line
The SCL pin is used to input clock pulses synchronizing the input and
output of data to and from the SDA pin. Allows a maximum input voltage
of 5.5 volts regardless of supply voltage.
SDA Serial
Data Line
The SDA pin is used to input or output data intended for writing or reading in
synchronization with the SCL pin. Up to 5.5v beyond VDD may be input.
This pin functions as an N-ch open drain output.
/INTRA Interrupt
Output A
The /INTRA pin is used to output alarm interrupt (Alarm_D) and output
periodic interrupt signals to the CPU signals. Disabled at power-on from
0V. N-ch. open drain output.
/INTRB Interrupt
Output B
The /INTRA pin is used to output alarm interrupt (Alarm_W) and output
periodic interrupt signals to the CPU signals. Disabled at power-on from
0V. N-ch. open drain output.
32KOUT
32K Clock
Output
The 32KOUT pin is used to output 32.768-kHz clock pulses. Enabled at
power-on from 0 volts. CMOS output. The output is disabled by the CLKC
pin or register setting.
CLKC Clock
control
input
The CLKC pin is used to control output of the 32KOUT pin. The clock
output is disabled and held low when the pin is set to low or open.
Incorporates a pull-down resistor.
VDD

VSS
Positive
Power
Supply Input
Negative
Power
Supply Input
The VDD pin is connected to the power supply.

The VSS pin is grounded.
VPP
Test input
This pin is power pin for testing in the factory. Please connect to VDD.
N.C. No
Connection
These pins are not connected to internal IC chip.
In R2025D (SON22), N.C. pins from 14 pin to 22 pin are connected
together internally. Never connect these pins to signal lines or different
voltage level lines.
R2025S/D

12345
Rev.1.01 - 4 -
s
ABSOLUTE MAXIMUM RATINGS
(VSS=0V)
Symbol
Item
Pin Name and Condition
Description
Unit
VDD
Supply Voltage
VDD
-0.3 to +6.5
V
Input Voltage 1
SCL, SDA, CLKC
-0.3 to +6.5
VI
Input Voltage 2
VPP
-0.3 to VDD+0.3
V
Output Voltage 1
SDA, /INTRA, /INTRB
-0.3 to +6.5
VO
Output Voltage 2
32KOUT
-0.3 to VDD+0.3
V
PD Power
Dissipation
Topt=25
C
300 mW
Topt Operating
Temperature
-40 to +85
C
Tstg
Storage Temperature
-55 to +125
C

s
RECOMMENDED OPERATING CONDITION
(VSS=0V,
Topt=-40
to
+85
C)
Symbol Item
Pin
Name
Min. Typ. Max.
Unit
VDD Supply
Voltage
1.7
5.5 V
VCLK
Time Keeping Current
1.15
5.5
V
VPUP
Pull-up Voltage
SCL, SDA, /INTRA, /INTRB
5.5
V
RPUP Pull-up
resister
CLKC
10 k

s
FREQUENCY CHARACTERISTICS
(VSS=0V)
Symbol Item
Condition
Min. Typ. Max. Unit
f/f0
Frequency
Deviation
Topt=25
C, VDD=3V
-5 0 +5 ppm
Fv Frequency
Voltage
Characteristics
Topt=25
C,
VDD=2.0V to 5.5V
-1 +1 ppm
Top Frequency
Temperature
Characteristics
Topt=-20
C to +70
C
25
C as standard
-120
+10 ppm
tsta Oscillation
Start-up Time
Topt=25
C, VDD=2V
1 sec
fa Aging
Topt=25
C, VDD=3V,
First year
-5 +5 ppm

R2025S/D
12345
Rev.1.01 - 5 -
s
DC ELECTRICAL CHARACTERISTICS (PRELIMINARY)
Unless otherwise specified: VSS=0V,VDD=3V,Topt=-40 to +85
C
Symbol Item
Pin
Name Condition
Min.
Typ. Max.
Unit
VIH
"H" Input Voltage
0.8x
VDD
5.5
VIL
"L" Input Voltage
SCL,SDA,
CLKC
VDD=1.7 to 5.5V
-0.3 0.2x
VDD
V
IOH "H"
Output
Current
32KOUT VOH=VDD-0.5V
-0.5
mA
IOL1 32KOUT
0.5
IOL2 /INTRA,
/INTRB
1.0
IOL3
"L" Output Current
SDA

VOL=0.4V
4.0

mA
IIL Input
Leakage
Current
SCL
VI=5.5V or VSS
VDD=5.5V
-1.0 1.0
A
ICLKC Pull-down
Resistance Input
Current
CLKC VI=5.5V
0.3
1.0
A
IOZ Output
Off-state
Leakage Current
SDA,
/INTRA
/INTRB
VO=5.5V or VSS
VDD=5.5V

-1.0

1.0
A
IDD1
Time Keeping
Current 1

VDD
VDD=3V,
SCL=SDA=3V,
Output = OPEN
CLKC="L"


0.48

1.20
A
IDD2 Time
Keeping
Current 2

VDD
VDD=5V,
SCL=SDA=5V,
Output = OPEN
CLKC="L"


0.60

1.80
A

VDETH
Supply Voltage
Monitoring Voltage
("H")

VDD

Topt=-30 to +70
C

1.90

2.10

2.30

V

VDETL
Supply Voltage
Monitoring Voltage
("L")

VDD

Topt=-30 to +70
C

1.15

1.30

1.45

V
R2025S/D

12345
Rev.1.01 - 6 -
s
AC ELECTRICAL CHARACTERISTICS
Unless otherwise specified: VSS=0V,Topt=-40 TO +85
C
Input / Output condition: VIH=0.8xVDD,VIL=0.2xVDD,VOH=0.8xVDD,VOL=0.2xVDD,CL=50pF
VDD
1.7V
Symbol Item
Condi-
tion
Min. Typ. Max.
Unit
f
SCL
SCL Clock Frequency
400
KHz
t
LOW
SCL Clock "L" Time
1.3
s
t
HIGH
SCL Clock "H" Time
0.6
s
t
HD;STA
Start Condition Hold Time
0.6
s
t
SU;STO
Stop Condition Set Up Time
0.6
s
t
SU;STA
Start Condition Set Up Time
0.6
s
t
RCV
Ricovery Time from Stop
Condition to Start Condition
62
s
t
SU;DAT
Data Set Up Time
200
ns
t
HD;DAT
Data
Hold
Time
0
ns
t
PL;DAT
SDA "L" Stable Time
After Falling of SCL
0.9
s
t
PZ;DAT
SDA off Stable Time
After Falling of SCL
0.9
s
t
R
Rising Time of SCL and
SDA (input)
300
ns
t
F
Falling Time of SCL and
SDA (input)
300
ns
t
SP
Spike Width that can be
removed with Input Filter
50
ns
SDA(OUT)
SCL
S
Sr
P
t
PZ;DAT
t
HIGH
t
SU;DAT
t
HD;STA
t
SP
t
SU;STO
t
LOW
t
SU;STA
SDA(IN)
t
HD;STA
t
PL;DAT
Sr
P
Stop Condition
S
Start Condition
Repeated Start Condition
t
HD;DAT
t
RCV
S
R2025S/D
12345
Rev.1.01 - 7 -
s
PACKAGE DIMENSIONS
q
R2025S
(SOP14)
#14
#7
#1
#8
5.
0
0.2
10.1
0.2
7.
4
0.2
0.
6
0.25
0.15
+0.1/-0.05
0
-10
0.35
+0.1/-0.05
1.27
0.1
1.2
0.
1
+
0
.1/-
0.05
3.
1
+
0
.0/-
0.05
0.1
1.24typ.
q
R2025D (SON22)
A
6.1
0.2
#22
#14
#1
#11
4.
7
0.2
5.
0
0.2
0.2
0.1
0.5
0.1
0.1
0.125
+0.1/-0.05
1.3
0.1
#1
#11
#22
#14
0.
3
0.1
0.
4
3
0.
4
3
0.
05
A
B
A'
B
B
0.
2
0.2
0.1
0.
3
0.65
A'
0.3
0.
2
0.55typ.

R2025S/D

12345
Rev.1.01 - 8 -
s
GENERAL DESCRIPTION
q
Interface with CPU
The R2025S/D is connected to the CPU by two signal lines SCL and SDA, through which it reads and writes data
from and to the CPU. Since the output of the I/O pin of SDA is open drain, data interfacing with a CPU different
supply voltage is possible by applying pull-up resistors on the circuit board. The maximum clock frequency of
400kHz (at VDD
1.7V) of SCL enables data transfer in I
2
C-Bus fast mode.

q
Clock and Calendar Function
The R2025S/D reads and writes time data from and to the CPU in units ranging from seconds to the last two
digits of the calendar year. The calendar year will automatically be identified as a leap year when its last two
digits are a multiple of 4. Consequently, leap years up to the year 2099 can automatically be identified as such.
q
Alarm Function
The R2025S/D incorporates the alarm interrupt circuit configured to generate interrupt signals to the CPU at
preset times. The alarm interrupt circuit allows two types of alarm settings specified by the Alarm_W registers
and the Alarm_D registers. The Alarm_W registers allow week, hour, and minute alarm settings including
combinations of multiple day-of-week settings such as "Monday, Wednesday, and Friday" and "Saturday and
Sunday". The Alarm_D registers allow hour and minute alarm settings. The Alarm_W outputs from /INTRB pin,
and the Alarm_D outputs from /INTRA pin. The current /INTRA or /INTRB conditions specified by the flag bits for
each alarm function can be checked from the CPU by using a polling function.
q
High-precision Oscillation Adjustment Function
To correct deviations in the oscillation frequency of the crystal oscillator, the oscillation adjustment circuit is
configured to allow correction of a time count gain or loss (up to
1.5 ppm at 25
C) from the CPU within a
maximum range of approximately + 189 ppm in increments of approximately 3 ppm. Such oscillation frequency
adjustment in each system has the following advantages:
* Corrects seasonal frequency deviations through seasonal oscillation adjustment.
* Allows timekeeping with higher precision particularly with a temperature sensing function out of RTC, through
oscillation adjustment in tune with temperature fluctuations.
q
Oscillation Halt Sensing Flag, Power-on Reset Flag, and Supply Voltage Monitoring Function
The R2025S/D incorporates an oscillation halt sensing circuit equipped with internal registers configured to record
any past oscillation halt.
Power-on reset flag is set to "1" When R2025S/D is powered on from 0V.
As such, the oscillation halt sensing flag and Power-on reset flag are useful for judging the validity of time data.
The R2025S/D also incorporates a supply voltage monitoring circuit equipped with internal registers configured to
record any drop in supply voltage below a certain threshold value. Supply voltage monitoring threshold settings
can be selected between 2.1 and 1.3 volts through internal register settings. The oscillation halt sensing circuit
is configured to confirm the established invalidation of time data in contrast to the supply voltage monitoring circuit
intended to confirm the potential invalidation of time data. Further, the supply voltage monitoring circuit can be
applied to battery supply voltage monitoring.
q
Periodic Interrupt Function
The R2025S/D incorporates the periodic interrupt circuit configured to generate periodic interrupt signals aside
from interrupt signals generated by the periodic interrupt circuit for output from the /INTRA pin. Periodic interrupt
signals have five selectable frequency settings of 2 Hz (once per 0.5 seconds), 1 Hz (once per 1 second), 1/60 Hz
(once per 1 minute), 1/3600 Hz (once per 1 hour), and monthly (the first day of every month). Further, periodic
interrupt signals also have two selectable waveforms, a normal pulse form (with a frequency of 2 Hz or 1 Hz) and
special form adapted to interruption from the CPU in the level mode (with second, minute, hour, and month
interrupts). The condition of periodic interrupt signals can be monitored by using a polling function.
q
32kHz Clock Output
The R2025S/D incorporates a 32-kHz clock output circuit configured to generate clock pulses with the oscillation
frequency of a 32.768kHz crystal oscillator for output from the 32KOUT pin (CMOS push-pull output). The
32-kHz clock output is enabled and disabled when the CLKC pin is held high, and low or open, respectively. The
32-kHz clock output can be disabled by certain register settings but cannot be disabled without manipulation of
any two registers with different addresses to prevent disabling in such events as the runaway of the CPU.
R2025S/D
12345
Rev.1.01 - 9 -
s
Address Mapping

Address
Register Name
D a t a
A3A2A1A0
D7 D6 D5 D4 D3 D2
D1 D0
0 0 0 0 0
Second Counter
-
*2)
S40 S20 S10 S8 S4 S2 S1
1 0 0 0 1
Minute Counter
-
M40
M20
M10
M8
M4
M2
M1
2 0 0 1 0
Hour Counter
-
-
H20
P
/A
H10 H8 H4
H2 H1
3
0
0
1
1 Day-of-week
Counter
- - - - - W4
W2
W1
4 0 1 0 0
Day-of-month Counter
-
-
D20
D10
D8
D4
D2
D1
5 0 1 0 1
Month Counter and
Century Bit
/19
20
- - MO10
MO8
MO4
MO2
MO1
6 0 1 1 0
Year Counter
Y80
Y40
Y20
Y10
Y8
Y4
Y2
Y1
7 0 1 1 1
Oscillation Adjustment
Register *3)
(0)
*4)
F6 F5 F4 F3 F2
F1 F0
8 1 0 0 0
Alarm_W
(Minute Register)
-
WM40

WM20

WM10
WM8
WM4
WM2 WM1
9 1 0 0 1
Alarm_W
(Hour Register)
- -
WH20
WP
/ A
WH1
0
WH8 WH
4
WH2 WH
1
A 1 0 1 0
Alarm_W
(Day-of-week
Register)
-
WW6 WW5 WW4 WW3 WW2 WW1 WW0
B 1 0 1 1
Alarm_D
(Minute Register)
-
DM40
DM20
DM10
DM8 DM4
DM2 DM1
C 1 1 0 0
Alarm_D
(Hour Register)
- - DH20
DP
/A
DH10 DH8 DH4
DH2 DH1
D
1
1
0
1
- - - - - -
- -
E 1 1 1 0
Control Register 1 *3) WALE
DALE
/12
24
/CLEN2
TEST CT2 CT1 CT0
F 1 1 1 1
Control Register 2 *3)
VDSL
VDET
/XST
PON
*5)
/CLEN1
CTFG WAFG DAF
G

Notes:
*1) All the data listed above accept both reading and writing.
*2) The data marked with "-" is invalid for writing and reset to 0 for reading.
*3) When the PON bit is set to 1 in Control Register 2, all the bits are reset to 0 in Oscillation Adjustment
Register, Control Register 1 and Control Register 2 excluding the /XST and PON bits.
*4) The (0) bit should be set to 0.
*5) /XST is oscillation halt sensing bit.
*6) PON is power-on reset flag.
R2025S/D

12345
Rev.1.01 - 10 -
s
Register Settings
q
Control Register 1 (ADDRESS Eh)
D7 D6 D5 D4 D3 D2 D1 D0
WALE DALE /12
24
/CLEN2
TEST
CT2 CT1 CT0 (For
Writing)
WALE DALE /12
24
/CLEN2
TEST
CT2 CT1 CT0 (For
Reading)
0 0 0 0 0 0 0 0 Default
Settings
*)
*) Default settings: Default value means read / written values when the PON bit is set to "1" due to VDD
power-on from 0 volts.
(1) WALE, DALE Alarm_W Enable Bit, Alarm_D Enable Bit
WALE,DALE Description
0
Disabling the alarm interrupt circuit (under the control of the settings
of the Alarm_W registers and the Alarm_D registers).
(Default)
1
Enabling the alarm interrupt circuit (under the control of the settings
of the Alarm_W registers and the Alarm_D registers)
(2) /12
24
/12-24-hour Mode Selection Bit
/12
24
Description
0
Selecting the 12-hour mode with a.m. and p.m. indications.
(Default)
1
Selecting the 24-hour mode
Setting the /12
24 bit to 0 and 1 specifies the 12-hour mode and the 24-hour mode, respectively.
24-hour mode
12-hour mode
24-hour mode
12-hour mode
00
12 (AM12)
12
32 (PM12)
01
01 (AM 1)
13
21 (PM 1)
02
02 (AM 2)
14
22 (PM 2)
03
03 (AM 3)
15
23 (PM 3)
04
04 (AM 4)
16
24 (PM 4)
05
05 (AM 5)
17
25 (PM 5)
06
06 (AM 6)
18
26 (PM 6)
07
07 (AM 7)
19
27 (PM 7)
08
08 (AM 8)
20
28 (PM 8)
09
09 (AM 9)
21
29 (PM 9)
10
10 (AM10)
22
30 (PM10)
11
11 (AM11)
23
31 (PM11)
Setting the /12
24 bit should precede writing time data
(3) /CLEN2
32-kHz Clock Output Bit2
/CLEN2 Description
0
Enabling the 32-kHz clock output
(Default)
1
Disabling the 32-kHz clock output
Setting the /CLEN2 bit or the /CLEN1 bit (D3 in the control register 2) to 0 specifies generating clock pulses
with the oscillation frequency of the 32.768-kHz crystal oscillator for output from the 32KOUT pin.
Conversely, setting both the /CELN1 and the /CLEN2 bit to 1 specifies disabling ("L") such output.
(4) TEST
Test Bit
TEST Description
0
Normal operation mode.
(Default)
1 Test
mode.
The TEST bit is used only for testing in the factory and should normally be set to 0.
R2025S/D
12345
Rev.1.01 - 11 -
(5) CT2,CT1, and CT0
Periodic Interrupt Selection Bits
Description
CT2 CT1 CT0
Wave form
mode
Interrupt Cycle and Falling Timing
0 0 0 -
OFF(H)
(Default)
0 0 1 -
Fixed
at
"L"
0 1 0 Pulse
Mode
*1)
2Hz(Duty50%)
0 1 1 Pulse
Mode
*1)
1Hz(Duty50%)
1 0 0 Level
Mode
*2)
Once per 1 second (Synchronized with
second counter increment)
1 0 1 Level
Mode
*2)
Once per 1 minute (at 00 seconds of
every minute)
1 1 0 Level
Mode
*2)
Once per hour (at 00 minutes and 00
seconds of every hour)
1 1 1 Level
Mode
*2)
Once per month (at 00 hours, 00
minutes,
and 00 seconds of first day of every
month)

* 1) Pulse Mode: 2-Hz and 1-Hz clock pulses are output in synchronization with the increment of the second
counter as illustrated in the timing chart below.
/INTRA Pin
Rewriting of the second counter
CTFG Bit
Approx. 92
s
(Increment of second counter)

In the pulse mode, the increment of the second counter is delayed by approximately 92
s from the
falling edge of clock pulses. Consequently, time readings immediately after the falling edge of clock
pulses may appear to lag behind the time counts of the real-time clocks by approximately 1 second.
Rewriting the second counter will reset the other time counters of less than 1 second, driving the
/INTRA pin low.

* 2) Level Mode: Periodic interrupt signals are output with selectable interrupt cycle settings of 1 second, 1
minute, 1 hour, and 1 month. The increment of the second counter is synchronized with the falling
edge of periodic interrupt signals. For example, periodic interrupt signals with an interrupt cycle
setting of 1 second are output in synchronization with the increment of the second counter as
illustrated in the timing chart below.
CTFG Bit
/INTRA Pin
Setting CTFG bit to 0
Setting CTFG bit to 0
(Increment of
second counter)
(Increment of
second counter)
(Increment of
second counter)
R2025S/D

12345
Rev.1.01 - 12 -

*1), *2) When the oscillation adjustment circuit is used, the interrupt cycle will fluctuate once per 20sec. or
60sec. as follows:
Pulse Mode: The "L" period of output pulses will increment or decrement by a maximum of
3.784 ms. For
example, 1-Hz clock pulses will have a duty cycle of 50
0.3784%.
Level Mode: A periodic interrupt cycle of 1 second will increment or decrement by a maximum of
3.784 ms.
q
Control Register 2 (Address Fh)
D7 D6 D5 D4 D3 D2 D1 D0
VDSL VDET /XST PON /CLEN1
CTFG
WAFG DAFG (For
Writing)
VDSL VDET /XST PON /CLEN1
CTFG
WAFG DAFG (For
Reading)
0 0
Indefinite
1 0 0 0 0 Default
Settings
*)
*) Default settings: Default value means read / written values when the PON bit is set to "1" due to VDD
power-on from 0 volts.

(1) VDSL
VDD Supply Voltage Monitoring Threshold Selection Bit
VDSL Description
0
Selecting the VDD supply voltage monitoring threshold setting of 2.1v.
(Default)
1
Selecting the VDD supply voltage monitoring threshold setting of 1.3v.
The VDSL bit is intended to select the VDD supply voltage monitoring threshold settings.
(2) VDET
Supply Voltage Monitoring Result Indication Bit
VDET Description
0
Indicating supply voltage above the supply voltage monitoring
threshold settings.
(Default)
1
Indicating supply voltage below the supply voltage monitoring
threshold settings.
Once the VDET bit is set to 1, the supply voltage monitoring circuit will be disabled while the VDET bit will
hold the setting of 1. The VDET bit accepts only the writing of 0, which restarts the supply voltage
monitoring circuit. Conversely, setting the VDET bit to 1 causes no event.
(3) /XST
Oscillation Halt Sensing Monitor Bit
/XST Description
0
Sensing a halt of oscillation
1
Sensing a normal condition of oscillation
The /XST accepts the reading and writing of 0 and 1. The /XST bit will be set to 0 when the oscillation halt
sensing. The /XST bit will hold 0 even after the restart of oscillation.
(4) PON
Power-on-reset Flag Bit
PON Description
0 Normal
condition
1
Detecting VDD power-on -reset
(Default)
The PON bit is for sensing power-on reset condition.

*
The PON bit will be set to 1 when VDD power-on from 0 volts. The PON bit will hold the setting of 1
even after power-on.
*
When the PON bit is set to 1, all bits will be reset to 0, in the Oscillation Adjustment Register, Control
Register 1, and Control Register 2, except /XST and PON. As a result, /INTRA and /INTRB pins stop
outputting.
*
The PON bit accepts only the writing of 0. Conversely, setting the PON bit to 1 causes no event.
R2025S/D
12345
Rev.1.01 - 13 -
(5) /CLEN1
32-kHz Clock Output Bit 1
/CLEN1 Description
0
Enabling the 32-kHz clock output
(Default)
1
Disabling the 32-kHz clock output
Setting the /CLEN1 bit or the /CLEN2 bit (D4 in the control register 1) to 0 specifies generating clock pulses
with the oscillation frequency of the 32.768-kHz crystal oscillator for output from the 32KOUT pin.
Conversely, setting both the /CELN1 and the /CLEN2 bit to 1 specifies disabling ("L") such output.
(6) CTFG
Periodic Interrupt Flag Bit
CTFG Description
0
Periodic interrupt output = "H"
(Default)
1
Periodic interrupt output = "L"
The CTFG bit is set to 1 when the periodic interrupt signals are output from the /INTRA pin ("L"). The
CTFG bit accepts only the writing of 0 in the level mode, which disables ("H") the /INTRA pin until it is
enabled ("L") again in the next interrupt cycle. Conversely, setting the CTFG bit to 1 causes no event.

(7) WAFG,DAFG
Alarm_W Flag Bit and Alarm_D Flag Bit
WAFG,DAFG Description
0
Indicating a mismatch between current time and preset alarm time
(Default)
1
Indicating a match between current time and preset alarm time
The WAFG and DAFG bits are valid only when the WALE and DALE have the setting of 1, which is caused
approximately 61
s after any match between current time and preset alarm time specified by the Alarm_W
registers and the Alarm_D registers. The WAFG (DAFG) bit accepts only the writing of 0. /INTRB
(/INTRA) pin outputs off ("H") when this bit is set to 0. And /INTRB (/INTRA) pin outputs "L" again at the
next preset alarm time. Conversely, setting the WAFG and DAFG bits to 1 causes no event. The WAFG
and DAFG bits will have the reading of 0 when the alarm interrupt circuit is disabled with the WALE and
DALE bits set to 0. The settings of the WAFG (DAFG) bit is synchronized with the output of the
/INTRB (/INTRA) pin as shown in the timing chart below.
/INTRB(/INTRA) Pin
Writing of 0 to
WAFG(DAFG) bit
WAFG(DAFG) Bit
(Match between
current time and
preset alarm time)
Approx. 61
s
Approx. 61
s
Writing of 0 to
WAFG(DAFG) bit
(Match between
current time and
preset alarm time)
(Match between
current time and
preset alarm time)
R2025S/D

12345
Rev.1.01 - 14 -
q
Time Counter (Address 0-2h)
Second Counter (Address 0h)
D7 D6 D5 D4 D3 D2 D1 D0
-
S40 S20 S10 S8 S4 S2 S1 (For
Writing)
0
S40 S20 S10 S8 S4 S2 S1 (For
Reading)
0
Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite Indefinite
Default Settings *)

Minute Counter (Address 1h)
D7 D6 D5 D4 D3 D2 D1 D0
-
M40 M20 M10 M8 M4 M2 M1 (For
Writing)
0
M40 M20 M10 M8 M4 M2 M1 (For
Reading)
0
Indefinite Indefinite Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Default Settings *)

Hour Counter (Address 2h)
D7 D6 D5 D4 D3 D2 D1 D0
- - P
/A
or H20
H10
H8 H4 H2 H1 (For
Writing)
0 0 P
/A
or H20
H10
H8 H4 H2 H1 (For
Reading)
0 0
Indefinite Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to "1" due to VDD
power-on from 0 volts.

*
Time digit display (BCD format) as follows:
The second digits range from 00 to 59 and are carried to the minute digit in transition from 59 to 00.
The minute digits range from 00 to 59 and are carried to the hour digits in transition from 59 to 00.
The hour digits range as shown in "P10
q
Control Register 1 (ADDRESS Eh) (2) /12
24: /12-24-hour
Mode Selection Bit" and are carried to the day-of-month and day-of-week digits in transition from
PM11 to AM12 or from 23 to 00.
*
Any writing to the second counter resets divider units of less than 1 second.
*
Any carry from lower digits with the writing of non-existent time may cause the time counters to
malfunction. Therefore, such incorrect writing should be replaced with the writing of existent time
data.
q
Day-of-week Counter (Address 3h)
D7 D6 D5 D4 D3 D2 D1 D0
- - - - - W4
W2
W1
(For
Writing)
0 0 0 0 0 W4
W2
W1
(For
Reading)
0 0 0 0 0
Indefinite
Indefinite
Indefinite
Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to "1" due to VDD
power-on from 0 volts.

*
The day-of-week counter is incremented by 1 when the day-of-week digits are carried to the
day-of-month digits.
*
Day-of-week display (incremented in septimal notation):
(W4, W2, W1) = (0, 0, 0)
(0, 0, 1)
...
(1, 1, 0)
(0, 0, 0)
*
Correspondences between days of the week and the day-of-week digits are user-definable
(e.g. Sunday = 0, 0, 0)
*
The writing of (1, 1, 1) to (W4, W2, W1) is prohibited except when days of the week are unused.
R2025S/D
12345
Rev.1.01 - 15 -
q
Calendar Counter (Address 4-6h)

Day-of-month Counter (Address 4h)
D7 D6 D5 D4 D3 D2 D1 D0
- - D20 D10 D8 D4 D2 D1 (For
Writing)
0 0 D20 D10 D8 D4 D2 D1 (For
Reading)
0 0
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Default Settings *)

Month Counter + Century Bit (Address 5h)
D7 D6 D5 D4 D3 D2 D1 D0
/19
20
-
-
MO10 MO8 MO4 MO2 MO1 (For
Writing)
/19
20
0
0
MO10 MO8 MO4 MO2 MO1 (For
Reading)
Indefinite
0 0
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Default Settings *)
Year Counter (Address 6h)
D7 D6 D5 D4 D3 D2 D1 D0
Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1 (For
Writing)
Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1 (For
Reading)
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to "1" due to VDD
power-on from 0 volts.

*
The calendar counters are configured to display the calendar digits in BCD format by using the
automatic calendar function as follows:
The day-of-month digits (D20 to D1) range from 1 to 31 for January, March, May, July, August, October,
and December; from 1 to 30 for April, June, September, and November; from 1 to 29 for February in
leap years; from 1 to 28 for February in ordinary years. The day-of-month digits are carried to the
month digits in reversion from the last day of the month to 1. The month digits (MO10 to MO1) range
from 1 to 12 and are carried to the year digits in reversion from 12 to 1.
The year digits (Y80 to Y1) range from 00 to 99 (00, 04, 08,
...
, 92, and 96 in leap years) and are
carried to the /19
20 digits in reversion from 99 to 00.
The /19
20 digits cycle between 0 and 1 in reversion from 99 to 00 in the year digits.
*
Any carry from lower digits with the writing of non-existent calendar data may cause the calendar
counters to malfunction. Therefore, such incorrect writing should be replaced with the writing of
existent calendar data.
q
Oscillation Adjustment Register (Address 7h)
D7 D6 D5 D4 D3 D2 D1 D0
DEV
F6 F5 F4 F3 F2 F1 F0 (For
Writing)
DEV
F6 F5 F4 F3 F2 F1 F0 (For
Reading)
0 0 0 0 0 0 0 0 Default
Settings
*)
*) Default settings: Default value means read / written values when the PON bit is set to "1" due to VDD
power-on from 0 volts.

(0) bit:
(0) bit should be set to 0

F6 to F0 bits:
* The Oscillation Adjustment Circuit is configured to change time counts of 1 second on the basis of the
settings of the Oscillation Adjustment Register when the second digits read 00, 20, or 40 seconds.
Normally, the Second Counter is incremented once per 32768 32.768-kHz clock pulses generated by
the crystal oscillator. Writing to the F6 to F0 bits activates the oscillation adjustment circuit.
* The Oscillation Adjustment Circuit will not operate with the same timing (00, 20, or 40 seconds)
as the timing of writing to the Oscillation Adjustment Register.
* The F6 bit setting of 0 causes an increment of time counts by ((F5, F4, F3, F2, F1, F0) - 1) x 2.
The F6 bit setting of 1 causes a decrement of time counts by ((/F5, /F4, /F3, /F2, /F1, /F0) + 1) x 2.
The settings of "*, 0, 0, 0, 0, 0, *" ("*" representing either "0" or "1") in the F6, F5, F4, F3, F2, F1, and F0
bits cause neither an increment nor decrement of time counts.
R2025S/D

12345
Rev.1.01 - 16 -
Example:
When the second digits read 00, 20, or 40, the settings of "0, 0, 0, 0, 1, 1, 1" in the F6, F5, F4, F3, F2,
F1, and F0 bits cause an increment of the current time counts of 32768 by (7 - 1) x 2 to 32780 (a
current time count loss). When the second digits read 00, 20, or 40, the settings of "0, 0, 0, 0, 0, 0, 1"
in the F6, F5, F4, F3, F2, F1, and F0 bits cause neither an increment nor a decrement of the current
time counts of 32768.
When the second digits read 00, 20, or 40, the settings of "1, 1, 1, 1, 1, 1, 0" in the F6, F5, F4, F3, F2,
F1, and F0 bits cause a decrement of the current time counts of 32768 by (- 2) x 2 to 32764 (a current
time count gain).
An increase of two clock pulses once per 20 seconds causes a time count loss of approximately 3
ppm (2 / (32768 x 20 = 3.051 ppm). Conversely, a decrease of two clock pulses once per 20
seconds causes a time count gain of 3 ppm. Consequently, deviations in time counts can be
corrected with a precision of
1.5 ppm. Note that the oscillation adjustment circuit is configured to
correct deviations in time counts and not the oscillation frequency of the 32.768-kHz clock pulses.
For further details, see "P27
s
Configuration of Oscillation Circuit and Correction of Time Count
Deviations
q
Oscillation Adjustment Circuit".
R2025S/D
12345
Rev.1.01 - 17 -
q
Alarm_W Registers (Address 8-Ah)

Alarm_W Minute Register (Address 8h)
D7 D6 D5 D4 D3 D2 D1 D0
-
WM40
WM20 WM10 WM8 WM4 WM2 WM1 (For
Writing)
0
WM40
WM20 WM10 WM8 WM4 WM2 WM1 (For
Reading)
0
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Default Settings *)

Alarm_W Hour Register (Address 9h)
D7 D6 D5 D4 D3 D2 D1 D0
- -
WH20
WP
/A
WH10
WH8 WH4 WH2 WH1 (For
Writing)
0 0
WH20
WP
/A
WH10
WH8 WH4 WH2 WH1 (For
Reading)
0 0
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Default Settings *)

Alarm_W Day-of-week Register (Address Ah)
D7 D6 D5 D4 D3 D2 D1 D0
-
WW6 WW5 WW4 WW3 WW2 WW1 WW0 (For
Writing)
0
WW6 WW5 WW4 WW3 WW2 WW1 WW0 (For
Reading)
0
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to "1" due to VDD
power-on from 0 volts.

*
The D5 bit of the Alarm_W Hour Register represents WP/A when the 12-hour mode is selected (0 for
a.m. and 1 for p.m.) and WH20 when the 24-hour mode is selected (tens in the hour digits).
*
The Alarm_W Registers should not have any non-existent alarm time settings.
(Note that any mismatch between current time and preset alarm time specified by the Alarm_W registers
may
disable the alarm interrupt circuit.)
*
When the 12-hour mode is selected, the hour digits read 12 and 32 for 0 a.m. and 0 p.m., respectively.
(See "P10
q
Control Register 1 (ADDRESS Eh) (2) /12
24: 12-/24-hour Mode Selection Bit")
*
WW0 to WW6 correspond to W4, W2, and W1 of the day-of-week counter with settings ranging from
(0, 0, 0) to (1, 1, 0).
*
WW0 to WW6 with respective settings of 0 disable the outputs of the Alarm_W Registers.

Example of Alarm Time Setting
Alarm
Day-of-week
12-hour mode
24-hour mode
Preset alarm time
Sun.
Mon. Tue.
Wed. Th.
Fri.
Sat.
10
hr.
1
hr.
10
min.
1
min.
10
hr.
1
hr.
10
min.
1
min.
WW0 WW1 WW2
WW3
WW4
WW5
WW6
00:00
a.m.
on
all
days 1 1 1 1 1 1 1 1
2
0
0
0
0
0
0
01:30
a.m.
on
all
days 1 1 1 1 1 1 1 0
1
3
0
0
1
3
0
11:59
a.m.
on
all
days 1 1 1 1 1 1 1 1
1
5
9
1
1
5
9
00:00
p.m.
on
Mon.
to
Fri.
0 1 1 1 1 1 0 3
2
0
0
1
2
0
0
01:30
p.m.
on
Sun.
1 0 0 0 0 0 0 2
1
3
0
1
3
3
0
11:59 p.m.
on Mon. ,Wed., and Fri.
0 1 0 1 0 1 0 3
1
5
9
2
3
5
9
Note that the correspondence between WW0 to WW6 and the days of the week shown in the above table is
only an example and not mandatory.
R2025S/D

12345
Rev.1.01 - 18 -
q
Alarm_D Register (Address B-Ch)

Alarm_D Minute Register (Address Bh)
D7 D6 D5 D4 D3 D2 D1 D0
-
DM40 DM20 DM10 DM8 DM4 DM2 DM1 (For
Writing)
0
DM40 DM20 DM10 DM8 DM4 DM2 DM1 (For
Reading)
0
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Default Settings *)
Alarm_D Hour Register (Address Ch)
D7 D6 D5 D4 D3 D2 D1 D0
- - DH20
DP
/A
DH10 DH8 DH4 DH2 DH1 (For
Writing)
0 0 DH20
DP
/A
DH10 DH8 DH4 DH2 DH1 (For
Reading)
0 0
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Indefinite
Default Settings *)
*) Default settings: Default value means read / written values when the PON bit is set to "1" due to VDD
power-on from 0 volts.

*
The D5 bit represents DP/A when the 12-hour mode is selected (0 for a.m. and 1 for p.m.) and DH20
when the 24-hour mode is selected (tens in the hour digits).
*
The Alarm_D registers should not have any non-existent alarm time settings.
(Note that any mismatch between current time and preset alarm time specified by the Alarm_D registers
may disable the alarm interrupt circuit.)
*
When the 12-hour mode is selected, the hour digits read 12 and 32 for 0a.m. and 0p.m., respectively.
(See "P10
q
Control Register 1 (ADDRESS Eh) (2) /12
24: 12-/24-hour Mode Selection Bit")
R2025S/D
12345
Rev.1.01 - 19 -
s
Interfacing with the CPU
The R2025S/D employs the I
2
C-Bus system to be connected to the CPU via 2-wires. Connection and system of
I
2
C-Bus are described in the following sections.
q
Connection of I
2
C-Bus
2-wires, SCL and SDA pins that are connected to I
2
C-Bus are used for transmit clock pulses and data respectively.
All ICs that are connected to these lines are designed that will not be clamped when a voltage beyond supply
voltage is applied to input or output pins. Open drain pins are used for output. This construction allows
communication of signals between ICs with different supply voltages by adding a pull-up resistor to each signal
line as shown in the figure below. Each IC is designed not to affect SCL and SDA signal lines when power to
each of these is turned off separately.
Micro-
Controller
R2025S/D
Other
Peripheral
Device
VDD1
VDD2
VDD3
VDD4
SCL
SDA
* For data interface, the following
conditions must be met:
VCC4
VCC1
VCC4
VCC2
VCC4
VCC3

* When the master is one, the
micro-controller is ready for driving
SCL to "H" and Rp of SCL may not be
required.
Rp
Rp

Cautions on determining Rp resistance,
(1) Dropping voltage at Rp due to sum of input current or output current at off conditions on each IC pin
connected to the I
2
C-Bus shall be adequately small.
(2) Rising time of each signal be kept short even when all capacity of the bus is driven.
(3) Current consumed in I
2
C-Bus is small compared to the consumption current permitted for the entire system.

When all ICs connected to I
2
C-Bus are CMOS type, condition (1) may usually be ignored since input current and
off-state output current is extremely small for the many CMOS type ICs. Thus the maximum resistance of Rp
may be determined based on (2), while the minimum on (3) in most cases.
In actual cases a resistor may be place between the bus and input/output pins of each IC to improve noise
margins in which case the Rp minimum value may be determined by the resistance.
Consumption current in the bus to review (3) above may be expressed by the formula below:

Bus consumption current

(Sum of input current and off state output current of all devices in standby mode )
Bus standby duration
Bus stand-by duration + the Bus operation duration

+ Supply voltage
Bus operation duration
2
Rp resistance
2
(Bus stand-by duration + bus operation duration)

+ Supply voltage
Bus capacity
Charging/Discharging times per unit time

Operation of "
2" in the second member denominator in the above formula is derived from assumption that "L"
duration of SDA and SCL pins are the half of bus operation duration. "
2" in the numerator of the same member
is because there are two pins of SDA and SCL. The third member, (charging/discharging times per unit time)
means number of transition from "H" to "L" of the signal line.


Calculation example is shown below:
Pull-up resistor (Rp) = 10k
, Bus capacity = 50pF(both for SCL, SDA), VDD=3v,
In a system with sum of input current and off-state output current of each pin = 0.1
A,
R2025S/D

12345
Rev.1.01 - 20 -
I
2
C-Bus is used for 10ms every second while the rest of 990ms in the stand-by mode,
In this mode, number of transitions of the SCL pin from "H" to "L" state is 100 while SDA 50, every second.

Bus consumption current
0.1
A
990msec
990msec + 10msec

+ 3V
10msec
2
10K
2
(990msec + 10msec)

+ 3V
50pF
(100 + 50)

0.099
A + 3.0
A + 0.0225
A
3.12
A

Generally, the second member of the above formula is larger enough than the first and the third members bus
consumption current may be determined by the second member is many cases.

q
Transmission System of I
2
C-Bus
(1) Start Condition and Stop Condition
In I
2
C-Bus, SDA must be kept at a certain state while SCL is at the "H" state during data transmission as shown
below.
SCL
SDA
tSU;DAT
tHD;DAT

The SCL and SDA pins are at the "H" level when no data transmission is made. Changing the SDA from "H" to "L"
when the SCL and the SDA are "H" activates the Start Condition and access is started. Changing the SDA from
"L" to "H" when the SCL is "H" activates Stop Condition and accessing stopped. Generation of Start and Stop
Conditions are always made by the master (see the figure below).
SCL
SDA
tHD;STA
tSU;STO
Start Condition
Stop Condition


(2) Data transmission and its acknowledge
After Start condition is entered, data is transmitted by 1byte (8bits). Any bytes of data may be serially transmitted.
The receiving side will send an acknowledge signal to the transmission side each time 8bit data is transmitted.
The acknowledge signal is sent immediately after falling to "L" of SCL 8bit clock pulses of data is transmitted, by
releasing the SDA by the transmission side that has asserted the bus at that time and by turning SDA to "L" by
receiving side. When transmission of 1byte data next to preceding 1byte of data is received the receiving side
releases the SDA pin at falling edge of the SCL 9bit of clock pulses or when the receiving side switches to the
transmission side it starts data transmission. When the master is receiving side, it generates no acknowledge
signal after last 1byte of data from the slave to tell the transmitter that data transmission has completed. The
R2025S/D
12345
Rev.1.01 - 21 -
slave side (transmission side) continues to release the SDA pin so that the master will be able to generate Stop
Condition, after falling edge of the SCL 9bit of clock pulses.
SCL
from the master
SDA from
the transmission side
SDA from
the receiving side
1
2
8
9
Acknowledge
signal
Start
Condition


(3) Data Transmission Format in I
2
C-Bus
I
2
C-Bus has no chip enable signal line. In place of it, each device has a 7bit Slave Address allocated. The first
1byte is allocated to this 7bit address and to the command (R/W) for which data transmission direction is
designated by the data transmission thereafter. 7bit address is sequentially transmitted from the MSB and 2 and
after bytes are read, when 8bit is "H" and when write "L".
The Slave Address of the R2025S/D is specified at (0110010).
At the end of data transmission / receiving, Stop Condition is generated to complete transmission. However, if
start condition is generated without generating Stop Condition, Repeated Start Condition is met and transmission /
receiving data may be continue by setting the Slave Address again. Use this procedure when the transmission
direction needs to be change during one transmission.
S
A
A
Data
/A P
Data is written to the slave
from the master
S
0
A
Slave Address
Data
A
A P
When data is read from the
slave immediately after 7bit
addressing from the master
Master to slave
Slave to master
Sr
Repeated Start Condition
P
Stop Condition
A
A
/A Acknowledge Signal
R/W=1(Read)
(0110010)
Inform read has been completed by not generate
an acknowledge signal to the slave side.
Data
R/W=0(Write)
(0110010)
When the transmission
direction is to be changed
during transmission.
Sr
1
0
A
A
R/W=0(Write)
A
Data
R/W=1(Read)
(0110010)
S
1
A
/A P
Inform read has been completed by not generate
an acknowledge signal to the slave side.
Data
S
Start Condition
(0110010)
Slave Address
Salve Address
Slave Address
Data
Data
R2025S/D

12345
Rev.1.01 - 22 -
(4) Data Transmission Write Format in the R2025S/D
Although the I
2
C-Bus standard defines a transmission format for the slave allocated for each IC, transmission
method of address information in IC is not defined. The R2025S/D transmits data the internal address pointer
(4bit) and the Transmission Format Register (4bit) at the 1byte next to one which transmitted a Slave Address
and a write command. For write operation only one transmission format is available and (0000) is set to the
Transmission Format Register. The 3byte transmits data to the address specified by the internal address pointer
written to the 2byte. Internal address pointer setting are automatically incremented for 4byte and after. Note
that when the internal address pointer is Fh, it will change to 0h on transmitting the next byte.
1
A
S
0
A
Data
A
Data
A P
Example of data writing (When writing to internal address Eh to Fh)
Master to slave
Slave to master
S
Start Condition
P
Stop Condition
A
A
/A
Acknowledge signal
Address
Pointer
Eh
R/W=0(Write)
Slave Address
(0110010)
1
1
0
0
0
0
0
0 0 0
0
1 1
1
Transmission
Format
Register
0h
Writing of data to the
internal address Fh
Writing of data to the
internal address Eh
R2025S/D
12345
Rev.1.01 - 23 -
(5) Data transmission read format of the R2025S/D
The R2025S/D allows the following three read out method of data an internal register.

The first method to reading data from the internal register is to specify an internal address by setting the internal
address pointer and the transmission format register described P22 (4), generate the Repeated Start Condition
(See P21 (3)) to change the data transmission direction to perform reading. The internal address pointer is set
to Fh when the Stop Condition is met. Therefore, this method of reading allows no insertion of Stop Condition
before the Repeated Start Condition. Set 0h to the Transmission Format Register when this method used.
1
S
0
A
A
Data
/A P
Example 1 of Data Read (when data is read from 2h to 4h)
Master to slave
Slave to master
S
Start Condition
Sr
Repeated Start
Condition
A
A
/A
Acknowledge signal
Address
Pointer
2h
Repeated Start Condition
0
1
0
0
0
1
1
0 0 0
0
0
0
1
Transmission
Format
Register
0h
Sr
1
0
A
Slave Address
(0110010)
1
0
0 0
0
1
A
Data
A
Data
Reading of data from
the internal address 3h
R/W=1(Read)
R/W=0(Write)
P
Stop Condition
Slave Address
(0110010)
Reading of data from
the internal address 4h
Reading of data from
the internal address 2h
R2025S/D

12345
Rev.1.01 - 24 -

The second method to reading data from the internal register is to start reading immediately after writing to the
Internal Address Pointer and the Transmission Format Register. Although this method is not based on I
2
C-Bus
standard in a strict sense it still effective to shorten read time to ease load to the master. Set 4h to the
transmission format register when this method used.
1
S
A
A
Data
/A P
Example 2 of data read (when data is read from internal addresses Eh to 1h)
Master to slave
Slave to Master
S
Start Condition
A
A
/A
Acknowledge Signal
Address
Pointer
Eh
0 1
1
0 0
0
1
Transmission
Format
Register
4h
1
0
A
Slave Address
(0110010)
1
0
0 0
0
1
A
Data
A
Data
Reading of data from
the internal address Eh
R/W=0(Write)
P Stop Condition
Data
Reading of data from
the internal address Fh
Reading of data from
the internal address 0h
Reading of data from
the internal address 1h

R2025S/D
12345
Rev.1.01 - 25 -

The third method to reading data from the internal register is to start reading immediately after writing to the Slave
Address and R/W bit. Since the Internal Address Pointer is set to Fh by default as described in the first method,
this method is only effective when reading is started from the Internal Address Fh.
S
A
A
Data
/A P
Example 3 of data read (when data is read from internal addresses Fh to 3h)
Master to slave
Slave to master
S
Start Condition
A
A
/A
Acknowledge Signal
1
0
A
Slave Address
(0110010)
1
0
0 1
0
1
A
Data
A
Data
R/W=1(Read)
P Stop Condition
Data
Data
Reading of data from
the Internal Address Fh
Reading of data from
the Internal Address 0h
Reading of data from
the Internal Address 1h
Reading of data from
the Internal Address 2h
Reading of data from
the Internal Address 3h
R2025S/D

12345
Rev.1.01 - 26 -
q
Data Transmission under Special Condition
The R2025S/D holds the clock tentatively for duration from Start Condition to avoid invalid read or write clock
on carrying clock. When clock carried during this period, which will be adjusted within approx. 61
s from
Stop Condition. To prevent invalid read or write, clock and calendar data shall be made during one
transmission operation (from Start Condition to Stop Condition). When 0.5 to 1.0 second elapses after Start
Condition, any access to the R2025S/D is automatically released to release tentative hold of the clock, and
access from the CPU is forced to be terminated (The same action as made Stop Condition is received:
automatic resume function from I
2
C-Bus interface). Therefore, one access must be complete within 0.5
seconds. The automatic resume function prevents delay in clock even if SCL is stopped from sudden failure
of the system during clock read operation.
Also a second Start Condition after the first Start Condition and before the Stop Condition is regarded
"Repeated Start Condition". Therefore, when 0.5 to 1.0 seconds passed after the first Start Condition, an
access to the R2025S/D is automatically released.
If access is tried after automatic resume function is activated, no acknowledge signal will be output for writing
while FFh will be output for reading.

The user shall always be able to access the real-time clock as long as three conditions are met.
(1) No Stop Condition shall be generated until clock and calendar data read/write is started and completed.
(2) One cycle read/write operation shall be complete within 0.5 seconds.
(3) Do not make Start Condition within 61
s from Stop Condition. When clock is carried during the access,
which will be adjusted within approx. 61
s from Stop Condition.
Bad example of reading from seconds to hours (invalid read)
(Start Condition)
(Read of seconds)
(Read of minutes)
(Stop Condition)
(Start Condition)
(Read
of hour)
(Stop Condition)

Assuming read was started at 05:59:59 P.M. and while reading seconds and minutes the time advanced to
06:00:00 P.M. At this time second digit is hold so read the read as 05:59:59. Then the R2025S/D confirms
(Stop Condition) and carries second digit being hold and the time change to 06:00:00 P.M. Then, when the
hour digit is read, it changes to 6. The wrong results of 06:59:59 will be read.
R2025S/D
12345
Rev.1.01 - 27 -
s
Correction of Time Count Deviations
q
Measurement of Oscillation Frequency
Frequency
Counter
32KOUT
VSS
VDD
CLKC
* 1)
When power-on, the R2025S/D is configured to generate 32.768-kHz clock pulses for output from the
32KOUT pin.
* 2)
A frequency counter with 6 (more preferably 7) or more digits on the order of 1ppm is recommended
for use in the measurement of the oscillation frequency of the oscillation circuit.
q
Oscillation Adjustment Circuit
The oscillation adjustment circuit can be used to correct a time count gain or loss with high precision by varying
the number of 1-second clock pulses once per 20 seconds. The oscillation adjustment circuit can be disabled by
writing the settings of "*, 0, 0, 0, 0, 0, *" ("*" representing "0" or "1") to the F6, F5, F4, F3, F2, F1, and F0 bits in
the oscillation adjustment circuit. Conversely, when such oscillation adjustment is to be made, an appropriate
oscillation adjustment value can be calculated by the equation below for writing to the oscillation adjustment
circuit.


(1) When Oscillation Frequency (* 1) Is Higher Than Target Frequency (* 2) (Causing Time Count Gain)
Oscillation adjustment value (*3) = (Oscillation frequency - Target Frequency + 0.1)
Oscillation frequency
3.051
10
-6
(Oscillation Frequency Target Frequency)
10 + 1

* 1)
Oscillation frequency:
Frequency of clock pulse output from the 32KOUT pin at normal temperature in the manner described
in " P27
q
Measurement of Oscillation Frequency".
* 2)
Target frequency:
Desired frequency to be set. Generally, a 32.768-kHz crystal oscillator has such temperature
characteristics as to have the highest oscillation frequency at normal temperature. Consequently, the
crystal oscillator is recommended to have target frequency settings on the order of 32.768 to 32.76810
kHz (+3.05ppm relative to 32.768 kHz). Note that the target frequency differs depending on the
environment or location where the equipment incorporating the RTC is expected to be operated.
* 3)
Oscillation adjustment value:
Value that is to be finally written to the F0 to F6 bits in the Oscillation Adjustment Register and is
represented in 7-bit coded decimal notation.
(2) When Oscillation Frequency Is Equal To Target Frequency (Causing Time Count neither Gain nor Loss)
Oscillation adjustment value = 0, +1, -64, or 63

(3) When Oscillation Frequency Is Lower Than Target Frequency (Causing Time Count Loss)
Oscillation adjustment value = (Oscillation frequency - Target Frequency)
Oscillation frequency
3.051
10
-6
(Oscillation Frequency Target Frequency)
10
R2025S/D

12345
Rev.1.01 - 28 -
Oscillation adjustment value calculations are exemplified below

(A) For an oscillation frequency = 32768.85Hz and a target frequency = 32768.05Hz
Oscillation adjustment value = (32768.85 - 32768.05 + 0.1) / (32768.85
3.051
10
-6
)
(32768.85 - 32768.05)
10 + 1
= 9.001
9
In this instance, write the settings ((0),F6,F5,F4,F3,F2,F1,F0)=(0,0,0,0,1,0,0,1) in the oscillation adjustment
register. Thus, an appropriate oscillation adjustment value in the presence of any time count gain represents a
distance from 01h.

(B) For an oscillation frequency = 32762.22Hz and a target frequency = 32768.05Hz
Oscillation adjustment value = (32762.22 - 32768.05) / (32762.22
3.051
10
-6
)
(32762.22 - 32768.05)
10
= -58.325
-58
To represent an oscillation adjustment value of - 58 in 7-bit coded decimal notation, subtract 58 (3Ah) from 128
(80h) to obtain 46h. In this instance, write the settings of ((0),F6,F5,F4,F3,F2,F1,F0) = (0,1,0,0,0,1,1,0) in the
oscillation adjustment register. Thus, an appropriate oscillation adjustment value in the presence of any time
count loss represents a distance from 80h.
Notes:
1)
Oscillation adjustment does not affect the frequency of 32.768-kHz clock pulses output from the
32KOUT pin.
2)
Oscillation adjustment value range: When the oscillation frequency is higher than the target frequency
(causing a time count gain), an appropriate time count gain ranges from -3.05ppm to -189.2ppm with
the settings of "0, 0, 0, 0, 0, 1, 0" to "0, 1, 1, 1, 1, 1, 1" written to the F6, F5, F4, F3, F2, F1, and F0 bits
in the oscillation adjustment register, thus allowing correction of a time count gain of up to +189.2ppm.
Conversely, when the oscillation frequency is lower than the target frequency (causing a time count
loss), an appropriate time count gain ranges from +3.05ppm to +189.2ppm with the settings of "1, 1, 1,
1, 1, 1, 1" to "1, 0, 0, 0, 0, 1, 0" written to the F6, F5, F4, F3, F2, F1, and F0 bits in the oscillation
adjustment register, thus allowing correction of a time count loss of up to -189.2ppm.
q
How to evaluate the clock gain or loss
The oscillator adjustment circuit is configured to change time counts of 1 second on the basis of the settings of
the oscillation adjustment register once in 20 seconds or 60 seconds. The oscillation adjustment circuit does not
effect the frequency of 32768Hz-clock pulse output from the 32OUT pin. Therefore, after writing the oscillation
adjustment register, we cannot measure the clock error with probing 32KOUT clock pulses. The way to measure
the clock error as follows:

(1) Output a 1Hz clock pulse of Pulse Mode with interrupt pin
Set (0,0,x,x,0,0,1,1) to Control Register 1 at address Eh.

(2) After setting the oscillation adjustment register, 1Hz clock period changes every 20seconds ( or every 60
seconds) like next page figure.
1Hz clock pulse
T0
T0
T0
T1
1 time
19 times

Measure the interval of T0 and T1 with frequency counter. A frequency counter with 7 or more digits is
recommended for the measurement.
R2025S/D
12345
Rev.1.01 - 29 -
(3) Calculate the typical period from T0 and T1
T = (19
T0+1
T1)/20
Calculate the time error from T.

q
The Necessity for Correction of Time Count Deviations
The oscillation frequency for R2025S/D is corrected to 0
5ppm at 25
C in fabrication. Oscillation frequency is
the fastest at 25
C, (Please see
s
Typical Characteristics Oscillation Ferequency Deviation vs. Operating
temperature (P.39)). In normal condition, temperature is not kept constant at 25
C. That is, R2025S/D loses
without correction of time counts deviation. Generally, a clock is corrected to gain 3 to 6ppm at 25
C.
R2025S/D is corrected it by setting clock adjustment register. Ricoh suggests to set 7Fh to clock adjustment
register (Address 7h) for time setting to gain 3ppm at 25
C, for the equipment used indoors. And suggests to
set 7Eh to clock adjustment register (Address 7h) for time setting to gain 6ppm at 25
C, for the equipment used
outdoors.
R2025S/D

12345
Rev.1.01 - 30 -
s
Power-on Reset, Oscillation Halt Sensing, and Supply Voltage Monitoring
q
PON, /XST, and VDET
The power-on reset circuit is configured to reset control register1, 2, and clock adjustment register when VDD
power up from 0v. The oscillation halt sensing circuit is configured to record a halt on oscillation by 32.768-kHz
clock pulses. The supply voltage monitoring circuit is configured to record a drop in supply voltage below a
threshold voltage of 2.1 or 1.3v.
Each function has a monitor bit. I.e. the PON bit is for the power-on reset circuit, and /XST bit is for the
oscillation halt sensing circuit, and VDET is for the supply voltage monitoring circuit. PON and VDET bits are
activated to "H". However, /XST bit is activated to "L". The PON and VDET accept only the writing of 0, but /XST
accepts the writing of 0 and 1. The PON bit is set to 1, when VDD power-up from 0V, but VDET is set to 0, and
/XST is
indefinite.
The functions of these three monitor bits are shown in the table below.
PON
/XST
VDET
Function
Monitoring for the
power-on reset function
Monitoring for the
oscillation halt sensing
function
a drop in supply voltage
below a threshold voltage
of 2.1 or 1.3v
Address
D4 in Address Fh
D5 in Address Fh
D6 in Address Fh
Activated High
Low
High
When VDD power
up from 0v
1 indefinite
0
accept the writing
0 only
Both 0 and 1
0 only

The relationship between the PON, /XST, and VDET is shown in the table below.
PON
/XST VDET
Conditions of supply voltage and
oscillation
Condition of oscillator, and back-up
status
0
0
0
Halt on oscillation, but no drop in
VDD supply voltage below threshold
voltage
Halt on oscillation cause of
condensation etc.
0
0
1
Halt on oscillation and drop in VDD
supply voltage below threshold
voltage, but no drop to 0V
Halt on oscillation cause of drop in
back-up battery voltage
0
1
0
No drop in VDD supply voltage below
threshold voltage and no halt in
oscillation
Normal condition
0
1
1
Drop in VDD supply voltage below
threshold voltage and no halt on
oscillation
No halt on oscillation, but drop in
back-up battery voltage
1
*
*
Drop in supply voltage to 0v
Power-up from 0v,
32768Hz Oscillation
Power-on reset flag
(PON)
Oscillation halt
sensing flag (/XST)
Threshold voltage (2.1V or 1.35V)
VDD
VDD supply voltage
monitor flag (VDET)
Internal initialization
period (1 to 2 sec.)
VDET
0
/XST
1
PON
0
VDET
0
/XST
1
PON
1
VDET
0
/XST
1
PON
0
Internal initialization
period (1 to 2 sec.)
R2025S/D
12345
Rev.1.01 - 31 -
When the PON bit is set to 1 in the control register 2, the DEV, F6 to F0, WALE, DALE, /12
24, /CLEN2, TEST,
CT2, CT1, CT0, VDSL, VDET, /CLEN1, CTFG, WAFG, and DAFG bits are reset to 0 in the oscillation adjustment
register, the control register 1, and the control register 2. The PON bit is also set to 1 at power-on from 0 volts.

< Considerations in Using Oscillation Halt Sensing Circuit >
Be sure to prevent the oscillation halt sensing circuit from malfunctioning by preventing the following:

1) Instantaneous power-down on the VDD
2) Applying to individual pins voltage exceeding their respective maximum ratings

In particular, note that the /XST bit may fail to be set to 0 in the presence of any applied supply voltage as
illustrated below in such events as backup battery installation. Further, give special considerations to prevent
excessive chattering in the oscillation halt sensing circuit.
VDD
R2025S/D

12345
Rev.1.01 - 32 -
q
Voltage Monitoring Circuit
The VDD supply voltage monitoring circuit is configured to conduct a sampling operation during an interval of
7.8ms per second to check for a drop in supply voltage below a threshold voltage of 2.1 or 1.3v for the VDSL bit
setting of 0 (the default setting) or 1, respectively, in the Control Register 2, thus minimizing supply current
requirements as illustrated in the timing chart below. This circuit suspends a sampling operation once the VDET
bit is set to 1 in the Control Register 2. The VDD supply voltage monitor is useful for back-up battery checking.
VDET
(D6 in Address Fh)
PON
VDD
2.1v or 1.3v
1s
VDET
0
7.8ms
Sampling timing for
VDD supply voltage
Internal nitiali-
zation period
(1 to 2sec.)
PON
0
VDET
0
R2025S/D
12345
Rev.1.01 - 33 -
s
Alarm and Periodic Interrupt
The R2025S/D incorporates the alarm interrupt circuit and the periodic interrupt circuit that are configured to
generate alarm signals and periodic interrupt signals, respectively, for output from the /INTRA or /INTRB pins as
described below.

(1) Alarm Interrupt Circuit
The alarm interrupt circuit is configured to generate alarm signals for output from the /INTRA or /INTRB, which is
driven low (enabled) upon the occurrence of a match between current time read by the time counters (the
day-of-week, hour, and minute counters) and alarm time preset by the alarm registers (the Alarm_W registers
intended for the day-of-week, hour, and minute digit settings and the Alarm_D registers intended for the hour and
minute digit settings). The Alarm_W is output from the /INTRB, and the Alarm_D is output from /INTRA.

(2) Periodic Interrupt Circuit
The periodic interrupt circuit is configured to generate either clock pulses in the pulse mode or interrupt signals in
the level mode for output from the /INTRA pin depending on the CT2, CT1, and CT0 bit settings in the control
register 1.

The above two types of interrupt signals are monitored by the flag bits (i.e. the WAFG, DAFG, and CTFG bits in
the Control Register 2) and enabled or disabled by the enable bits (i.e. the WALE, DALE, CT2, CT1, and CT0 bits
in the Control Register 1) as listed in the table below.
Flag bits
Enable bits
Output
Pin
Alarm_
W
WAFG
(D1 at Address
Fh)
WALE
(D7 at Address Eh)
/INTRB
Alarm_D DAFG
(D0 at Address
Fh)
DALE
(D6 at Address Eh)
/INTRA
Peridic
Interrupt
CTFG
(D2 at Address
Fh)
CT2=CT1=CT0=0
(These bit setting of "0" disable the Periodic
Interrupt)
(D2 to D0 at Address Eh)
/INTRA

* At power-on, when the WALE, DALE, CT2, CT1, and CT0 bits are set to 0 in the Control Register 1,
the /INTRA and /INTRB pins are driven high (disabled).
* When two types of interrupt signals are output simultaneously from the /INTRA pin, the output from the
/INTRA pin becomes an OR waveform of their negative logic.
Example: Combined Output to /INTRA Pin Under Control of
/ALARM_D and Periodic Interrupt
Periodic Interrupt
/INTRA
/Alarm_D
In this event, which type of interrupt signal is output from the /INTRA pin can be confirmed by reading
the DAFG, and CTFG bit settings in the Control Register 2.
q
Alarm Interrupt
The alarm interrupt circuit is controlled by the enable bits (i.e. the WALE and DALE bits in the Control Register 1)
and the flag bits (i.e. the WAFG and DAFG bits in the Control Register 2). The enable bits can be used to
enable this circuit when set to 1 and to disable it when set to 0. When intended for reading, the flag bits can be
used to monitor alarm interrupt signals. When intended for writing, the flag bits will cause no event when set to 1
and will drive high (disable) the alarm interrupt circuit when set to 0.
The enable bits will not be affected even when the flag bits are set to 0. In this event, therefore, the alarm
interrupt circuit will continue to function until it is driven low (enabled) upon the next occurrence of a match
between current time and preset alarm time.

The alarm function can be set by presetting desired alarm time in the alarm registers (the Alarm_W Registers for
R2025S/D

12345
Rev.1.01 - 34 -
the day-of-week digit settings and both the Alarm_W Registers and the Alarm_D Registers for the hour and
minute digit settings) with the WALE and DALE bits once set to 0 and then to 1 in the Control Register 1. Note
that the WALE and DALE bits should be once set to 0 in order to disable the alarm interrupt circuit upon the
coincidental occurrence of a match between current time and preset alarm time in the process of setting the
alarm function.

current time =
preset alarm time
WALE
1
(DALE)
Interval (1min.) during which a match
between current time and preset alarm time
occurs
current time =
preset alarm time
WAFG
0
(DAFG)
/INTRB
(/INTRA)
WALE
1
(DALE)
WALE
1
(DALE)
current time =
preset alarm time
WALE
0
(DALE)
current time =
preset alarm time
/INTRB
(/INTRA)
q
Periodic Interrupt
Setting of the periodic selection bits (CT2 to CT0) enables periodic interrupt to the CPU. There are two waveform
modes: pulse mode and level mode. In the pulse mode, the output has a waveform duty cycle of around 50%. In
the level mode, the output is cyclically driven low and, when the CTFG bit is set to 0, the output is return to High
(OFF).
Description
CT2 CT1 CT0
Wave form mode
Interrupt Cycle and Falling Timing
0 0 0 -
OFF(H)
(Default)
0 0 1 -
Fixed
at
"L"
0 1 0 Pulse
Mode
*1) 2Hz(Duty50%)
0 1 1 Pulse
Mode
*1) 1Hz(Duty50%)
1
0
0
Level Mode *2)
Once per 1 second (Synchronized with
Second counter increment)
1
0
1
Level Mode *2)
Once per 1 minute (at 00 seconds of every
Minute)
1
1
0
Level Mode *2)
Once per hour (at 00 minutes and 00
Seconds of every hour)
1
1
1
Level Mode *2)
Once per month (at 00 hours, 00 minutes,
and 00 seconds of first day of every month)

*1) Pulse Mode:
2-Hz and 1-Hz clock pulses are output in synchronization with the increment of the
second
counter as illustrated in the timing chart below.
/INTRA Pin
Rewriting of the second counter
CTFG Bit
Approx. 92
s
(Increment of second counter)
R2025S/D
12345
Rev.1.01 - 35 -

In the pulse mode, the increment of the second counter is delayed by approximately 92
s from the
falling edge of clock pulses. Consequently, time readings immediately after the falling edge of clock
pulses may appear to lag behind the time counts of the real-time clocks by approximately 1 second.
Rewriting the second counter will reset the other time counters of less than 1 second, driving the
/INTRA pin low.

*2) Level Mode:
Periodic interrupt signals are output with selectable interrupt cycle settings of 1 second,
1 minute, 1 hour, and 1 month. The increment of the second counter is synchronized with the falling
edge of periodic interrupt signals. For example, periodic interrupt signals with an interrupt cycle
setting of 1 second are output in synchronization with the increment of the second counter as
illustrated in the timing chart below.
CTFG Bit
/INTRA Pin
Setting CTFG bit to 0
Setting CTFG bit to 0
(Increment of
second counter)
(Increment of
second counter)
(Increment of
second counter)

*1), *2) When the oscillation adjustment circuit is used, the interrupt cycle will fluctuate once per 20sec. as
follows:
Pulse Mode:
The "L" period of output pulses will increment or decrement by a maximum of
3.784ms. For example, 1-Hz clock pulses will have a duty cycle of 50
0.3784%.
Level Mode:
A periodic interrupt cycle of 1 second will increment or decrement by a maximum of
3.784 ms.
s
32-kHz CLOCK OUTPUT
For the R20225S/D, 32.768-kHz clock pulses are output from the 32KOUT pin when the CLKC pin is set to "H",
and /CLEN1 or /CLEN bit is set to Low. If CLKC is set to low or opened, or /CLEN1 and /CLEN2 are set to high,
the 32KOUT pin is driven low.
/CLEN1 bit
(D3 at Address Fh)
/CLEN2 bit
(D4 at Address Eh)
CLKC pin
32KOUT output pin
(CMOS push-pull output)
1 1 *
* * 0
L
0(Default) *
1
* 0(Default)
1
32kHz clock output

For the R2025S/D, the 32KOUT pin output is synchronized with CLKC pin input as illustrated in the timing chart
below.
32KOUT pin
CLKC pin
(/CLEN1 or /CLEN2= 0)
Max.76.3
s
R2025S/D

12345
Rev.1.01 - 36 -
s
Typical Applications
q
Typical Power Circuit Configurations

Sample circuit configuration 1
VDD
OSCIN
OSCOUT
VSS
32768Hz
System power supply
*1)

Sample circuit configuration 2
*1)
OSCIN
OSCOUT
VSS
32768Hz
System power supply
VDD
Primary
Battery
*1)
OSCIN
OSCOUT
VSS
32768Hz
System power supply
VDD
Secondary
Battery
*1) Install bypass capacitors for
high-frequency and low-frequency applications in
parallel in close vicinity to the R2025S/D.
*1) When using an OR diode as a power supply
for the R2025S/D ensure that voltage
exceeding the absolute maximum rating of
VDD+0.3v is not applied the 32KOUT pin.
R2025S/D
12345
Rev.1.01 - 37 -
q
Connection of /INTRA and /INTRB Pin
The /INTRA and /INTRB pins follow the N-channel open drain output logic and contains no protective diode on the
power supply side. As such, it can be connected to a pull-up resistor of up to 5.5 volts regardless of supply
voltage.
VSB
OSCIN
OSCOUT
/INTRA or /INTRB
*1)
32768Hz
B
A
Backup power supply
System power supply
VSS
s
Connection of 32KOUT Pin
As the 32KOUT pin is CMOS output, the power supply voltage of the R2025S/D and any devices to be connected
to the 32KOUT should be same. When the devices is powered down, the 32KOUT output should be disabled.
When the CLKC pin is connected to the system power supply through the pull-up resistor, the pull-up resistor
should be 0
to 10k
, and the 32KOUT pin should be connect to the host through the resistor (approx. 10k
).
VDD
OSCIN
OSCOUT
CLKC
VSS
32768Hz
System power supply
32KOUT
RN5VL
XXC
Back-up power supply
VDD
OSCIN
OSCOUT
Host
VSS
32768Hz
Back-up power supply
System power supply
Approx. 10K
32KOUT
0 to10K
CLKC
*1) Depending on whether the /INTRA and
/INTRB pins are to be used during battery
backup, it should be connected to a pull-up
resistor at the following different positions:
(1) Position A in the left diagram when it is not to
be used during battery backup.
(2) Position B in the left diagram when it is to be
used during battery backup.
R2025S/D

12345
Rev.1.01 - 38 -
s
Typical Characteristics

Test Circuit
Frequency
Counter
VDD
32KOUT
VSS
CL


Timekeeping current vs. Supply Voltage
Timekeeping current vs. Supply Voltage
(with no 32-kHz clock output)
(witj 32-kHz clock output)
(Output=Open,Topt=25
C)
(Output=Open,Topt=25
C)
0
0.2
0.4
0.6
0.8
1
0
1
2
3
4
5
6
Supply Voltage VDD(v)
Tim
e
keeping current ID
D
(
uA)
0
1
2
3
4
5
6
7
8
9
10
0
1
2
3
4
5
6
Supply Voltage VDD(v)
Tim
e
keeping current ID
D
(
uA)

CPU Access Current vs. SCL Clock Frequency
Timekeeping current vs. Operating Temperature
(Output=Open, Topt=25
C)
(with
no
32-kHz
output)
(wiithout pull-up resister current)
(Output=Open, VDD=3V)
0
10
20
30
40
50
0
100
200
300
400
SCL Clock Frequency (kHz)
CPU Ac
c
e
s
s
Cu
rre
n
t
IDD(u
A
)
0
0.2
0.4
0.6
0.8
1
-60 -40 -20 0 20 40 60 80 10
0
Operating Temperature Topt(Celsius)
Tim
e
keeping C
u
rrent ID
D
(
uA)

VDD=5v
VDD=3v

Topt : 25
C
Output : Open
SCL, SDA pin : VDD or VSS
CL=0pF
CL=30pF
R2025S/D
12345
Rev.1.01 - 39 -

Oscillation Frequency Deviation vs. Supply Voltage
Oscillation Frequency Deviation vs.
(Topt=25
C)
Operating
Temperature
(VDD=3v)
-5
-4
-3
-2
-1
0
1
2
3
4
5
0
1
2
3
4
5
6
Power Supply VDD (v)
O
scillation Frequency
D
e
viation (ppm
)
-120
-100
-80
-60
-40
-20
0
20
-60 -40 -20
0
20
40 60
80 100
Operating Temperature Topt(Celsius)
Os
c
illat
i
on f
r
equenc
y
D
e
v
i
at
ion (ppm
)

VOL vs. IOL(/INTRA, /INTRB pin)
CLKC pin Input Current vs. Power Supply
(Topt=25
C)
(VIN=VDD,Topt=25
C)
0
5
10
15
20
25
30
35
0
0.2
0.4
0.6
0.8
1
VOL (v)
IO
L (m
A)
0
0.2
0.4
0.6
0.8
1
0
1
2
3
4
5
6
Power Supply VDD (v)
ICLKC (uA)

Oscillation Start Time vs. Power Supply
(Topt=25
C)
0
100
200
300
400
500
0
1
2
3
4
5
6
Power Supply VDD (v)
O
scillation Start Tim
e
(m
s)
VDD=5v
VDD=3v
R2025S/D

12345
Rev.1.01 - 40 -
s
Typical Software-based Operations
q
Initialization at Power-on
Start
*1)
Yes
No
VDET=0?
Warning Back-up
Battery Run-down
Set
Control Register 1 and 2,
etc.
Power-on
*2)
*4)
*3)
PON=1?
Yes
No

*1)
After power-on from 0 volt, the start of oscillation and the process of internal initialization require a
time span on the order of 1 to 2sec, so that access should be done after the lapse of this time span or
more.
*2)
The PON bit setting of 0 in the Control Register 1 indicates power-on from backup battery and not
from 0v. For further details, see "P.30
s
Power-on Reset, Oscillation Halt Sensing, and Supply
Voltage Monitoring
q
PON, /XST, and VDET ".
*3)
This step is not required when the supply voltage monitoring circuit is not used.
*4)
This step involves ordinary initialization including the Oscillation Adjustment Register and interrupt
cycle settings, etc.
q
Writing of Time and Calendar Data
Write to Time Counter and
Calendar Counter
*2)
Stop Condition
*4)
Start Condition
*1)
Write to Clock Adjustment
Register
*3)

*1) When writing to clock and calendar counters, do not insert Stop
Condition until all times from second to year have been written to prevent
error in writing time. (Detailed in "P.28 Data Transmission under Special
Condition".
*2) Any writing to the second counter will reset divider units lower than the
second digits.
*3) Please see "P,29
The Necessity for Correction of Time Count
Deviations
"
*4) Take care so that process from Start Condition to Stop Condition will be
complete within 0.5sec. (Detailed in "P.28 Data Transmission under
Special Condition".

The R2025S/D may also be initialized not at power-on but in the process
of writing time and calendar data.
R2025S/D
12345
Rev.1.01 - 41 -
q
Reading Time and Calendar Data
(1) Ordinary Process of Reading Time and Calendar Data
Read from Time Counter
and Calendar Counter
*2)
Stop Condition
Start Condition
*1)


(2) Basic Process of Reading Time and Calendar Data with Periodic Interrupt Function
*2)
Other Interrupt
Processes
Set Periodic Interrupt
Cycle Selection Bits
CTFG=1?
Read from Time Counter
and Calendar Counter
Yes
No
Control Register 2
(X1X1X011)
Generate Interrupt in CPU
*1)
*3)
*1) When reading to clock and calendar counters, do not insert Stop
Condition until all times from second to year have been written to prevent
error in writing time. (Detailed in "P.28 Data Transmission under Special
Condition".
*2) Take care so that process from Start Condition to Stop Condition will be
complete within 0.5sec. (Detailed in "P.28 Data Transmission under
Special Condition".
*1) This step is intended to select the level mode as a
waveform mode for the periodic interrupt function.
*2) This step must be completed within 0.5 second.
*3) This step is intended to set the CTFG bit to 0 in the
Control Register 2 to cancel an interrupt to the CPU.
R2025S/D

12345
Rev.1.01 - 42 -

(3) Applied Process of Reading Time and Calendar Data with Periodic Interrupt Function
Time data need not be read from all the time counters when used for such ordinary purposes as time count
indication. This applied process can be used to read time and calendar data with substantial reductions in the
load involved in such reading.

For Time Indication in "Day-of-Month, Day-of-week, Hour, Minute, and Second" Format:
*2)
Other interrupts
Processes
Control Register 1
(XXXX0100)
Control Register 2
(X1X1X011)
Sec.=00?
Yes
No
Use Previous Min.,Hr.,
Day,and Day-of-week data
Generate interrupt to CPU
*1)
*3)
CTFG=1?
Control Register 2
(X1X1X011)
Yes
Read Min.,Hr.,Day,
and Day-of-week
*4)
No



*1) This step is intended to select the level
mode as a waveform mode for the
periodic interrupt function.
*2) This step must be completed within 0.5
sec.
*3) This step is intended to read time data
from all the time counters only in the
first session of reading time data after
writing time data.
*4) This step is intended to set the CTFG
bit to 0 in the Control Register 2 to
cancel an interrupt to the CPU.
R2025S/D
12345
Rev.1.01 - 43 -
q
Interrupt Process
(1) Periodic Interrupt
*2)
Other Interrupt
Processes
Set Periodic Interrupt
Cycle Selection Bits
CTFG=1?
Conduct
Periodic Interrupt
Yes
No
Control Register 2
(X1X1X011)
Generate Interrupt to CPU
*1)

(2) Alarm Interrupt
*3)
Other Interrupt
Processes
Set Alarm Min., Hr., and
Day-of-week Registers
WAFG or DAFG=1?
Conduct Alarm Interrupt
Yes
No
Control Register 2
(X1X1X101)
Generate Interrupt to CPU
*1)
WALE or DALE
1
WALE or DALE
0
*2)
*1) This step is intended to once disable the alarm
interrupt circuit by setting the WALE or DALE bits to 0
in anticipation of the coincidental occurrence of a
match between current time and preset alarm time in
the process of setting the alarm interrupt function.
*2) This step is intended to enable the alarm interrupt
function after completion of all alarm interrupt settings.
*3) This step is intended to once cancel the alarm
interrupt function by writing the settings of "X,1,X,
1,X,1,0,1" and "X,1,X,1,X,1,1,0" to the Alarm_W
Registers and the Alarm_D Registers, respectively.
*1) This step is intended to select the level mode as a
waveform mode for the periodic interrupt function.
*2) This step is intended to set the CTFG bit to 0 in
the Control Register 2 to cancel an interrupt to the
CPU.
R2025S/D

12345
Rev.1.01 - 44 -
s
Land Pattern (reference)
q
R2025S (SOP14)
8
0.7
1.27
1
7
8.32
P 1.27x6=7.62
14
5.4 1.4
1.
4
unit:mm
Package top view
14
1
7
8
1. Pad layout and size can modify by customers material, equipment, and method. Please adjust pad layout
according to your conditions.
2. In the mount area which descried as , is close to the inside oscillator circuit. To avoid the malfunction by
noise, check the other signal lines close to the area, do not intervene with the oscillator circuit.

3. A part of a metal case of the crystal may be seen in the area which described as in both sides of the
package. It has no influence on the characteristics and quality of the product.
R2025S/D
12345
Rev.1.01 - 45 -
q
R2025D (SON22)
0.7
14
0.25
0.5
1 11
0.7
5.25
P 0.5x10=5.0
0.
8
0.
8
1.4
0.25 0.75
22
4
.
0 0.
7
0.7
unit : mm
Package top view Package bottom view
22
11
1
14
22 14
1 11
1. Pad layout and size can modify by customers material, equipment, and method. Please adjust pad layout
according to your conditions.
2. Any signal line should not pass through the area that described as in the land pattern. If a signal line is
located in that area, it may cause a short circuit with a tab suspension leads which is marked with in the
figure above or unnecessary remainder of cut lead.
3. In the mount area which descried as , is close to the inside oscillator circuit. To avoid the malfunction by
noise, check the other signal lines close to the area, do not intervene with the oscillator circuit.
4. A part of a metal case of the crystal may be seen in the area that described as in both sides of the
package. It has no influence on the characteristics and quality of the product.