ChipFind - документация

Электронный компонент: K7D403671M-H20

Скачать:  PDF   ZIP
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
1
Nov. 1999
Document Title
4M DDR SYNCHRONOUS SRAM
Revision History
Rev. No.
Rev. 0.0
Rev.0.5
Rev.1.0
Remark
Advance
Preliminary
Final
History
Initial document.
Correction on the miss print and the package size.
Added 4ns cycle time (500Mbps).
Draft Data

Aug. 1998
July. 1999
Nov. 1999
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
2
Nov. 1999
PIN DESCRIPTION
Pin Name
Pin Description
Pin Name
Pin Description
K, K
Differential Clocks
G
Asynchronous Output Enable
SA
Synchronous Address Input
TCK
JTAG Test Clock
SA
0
, SA
1
Synchronous Burst Address Input
TMS
JTAG Test Mode Select
DQ
Synchronous Data I/O
TDI
JTAG Test Data Input
V
DD
Core Power Supply
TDO
JTAG Test Data Output
V
DDQ
Output Power Supply
ZQ
Output Driver Impedance Control Input
V
REF
HSTL Input Reference Voltage
LBO
Linear Burst Order
B
1
Load External Address
MODE
No Connect (Reserved)
B
2
Burst R/W Enable
V
SS
GND
B
3
Single/Double Data Selection
NC
No Connection
KQ, KQ
Differential Output Echo Clocks
FEATURES
FUNCTIONAL BLOCK DIAGRAM
128Kx36 or 256Kx18 Organizations.
2.5V Core/1.5V Output Power Supply.
HSTL Input and HSTL Outputs.
Single Differential HSTL Clock.
Synchronous Pipeline Mode of Operation with Self-Timed
Late Write.
Free Running Active High and Active Low Echo Clock Output
Pin.
Asynchronous Output Enable.
Registered Addresses, Burst Control Inputs and Data Inputs.
Registered Outputs.
Single and Double Data Rate Burst Read and Write.
4 Count Burst Operation
JTAG 1149.1 Compatible Test Access port.
153(9x17) Pin Ball Grid Array Package(14mm x 22mm).
Programmable Impedance Output Drivers.
Organization
Part Number
Cycle
Time
Access
Time
128Kx36
K7D403671M-H25
4
2.4
K7D403671M-H22
44
2.4
K7D403671M-H20
5
2.7
K7D403671M-H16
6
3.3
256Kx18
K7D401871M-H25
4
2.4
K7D401871M-H22
44
2.4
K7D401871M-H20
5
2.7
K7D401871M-H16
6
3.3
K,K
B
1
B
3
B
2
G
Register
CE
Memory Array
128Kx36
Data Out
Data In
Advance
Control
SD/DD
Co
Synchronous
Internal
Clock
Generator
CE
R/W
LD
Data Output Strobe
Data Output Enable
State Machine
Strobe_out
S/A Array
2 : 1 MUX
Data In
Register
Write Buffer
W/D
Array
Echo Clock
Output
36(or 18)x2
36(or 18)x2
36(or 18)x2
36(or 18)x2
XDIN
KQ,KQ
DATA
36(or 18)
Select
&
R/W control
Output
Buffer
Write
CE
Burst
Counter
Register
Address
Address
Comparator
2:1
MUX
Dec.
17(or 18)
15(or 16)
15(or 16)
17(or 18)
(Burst Write
SA[0:16]( or SA[0:17])
or
(256Kx18)
(2 stage)
(2 stage)
(Burst Address)
Address)
Clock
Buffer
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
3
Nov. 1999
PACKAGE PIN CONFIGURATIONS
(TOP VIEW)
K7D403671(128Kx36)
1
2
3
4
5
6
7
8
9
A
V
SS
V
DDQ
SA
SA
ZQ
SA
SA
V
DDQ
V
SS
B
DQ
DQ
SA
V
SS
B
1
V
SS
SA
DQ
DQ
C
V
SS
V
DDQ
SA
SA
G
SA
SA
V
DDQ
V
SS
D
DQ
DQ
N.C
V
SS
V
DD
V
SS
NC
DQ
DQ
E
V
SS
V
DDQ
V
SS
V
DD
V
REF
V
DD
V
SS
V
DDQ
V
SS
F
DQ
KQ
DQ
V
DD
V
DD
V
DD
DQ
KQ
DQ
G
V
SS
V
DDQ
V
SS
V
SS
K
V
SS
V
SS
V
DDQ
V
SS
H
DQ
DQ
DQ
V
DD
K
V
DD
DQ
DQ
DQ
J
V
SS
V
DDQ
V
SS
V
DD
V
DD
V
DD
V
SS
V
DDQ
V
SS
K
DQ
DQ
DQ
V
SS
B
2
V
SS
DQ
DQ
DQ
L
V
SS
V
DDQ
V
SS
LBO
B
3
MODE
V
SS
V
DDQ
V
SS
M
DQ
KQ
DQ
V
DD
V
DD
V
DD
DQ
KQ
DQ
N
V
SS
V
DDQ
V
SS
V
DD
V
REF
V
DD
V
SS
V
DDQ
V
SS
P
DQ
DQ
NC
V
SS
V
DD
V
SS
SA
DQ
DQ
R
V
SS
V
DDQ
V
DD
SA
SA
1
SA
V
DD
V
DDQ
V
SS
T
DQ
DQ
SA
V
SS
SA
0
V
SS
SA
DQ
DQ
U
V
SS
V
DDQ
TMS
TDI
TCK
TDO
NC
V
DDQ
V
SS
K7D401871(256Kx18)
1
2
3
4
5
6
7
8
9
A
V
SS
V
DDQ
SA
SA
ZQ
SA
SA
V
DDQ
V
SS
B
NC
DQ
SA
V
SS
B
1
V
SS
SA
NC
DQ
C
V
SS
V
DDQ
SA
SA
G
SA
SA
V
DDQ
V
SS
D
DQ
NC
NC
V
SS
V
DD
V
SS
NC
DQ
NC
E
V
SS
V
DDQ
V
SS
V
DD
V
REF
V
DD
V
SS
V
DDQ
V
SS
F
NC
KQ
NC
V
DD
V
DD
V
DD
DQ
NC
DQ
G
V
SS
V
DDQ
V
SS
V
SS
K
V
SS
V
SS
V
DDQ
V
SS
H
DQ
NC
DQ
V
DD
K
V
DD
NC
DQ
NC
J
V
SS
V
DDQ
V
SS
V
DD
V
DD
V
DD
V
SS
V
DDQ
V
SS
K
NC
DQ
NC
V
SS
B
2
V
SS
DQ
NC
DQ
L
V
SS
V
DDQ
V
SS
LBO
B
3
MODE
V
SS
V
DDQ
V
SS
M
DQ
NC
DQ
V
DD
V
DD
V
DD
NC
KQ
NC
N
V
SS
V
DDQ
V
SS
V
DD
V
REF
V
DD
V
SS
V
DDQ
V
SS
P
NC
DQ
SA
V
SS
V
DD
V
SS
SA
NC
DQ
R
V
SS
V
DDQ
V
DD
SA
SA
1
SA
V
DD
V
DDQ
V
SS
T
DQ
NC
SA
V
SS
SA
0
V
SS
SA
DQ
NC
U
V
SS
V
DDQ
TMS
TDI
TCK
TDO
NC
V
DDQ
V
SS
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
4
Nov. 1999
FUNCTION DESCRIPTION
Read Operation(Single and Double)
During single read operation, the address is registered during the first clock edge, the internal array is read between this first edge
and second edge, it is read again in the following cycle from the address increased by burst counter, and data is captured in the out-
put register driven to the CPU during the second clock high edge and third clock high edge. During double read operation, the
address is registered during the first clock edge, the internal array is read twice as much as wider than external bits, transfered to
dout buffer sequentially by burst order and the following cycle the same operation occur from address increased by burst counter,
and data is captured in the output register driven to the CPU at active high clock edge and active low clock edge.
During consecutive read cycles where the address is the same, the data output must be held constant without any glitches. This
characteristic is because the SRAM will be read by devices that will operate slower than the SRAM frequency and will require multi-
ple SRAM cycles to perform a single read operation.
Write(Store) Operation
All addresses and R/W are sampled with B
1
and B
2
on the clock rising edge. B
1
and B
2
are low on the rising clock. Write address is
sampled on the rising clock, one cycle after write address and Din have been sampled by the SRAM during 2 consecutive cycles at
each active high and low clock edge and stored to write buffer for next real writing array. Actual write is done by using write data
buffer on the SRAM that capture the write addresses on one address write cycles, and write the array on the next address write
cycles. The "next address write cycles" can actually be many cycles away, broken by a series of read cycles. The SRAM is able to
write 72 bits per cycle with 2-prefetched write buffer. This alleviates timing penalty of read after write cycle.
Echo clock operation
To assure the output tracibility, the SRAM provides the output Echo clock, pair of complement clock, which is synchronized with inter-
nal data output.
During read and write cycle, the Echo clock is triggered by internal output clock signal, and transfered to external through same struc-
tures as output driver in read cycle.
Bypass Read Operation
Since write data is not fully written into the array on first write cycle, there is a need to sense the address in case a future read is to
be done from the location that has not been written yet. For this case, the address comparator check to see if the new read address
is the same as the contents of the stored write address latch. If the contents match, the read data must be supplied from the stored
write data latch with standard read timing. If there is no match, the read data comes from the SRAM array.
PROGRAMMABLE IMPEDANCE OUTPUT BUFFER OPERATION
The designer can program the SRAM's output buffer impedance by terminating the ZQ pin to V
SS
through a precision resistor(RQ).
The value of RQ is five times the output impedance desired. For example, 250
resistor will give an output impedance of 50
. The
allowable range of RQ is between 175
and 350
. Impedance updates occur early in cycles that do not activate the outputs, such
as deselect cycles. They may also occur in cycles initiated with G high. In all cases impedance updates are transparent to the user
and do not produce access time "push-outs" or other anomalous behavior in the SRAM. Periodic readjustment is necessary as the
impedance is greatly affected by drifts in supply voltage and temperature. Impedance updates occur no more often than every 32
clock cycles. Clock cycles are counted whether the SRAM is selected or not and proceed regardless of the type of cycle being exe-
cuted. Therefore, the user can be assured that after 33 continuous read cycles have occurred, an impedance update will occur the
next time G are high at a rising edge of the K clock. There are no power up requirements for the SRAM. However, to guarantee opti-
mum output driver impedance after power up, the SRAM needs 1024 non-read cycles.
The K7D403671M and K7D401871M are 4,718,592 bit Synchronous Pipeline Burst Mode SRAM devices. They are organized as
131,072 words by 36 bits for K7D403671M and 262,144 words by 18 bits for K7D401871M, fabricated using Samsung's advanced
CMOS technology.
Single differential HSTL level K clocks are used to initiate the read/write operation and all internal operations are self-timed. At the
rising edge of K clock, all addresses and burst control inputs are registered internally. And data inputs are registered at rising edges
of K clock for a single data controlled mode, or at rising and falling edges of K clock for a dual data controlled mode, in the following
cycle after write addresses are asserted.
An internal write data buffer allows write data to be stored before loaded into memory core in the next write cycles. Data outputs are
updated from output registers on the rising edges of K clock for a single data controlled mode, or on the rising and falling edges of
the K clock for a dual data controlled mode. Read data is referenced to Echo clock outputs. The chip is operated with a single +2.5V
power supply and is compatible with HSTL input and HSTL output. The package is 9x17(153) Ball Grid Array balls on a 1.27mm
pitch.
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
5
Nov. 1999
4 Burst Operation for Interleaved Burst (LBO = High)
Interleaved Burst
Case 1
Case 2
Case 3
Case 4
A
1
A
0
A
1
A
0
A
1
A
0
A
1
A
0
First Address
Fourth Address
0
0
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
1
0
1
0
4 Burst Operation for Linear Burst (LBO = Low)
Interleaved Burst
Case 1
Case 2
Case 3
Case 4
A
1
A
0
A
1
A
0
A
1
A
0
A
1
A
0
First Address
Fourth Address
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
TRUTH TABLE
NOTE : B(Both) is DIN in write cycle and DOUT in read cycle. Byte write function is not supported. X means "Don't Care".
K
G
B1
B2
B3
DQ
Operation
L
H
X
X
X
Hi-Z
Clock Stop
H
H
L
X
Hi-Z
No Operation, Pipeline High-Z
L
L
H
H
DOUT
Load Address, Single Read
L
L
H
L
DOUT
Load Address, Double Read
H
L
L
H
DIN
Load Address, Single Write
H
L
L
L
DIN
Load Address, Double Write
L
H
H
X
B
Increment Address, Continue
BURST SEQUENCE TABLE
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
6
Nov. 1999
NOTE :
1. State transitions ; B
1
=(Load Address), B
1
=(Increment Address, Continue)
B
2
=(Read), B
2
=(Write)
B
3
=(Single Data Rate), B
3
=(Double Data Rate)
BUS CYCLE STATE DIAGRAM
LOAD
NEW ADDRESS
INCREMENT
ADDRESS
INCREMENT
ADDRESS
INCREMENT
ADDRESS
INCREMENT
ADDRESS
READ
SDR
WRITE
SDR
READ
DDR
WRITE
DDR
B
2
, B
3
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
NO OP
POWER
UP
B
2
, B
3
B
1
B
2
, B
3
B
1
B
2
,
B
3
B
1
B
1
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
,

B
2
B
1
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
7
Nov. 1999
RECOMMENDED DC OPERATING CONDITIONS
NOTE :1. These are DC test criteria. DC design criteria is V
REF
50mV. The AC V
IH
/V
IL
levels are defined separately for measuring
timing parameters.
2. V
IH
(Max)DC=
V
DD
+0.3, V
IH
(Max)AC=
V
DD
+1.5V(pulse width
5ns).
3. V
IL
(Min)DC=
-
0.3V, V
IL
(Min)AC=-1.5V(pulse width
5ns).
4. Junction temperature is a function of on-chip power dissipation, package thermal impedance, mounting site temperature and
mounting site thermal impedance. T
J
=T
A
+ P
D
x T
HETA
_JA
Parameter
Symbol
Min
Typ
Max
Unit
Note
Core Power Supply Voltage
V
DD
2.4
2.5
2.6
V
Output Power Supply Voltage
V
DDQ
1.4
1.5
1.6
V
Input High Level Voltage
V
IH
V
REF
+0.1
-
V
DD
+ 0.3
V
1, 2
Input Low Level Voltage
V
IL
-0.3
-
V
REF
-0.1
V
1, 3
Input Reference Voltage
V
REF
0.6
0.75
1.0
V
Operating Junction Temperature
T
J
20
-
110
C
4
ABSOLUTE MAXIMUM RATINGS
NOTE : Power Dissipation Capability will be dependent upon package characteristics and use environment. See enclosed thermal impedance data.
Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
Parameter
Symbol
Value
Unit
Core Supply Voltage Relative to V
SS
V
DD
-0.5 to 3.5
V
Output Supply Voltage Relative to V
SS
V
DDQ
-0.5 to V
DD
+0.5
V
Voltage on any pin Relative to V
SS
V
IN
-0.5 to V
DD
+0.5
V
Maximum Power Dissipation
P
D
-
W
Output Short-Circuit Current(per I/O)
I
OUT
25
mA
Storage Temperature
T
STR
-55 to 125
C
DC CHARACTERISTICS
NOTE :1. Minimum cycle. I
OUT
=0mA.
2. 50% read cycles.
3. |I
OH
|=(V
DDQ
/2)/(RQ/5)
10% @V
OH
=V
DDQ
/2 for 175
RQ
350
.
4. |I
OL
|=(V
DDQ
/2)/(RQ/5)
10% @V
OL
=V
DDQ
/2 for 175
RQ
350
.
5. Minimum Impedance Mode when ZQ pin is connected to V
DD
.
Parameter
Symbol
Min
Max
Unit
Note
Average Power Supply Operating Current(x36)
(Cycle time = t
KHKH
min)
I
DD4
I
DD44
I
DD5
I
DD6
-
700
650
600
550
mA
1,2
Average Power Supply Operating Current(x18)
(Cycle time = t
KHKH
min)
I
DD4
I
DD44
I
DD5
I
DD6
-
650
600
550
500
mA
1,2
Stop Clock Standby Current
(V
IN
=V
DD
-0.2V or 0.2V fixed, Clock=Low)
I
SB1
-
50
mA
1
Input Leakage Current
(V
IN
=V
SS
or V
DD
)
I
LI
-1
1
A
Output Leakage Current
(V
OUT
=V
SS
or V
DDQ except KQx,KQx
)
I
LO
-1
1
A
Output High Voltage(Programmable Impedance Mode)
V
OH1
V
DDQ
/2
V
DDQ
V
3
Output Low Voltage(Programmable Impedance Mode)
V
OL1
V
SS
V
DDQ
/2
V
4
Output High Voltage(I
OH
=-0.1mA )
V
OH3
V
DDQ
-0.2
V
DDQ
V
5
Output Low Voltage(I
OL
=0.1mA)
V
OL3
V
SS
0.2
V
5
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
8
Nov. 1999
Output Load(A)
Output Load(B)
(for t
KQLZ
, t
KQHZ
, t
GLQZ
& t
GHQZ
)
Z0=50
50
0.75V
*Capacitive load consists of all components
AC TEST CONDITIONS
(T
J
=20 to 110
C, V
DD
=2.4 -2.6V, V
DDQ
=1.4 - 1.6V)
Parameter
Symbol
Value
Unit
Note
Input High/Low Level
V
IH
/V
IL
1.25/0.25
V
-
Input Reference Level
V
REF
0.75
V
-
Input Rise/Fall Time
T
R
/T
F
1.0/1.0
ns
-
Output Timing Reference Level
0.75
V
-
Clock Input Timing Reference Level
Cross Point
V
-
Output Load
See Below
-
AC TEST OUTPUT LOAD
V
REF
Dout
ZQ
DEVICE
UNDER
TEST
250
5pF*
V
REF
Dout
ZQ
DEVICE
UNDER
TEST
250
0.75V
of the tester environment
AC CHARACTERISTICS
NOTE : 1. See AC Test Output Load figure
2. Design target is 0ns
Parameter
Symbol
-25
-22
-20
-16
Unit
Note
Min
Max
Min
Max
Min
Max
Min
Max
Clock Cycle Time
t
KHKH
4.0
-
4.4
-
5.0
-
6.0
-
ns
Clock High Pulse Width
t
KHKL
1.6
-
1.8
-
2.0
-
2.4
-
ns
Clock Low Pulse Width
t
KLKH
1.6
-
1.8
-
2.0
-
2.4
-
ns
Clock to Echo Clock(KQ, KQ)
t
KHKE
-
2.2
-
2.2
-
2.5
-
3.0
ns
1
Echo Clock to Output Valid
t
KEQV
-
0.2
-
0.2
-
0.2
-
0.3
ns
1,2
Echo Clock to Output Hold
t
KEQX
-0.5
-
-0.5
-
-0.5
-
-0.6
-
ns
1
Echo Clock to Output Low-Z
t
KQLZ
-0.5
-
-0.5
-
-0.5
-
-0.6
-
ns
1
Echo Clock to Output High-Z
t
KQHZ
-
0.2
-
0.2
-
0.2
-
0.2
-
1
G Low to Output Low-Z
t
GLQX
0.5
-
0.5
-
0.5
-
0.5
-
ns
1
G High to Output High-Z
t
GHQZ
-
2.2
-
2.2
-
2.7
-
3.3
ns
1
G Low to Output Valid
t
GLQV
-
2.2
-
2.2
-
2.7
-
3.3
ns
1
G High to Output Hold
t
GHQX
0.5
-
0.5
-
0.5
-
0.5
-
ns
Address Setup Time
t
AVKH
0.5
-
0.5
-
0.5
-
0.7
-
ns
Address Hold Time
t
KHAX
0.5
-
0.5
-
0.5
-
0.7
-
ns
Burst Control Setup Time
t
BVKH
0.5
-
0.5
-
0.5
-
0.7
-
ns
Burst Control Hold Time
t
KHBX
0.5
-
0.5
-
0.5
-
0.7
-
ns
Data Setup Time
t
DVKH
0.5
-
0.5
-
0.5
-
0.7
-
ns
Data Hold Time
t
KHDX
0.5
-
0.5
-
0.5
-
0.7
-
ns
PIN CAPACITANCE
*NOTE : Periodically Sampled and not 100% tested. (dV=0V, f=1MHz)
Parameter
Symbol
Typ.
Max
Unit
Input Pin Capacitance
C
IN
-
6
pF
I/O Pin Capacitance
C
I/O
-
7
pF
Clock Pin Capacitance
C
CLK
-
7
pF
0.75V
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
9
Nov. 1999
TIMING WAVEFORMS FOR DOUBLE DATA RATE CYCLES
(Burst Length=4)
NOTE
1. Q
01
refers to output from address A
0
. Q
02
refers to output from the next internal burst address following A
0
, etc.
2. Outputs are disabled(High-Z) one clock cycle after NOP detected.
3. Doing more than one Read Continue or Write Continue will cause the address to wrap around.
4. The second NOP cycle is not necessary for correct device operation.
However, at high clock frequencies it may be required to prevent bus contention.
NOP
CONTINUE
K
K
B1
G
SA
t
KHKL
t
AVKH
t
KHAX
KQ
NOP
1
2
3
4
5
6
7
8
10
12
11
B2
B3
KQ
DQ
READ
(burst of 2)
READ
(burst of 2)
READ
(burst of 2)
NOP
WRITE
CONTINUE
WRITE
(burst of 2)
(burst of 2)
READ
9
CONTINUE
READ
(burst of 2)
READ
(burst of 2)
CONTINUE
READ
(burst of 2)
A
0
A
1
A
2
A
3
Q
X2
Q
01
Q
02
Q
03
Q
04
Q
51
Q
52
Q
53
Q
54
Q
11
Q
12
D
21
D
23
D
24
D
22
Q
31
t
BVKH
t
KHBX
t
KQHZ
t
KHKE
t
KQLZ
t
CEQV
t
KEQX
t
GHQZ
t
DVKH
t
KHDX
t
GLQX
t
GLQV
t
KLKH
t
KHKH
t
GHQX
UNDEFINED
DON
T CARE
A
5
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
10
Nov. 1999
TIMING WAVEFORMS FOR SINGLE DATA RATE CYCLES
(Burst Length=4)
NOTE :
1. Q
01
refers to output from address A
0
. Q
02
refers to output from the next internal burst address following A
0
, etc.
2. Outputs are disabled(High-Z) one clock cycle after NOP detected
3. This devices supports cycle lengths of 1, 2, 4. Continue(B1=HIGH, B2=HIGH, B3=X) up to three times following a B1 operation.
4. This device will have an address to wrap around if further Continues are applied.
5. The second NOP cycle is not necessary for correct device operation.
however, at high clock frequencies it may be required to prevent bus contention.
NOP
CONTINUE
t
KHKH
t
AVKH
t
KHAX
NOP
1
2
3
4
5
6
7
8
10
12
11
READ
(burst of 2)
READ
(burst of 2)
READ
(burst of 2)
NOP
WRITE
CONTINUE
WRITE
(burst of 2)
(burst of 2)
READ
9
CONTINUE
READ
(burst of 2)
CONTINUE
READ
(burst of 2)
CONTINUE
READ
(burst of 2)
A
0
A
1
A
2
A
3
Q
X1
D
22
D
21
t
BVKH
t
KHBX
t
KQHZ
t
KHKE
t
KQLZ
t
KEQV
t
KEQX
t
GHQZ
t
GHQX
t
DVKH
t
KHDX
t
GLQX
t
GLQV
t
KLKH
Q
31
Q
01
Q
02
Q
03
Q
04
Q
11
UNDEFINED
DON
T CARE
t
KHKL
K
K
B1
G
SA
B2
B3
DQ
KQ
KQ
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
11
Nov. 1999
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG
This part contains an IEEE standard 1149.1 Compatible Teat Access Port(TAP). The package pads are monitored by the Serial Scan
circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. Internal data is not
driven out of the SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction
Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up,
therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without
interfacing with normal operation of the SRAM. TCK must be tied to V
SS
to preclude mid level input. TMS and TDI are designed so an
undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be
tied to V
DD
through a resistor. TDO should be left unconnected.
TAP Controller State Diagram
Test Logic Reset
Run Test Idle
0
1
1
1
1
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
0
0
0
0
0
Select DR
Capture DR
Shift DR
Exit1 DR
Pause DR
Exit2 DR
Update DR
Select IR
Capture IR
Shift IR
Exit1 IR
Pause IR
Exit2 IR
Update IR
1
1
1
1
1
JTAG Block Diagram
SRAM
CORE
BYPASS Reg.
Identification Reg.
Instruction Reg.
Control Signals
TAP Controller
TDO
SA(5R)
SA(4R)
TDI
TMS
TCK
JTAG Instruction Coding
NOTE :
1. Places DQs,KQx,KQx in Hi-Z in order to sample all input data regard-
less of other SRAM inputs.
2. TDI is sampled as an input to the first ID register to allow for the serial
shift of the external TDI data.
3. Bypass register is initiated to V
SS
when BYPASS instruction is
invoked. The Bypass Register also holds serially loaded TDI when
exiting the Shift DR states.
4. SAMPLE instruction dose not places DQs,KQx,KQx in Hi-Z.
IR2 IR1 IR0
Instruction
TDO Output
Note
0
0
0
SAMPLE-Z
Boundary Scan Register
1
0
0
1
IDCODE
Identification Register
2
0
1
0
SAMPLE-Z
Boundary Scan Register
1
0
1
1
BYPASS
Bypass Register
3
1
0
0
SAMPLE
Boundary Scan Register
4
1
0
1
BYPASS
Bypass Register
3
1
1
0
BYPASS
Bypass Register
3
1
1
1
BYPASS
Bypass Register
3
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
12
Nov. 1999
ID REGISTER DEFINITION
Part
Revision Number
(31:28)
Part Configuration
(27:18)
Vendor Definition
(17:12)
Samsung JEDEC Code
(11: 1)
Start Bit
(0)
128Kx36
0000
00101 00100
XXXXXX
00001001110
1
256Kx18
0000
00110 00011
XXXXXX
00001001110
1
SCAN REGISTER DEFINITION
Part
Instruction Register
Bypass Register
ID Register
Boundary Scan
128Kx36
3 bits
1 bits
32 bits
68 bits
256Kx18
3 bits
1 bits
32 bits
49 bits
BOUNDARY SCAN EXIT ORDER(x36)
36
4A
SA
SA
6A
35
37
4C
SA
SA
6C
34
38
3A
SA
SA
7A
33
39
3B
SA
SA
7B
32
40
3C
SA
SA
7C
31
41
3D
NC
1
NC
1
7D
30
42
2B
DQ
DQ
8B
29
43
1B
DQ
DQ
9B
28
44
2D
DQ
DQ
8D
27
45
3F
DQ
DQ
7F
26
46
1D
DQ
DQ
9D
25
47
2F
KQ
KQ
8F
24
48
1F
DQ
DQ
9F
23
49
3H
DQ
DQ
7H
22
50
2H
DQ
DQ
8H
21
51
1H
DQ
DQ
9H
20
52
5A
ZQ
G
5C
19
53
5B
B1
K
5G
18
54
5K
B2
K
5H
17
55
5L
B3
MODE
2
6L
16
56
4L
LBO
DQ
9K
15
57
1K
DQ
DQ
8K
14
58
2K
DQ
DQ
7K
13
59
3K
DQ
DQ
9M
12
60
1M
DQ
KQ
8M
11
61
2M
KQ
DQ
9P
10
62
1P
DQ
DQ
7M
9
63
3M
DQ
DQ
8P
8
64
2P
DQ
DQ
9T
7
65
1T
DQ
DQ
8T
6
66
2T
DQ
SA
7P
5
67
3T
SA
SA
7T
4
68
4R
SA
SA
6R
3
SA
0
5T
2
SA
1
5R
1
BOUNDARY SCAN EXIT ORDER(x18)
26
4A
SA
SA
6A
25
27
4C
SA
SA
6C
24
28
3A
SA
SA
7A
23
29
3B
SA
SA
7B
22
30
3C
SA
SA
7C
21
31
3D
NC
1
NC
1
7D
20
32
2B
DQ
DQ
9B
19
DQ
8D
18
DQ
7F
17
33
1D
DQ
34
2F
KQ
DQ
9F
16
35
3H
DQ
DQ
8H
15
36
1H
DQ
37
5A
ZQ
G
5C
14
38
5B
B1
K
5G
13
39
5K
B2
K
5H
12
40
5L
B3
MODE
2
6L
11
41
4L
LBO
DQ
9K
10
42
2K
DQ
DQ
7K
9
43
1M
DQ
KQ
8M
8
DQ
9P
7
44
3M
DQ
45
2P
DQ
46
1T
DQ
DQ
8T
6
47
3P
SA
SA
7P
5
48
3T
SA
SA
7T
4
49
4R
SA
SA
6R
3
SA
0
5T
2
SA
1
5R
1
NOTE :
1. Pins 7D/3D are no connection pins to internal chip and place holders for 8M/16M parts. The scanned data are fixed to "1" for this 4M part.
2. Mode pin 6L is no connection pin to internal chip. The scanned data is fixed to "1".
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
13
Nov. 1999
JTAG DC OPERATING CONDITIONS
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.
Parameter
Symbol
Min
Typ
Max
Unit
Note
Power Supply Voltage
V
DD
2.4
2.5
2.6
V
Input High Level
V
IH
1.7
-
V
DD
+0.3
V
Input Low Level
V
IL
-0.3
-
0.7
V
Output High Voltage(I
OH
=-2mA)
V
OH
2.0
-
V
DD
V
Output Low Voltage(I
OL
=2mA)
V
OL
V
SS
-
0.4
V
JTAG TIMING DIAGRAM
JTAG AC TEST CONDITIONS
NOTE : 1. See SRAM AC test output load on page 7.
Parameter
Symbol
Min
Unit
Note
Input High/Low Level
V
IH
/V
IL
2.5/0.0
V
Input Rise/Fall Time
TR/TF
1.0/1.0
ns
Input and Output Timing Reference Level
1.25
V
1
JTAG AC Characteristics
Parameter
Symbol
Min
Max
Unit
Note
TCK Cycle Time
t
CHCH
50
-
ns
TCK High Pulse Width
t
CHCL
20
-
ns
TCK Low Pulse Width
t
CLCH
20
-
ns
TMS Input Setup Time
t
MVCH
5
-
ns
TMS Input Hold Time
t
CHMX
5
-
ns
TDI Input Setup Time
t
DVCH
5
-
ns
TDI Input Hold Time
t
CHDX
5
-
ns
SRAM Input Setup Time
t
SVCH
5
-
ns
SRAM Input Hold Time
t
CHSX
5
-
ns
Clock Low to Output Valid
t
CLQV
0
10
ns
TCK
TMS
TDI
PI
t
CHCH
t
MVCH
t
CHMX
t
CHCL
t
CLCH
t
DVCH
t
CHDX
t
CLQV
TDO
t
SVCH
t
CHSX
(SRAM)
K7D401871M
128Kx36 & 256Kx18 SRAM
K7D403671M
Rev 1.0
14
Nov. 1999
NOTE :
1. All Dimensions are in Millimeters.
2. Solder Ball to PCS Offset : 0.10 MAX.
3. PCB to Cavity Offset : 0.10 MAX.
153 BGA PACKAGE DIMENSIONS
1.27
7 6 5 4 3 2 1
0.050
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
A
1
.
2
7
0
.
0
5
0
BOTTOM VIEW
0.3/0.012MAX
153-
0.030
0.006
14.00
0.10
0.551
0.004
2
2
.
0
0
0
.
1
0
0
.
8
6
6
0
.
0
0
4
12.50
0.10
0.492
0.004
0.60
0.10
0.024
0.004
2
0
.
5
0
0
.
1
0
0
.
8
0
7
0
.
0
0
4
0.56
0.04
0.022
0.002
0.90
0.10
0.035
0.004
2.21
0.087
TOP VIEW
0.006
0.15
MAX
0.75
0.15
MAX
9 8