ChipFind - документация

Электронный компонент: EMF6

Скачать:  PDF   ZIP

Document Outline

EMF6
Transistors
1/5
Power management (dual transistors)
EMF6
2SA2018 and 2SK3019 are housed independently in a EMT6 package.
!
!
!
!
Application
Power management circuit
!
!
!
!
Features
1) Power switching circuit in a single package.
2) Mounting cost and area can be cut in half.
!
!
!
!
Structure
Silicon epitaxial planar transistor
!
!
!
!
Equivalent circuits
Tr2
Tr1
(1)
(2)
(3)
(4)
(5)
(6)
!
!
!
!
Packaging specifications
EMF6
EMT6
F6
T2R
8000
Type
Package
Marking
Code
Basic ordering unit (pieces)
!
!
!
!
External dimensions (Units : mm)
0.22
1.2
1.6
(1)
(2)
(5)
(3)
(6)
(4)
0.13
0.5
0.5
0.5
1.0
1.6
ROHM : EMT6
Abbreviated symbol
F6
Each lead has
same dimensions
EMF6
Transistors
2/5
!
!
!
!
Absolute maximum ratings (Ta=25
C)
Tr1
Parameter
Symbol
V
CBO
V
CEO
V
EBO
I
C
I
CP
P
C
Tj
Tstg
Limits
-
15
-
12
-
6
-
500
150(TOTAL)
150
-
55~
+
150
-
1.0
1
2
Unit
V
V
V
mA
A
mW
C
C
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Power dissipation
Junction temperature
Range of storage temperature
1 Single pulse P
W
=1ms
2 120mW per element must not be exceeded. Each terminal mounted on a recommended land.
Tr2
Parameter
1 PW
10ms Duty cycle
50%
2 120mW per element must not be exceeded. Each terminal mounted on a recommended land.
Symbol
V
DSS
V
GSS
I
D
I
DRP
P
D
Tch
Tstg
Limits
30
20
100
200
150(TOTAL)
150
-
55~
+
150
1
1
2
Unit
V
V
mA
I
DP
200
mA
mA
I
DR
100
mA
mW
C
C
Drain-source voltage
Gate-source voltage
Drain current
Reverse drain
current
Total power dissipation
Channel temperature
Range of storage temperature
Continuous
Continuous
Pulsed
Pulsed
!
!
!
!
Electrical characteristics (Ta=25
C)
Tr1
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
V
CB
=-
10V, I
E
=
0mA, f
=
1MHz
Transition frequency
f
T
-
260
-
MHz
V
CE
=-
2V, I
E
=
10mA, f
=
100MHz
BV
CEO
-
12
-
-
V
I
C
=-
1mA
Collector-emitter breakdown voltage
BV
CBO
-
15
-
-
V
I
C
=-
10
A
Collector-base breakdown voltage
BV
EBO
-
6
-
-
V
I
E
=-
10
A
Emitter-base breakdown voltage
I
CBO
-
-
-
100
nA
V
CB
=-
15V
Collector cut-off current
I
EBO
-
-
-
100
nA
V
EB
=-
6V
Emitter cut-off current
V
CE(sat)
-
-
100
-
250
mV
I
C
=-
200mA, I
B
=-
10mA
Collector-emitter saturation voltage
h
FE
270
-
680
-
V
CE
=-
2V, I
C
=-
10mA
DC current gain
Cob
-
6.5
-
pF
Collector output capacitance
Tr2
Parameter
Symbol
Min.
Typ.
Max.
Unit
Conditions
Input capacitance
C
iss
-
13
-
pF
V
DS
=
5V, V
GS
=
0V, f
=
1MHz
I
GSS
-
-
1
A
V
GS
=
20V, V
DS
=
0V
Gate-source leakage
V
(BR)DSS
30
-
-
V
I
D
=
10
A, V
GS
=
0V
I
DSS
-
-
1.0
A
V
DS
=
30V, V
GS
=
0V
Zero gate voltage drain current
Drain-source breakdown voltage
V
GS(th)
0.8
-
1.5
V
V
DS
=
3V, I
D
=
100
A
Gate-threshold voltage
R
DS(on)
-
5
8
I
D
=
10mA, V
GS
=
4V
-
7
13
I
D
=
1mA, V
GS
=
2.5V
Static drain-source
on-state resistance
C
oss
-
9
-
pF
Output capacitance
|Y
fs
|
20
-
-
ms
V
DS
=
3V, I
D
=
10mA
Forward transfer admittance
C
rss
-
4
-
pF
Reverce transfer capacitance
Rise time
t
r
-
35
-
ns
t
d(off)
-
80
-
ns
Turn-off delay time
t
d(on)
-
15
-
ns
I
D
=
10mA, V
DD
5V,
V
GS
=
5V, R
L
=
500
,
R
GS
=
10
Turn-on delay time
t
f
-
80
-
ns
Fall time
EMF6
Transistors
3/5
!
!
!
!
Electrical characteristic curves
Tr1
0
1
100
1000
10
BASE TO EMITTER VOLTAGE : V
BE
(V)
COLLECTOR CURRENT : I
C
(mA)
1.4
1.0
1.2
0.4
0.6
0.8
0.2
V
CE
=
2V
Pulsed
Ta
=
125
C
Ta
=
25
C
Ta
=
-
40
C
Fig.1 Grounded emitter propagation
characteristics
1
10
100
1000
COLLECTOR CURRENT : I
C
(mA)
1
DC CURRENT GAIN : h
FE
10
1000
100
Ta
=
125
C
Ta
=-
40
C
Ta
=
25
C
V
CE
=
2V
Pulsed
Fig.2 DC current gain vs.
collector current
1
10
100
1000
COLLECTOR CURRENT : I
C
(mA)
1
COLLECTOR SATURATION VOLTAGE : V
CE(sat)
(mV)
10
1000
100
Ta
=
25
C
Pulsed
I
C
/I
B
=
50
I
C
/I
B
=
20
I
C
/I
B
=
10
Fig.3 Collector-emitter saturation voltage
vs. collector current (
)
1
10
100
1000
COLLECTOR CURRENT : I
C
(mA)
1
COLLECTOR SATURATION VOLTAGE : V
CE (sat)
(V)
10
1000
100
Ta
=
25
C
Ta
=-
40
C
Ta
=
125
C
I
C
/I
B
=
20
Pulsed
Fig.4 Collector-emitter saturation voltage
vs. collector current (
)
1
10
100
1000
COLLECTOR CURRENT : I
C
(mA)
10
BASER SATURATION VOLTAGE : V
BE (sat)
(mV)
100
10000
1000
Ta
=
25
C
Ta
=-
40
C
Ta
=
125
C
I
C
/I
B
=
20
Pulsed
Fig.5 Base-emitter saturation voltage
vs. collector current
1
10
100
1000
EMITTER CURRENT : I
E
(mA)
1
TRANSITION FREQUENCY : f
T
(MHz)
10
1000
100
V
CE
=
2V
Ta
=
25
C
Pulsed
Fig.6 Gain bandwidth product
vs. emitter current
1
10
100
0.1
1
10
100
1000
Ta
=
25
C
f
=
1MHz
I
E
=
0A
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE : Cib (pF)
EMITTER TO BASE VOLTAGE : V
EB
(V)
Cib
Cob
Fig.7 Collector output capacitance
vs. collector-base voltage
Emitter input capacitance
vs. emitter-base voltage
EMF6
Transistors
4/5
Tr2
0
1
2
3
4
5
0
0.05
0.1
0.15
DRAIN CURRENT : I
D
(A)
DRAIN-SOURCE VOLTAGE : V
DS
(V)
3V
3.5V
2.5V
V
GS
=
1.5V
4V
2V
Ta
=
25
C
Pulsed
Fig.9 Typical output characteristics
0
4
0.1m
100m
DRAIN CURRENT : I
D
(A)
GATE-SOURCE VOLTAGE : V
GS
(V)
1
10m
3
2
1m
0.2m
0.5m
2m
5m
50m
20m
200m
Ta
=
125
C
75
C
25
C
-
25
C
V
DS
=
3V
Pulsed
Fig.10 Typical transfer characteristics
-
50
0
0
1
1.5
2
GATE THRESHOLD VOLTAGE : V
GS(th)
(V)
CHANNEL TEMPERATURE : Tch (
C)
0.5
-
25
25
50
75
100
125
150
Fig.11 Gate threshold voltage vs.
channel temperature
V
DS
=
3V
I
D
=
0.1mA
Pulsed
0.001
1
2
50
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : R
DS(on)
(
)
DRAIN CURRENT : I
D
(A)
0.5
0.002
0.005 0.01 0.02
0.05
0.1
0.2
0.5
5
10
20
Fig.12 Static drain-source on-state
resistance vs. drain current (
)
Ta
=
125
C
75
C
25
C
-
25
C
V
GS
=
4V
Pulsed
0.001
1
2
50
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : R
DS(on)
(
)
DRAIN CURRENT : I
D
(A)
0.5
0.002
0.005 0.01 0.02
0.05
0.1
0.2
0.5
5
10
20
Fig.13 Static drain-source on-state
resistance vs. drain current (
)
Ta
=
125
C
75
C
25
C
-
25
C
V
GS
=
2.5V
Pulsed
0
5
10
15
20
0
5
10
15
GATE-SOURCE VOLTAGE : V
GS
(V)
I
D
=
0.1A
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : R
DS(on)
(
)
Fig.14 Static drain-source on-state
resistance vs. gate-source
voltage
Ta
=
25
C
Pulsed
I
D
=
0.05A
-
50
0
25
150
0
3
6
9
CHANNEL TEMPERATURE : Tch (
C)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : R
DS(on)
(
)
-
25
50
75
100 125
2
1
4
5
7
8
Fig.15 Static drain-source on-state
resistance vs. channel temperature
V
GS
=
4V
Pulsed
I
D
=
100mA
I
D
=
50mA
0.0001
0.001
0.01
0.02
0.5
FORWARD TRANSFER
ADMITTANCE : |Yfs| (S)
DRAIN CURRENT : I
D
(A)
0.005
0.0002
0.0005 0.001 0.002
0.005 0.01 0.02
0.05
0.05
0.1
0.2
0.1
0.2
0.5
0.002
Ta
=-
25
C
25
C
75
C
125
C
V
DS
=
3V
Pulsed
Fig.16 Forward transfer admittance vs.
drain current
200m
REVERSE DRAIN CURRENT : I
DR
(A)
SOURCE-DRAIN VOLTAGE : V
SD
(V)
1.5
1
0.5
0
100m
50m
20m
10m
5m
2m
1m
0.5m
0.2m
0.1m
Fig.17 Reverse drain current vs.
source-drain voltage (
)
V
GS
=
0V
Pulsed
Ta
=
125
C
75
C
25
C
-
25
C
EMF6
Transistors
5/5
200m
REVERSE DRAIN CURRENT : I
DR
(A)
SOURCE-DRAIN VOLTAGE : V
SD
(V)
1.5
1
0.5
0
100m
50m
20m
10m
5m
2m
1m
0.5m
0.2m
0.1m
Fig.18 Reverse drain current vs.
source-drain voltage (
)
Ta
=
25
C
Pulsed
V
GS
=
4V
0V
0.1
1
2
50
CAPACITANCE : C (pF)
DRAIN-SOURCE VOLTAGE : V
DS
(V)
0.5
0.2
0.5
1
2
5
10
20
50
5
10
20
Fig.19 Typical capacitance vs.
drain-source voltage
C
iss
C
oss
C
rss
Ta
=
25
C
f
=
1MH
Z
V
GS
=
0V
0.1
10
20
500
SWITHING TIME : t (ns)
DRAIN CURRENT : I
D
(mA)
5
0.2
0.5
1
2
5
10
20
50
50
100
200
1000
2
100
Ta
=
25
C
V
DD
=
5V
V
GS
=
5V
R
G
=
10
Pulsed
t
d(off)
t
r
t
d(on)
t
f
Fig.20 Switching characteristics